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ARTICLE Clinical Trials 2007; 4: 113–124

Introduction

Conventional phase I clinical trials determine the
maximum-tolerated dose (MTD) of a new agent by
characterizing patient outcome as a binary indica-
tor of whether toxicity occurs within a short-time
period from the start of therapy. Generally, the
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MTD is the highest dose that does not present a
practical limitation to therapy [1–3]. This approach
has seen widespread use largely because it facilitates
adaptive dose-finding methods that successively
use the doses and outcomes of previous patients to
select doses for new patients. A limitation of these
methods is that they typically base dose-finding on
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a single course of therapy, whereas multiple courses
typically are used in medical practice. As a result,
the MTD based on a single course of treatment may
prove to be overly toxic when given over multiple
courses. For example, if conventional dose-finding
is done with a fixed schedule consisting of one
course when in fact a safe dose d* exists with three
courses and this combination has substantive anti-
disease effect whereas d* with only one course does
not, then the conventional MTD of one course may
lead to the erroneous conclusion in later studies
that the agent is ineffective. Similarly, if conven-
tional dose-finding is done with four courses and it
turns out that the lowest dose is excessively toxic,
then it may be concluded erroneously that the
agent is unsafe at any dose simply because shorter
schedules were not examined.

Recently, a new phase I method was proposed
that determines a maximum-tolerated schedule
(MTS), rather than a conventional MTD [4]. The
MTS is defined as the maximum number of courses
that can be given without causing unacceptable
cumulative toxicity. The model and method
account for the patients’ sequence of administra-
tions and allow the number of courses to vary so
that an optimal schedule may be determined.
However, while this method allows the number of
courses to vary, it requires the dose used in each
administration to be fixed. Thus, if the fixed dose is
ill-chosen, the MTS may be far from optimal. One
may easily imagine examples similar to those given
above by switching the roles of dose and schedule.

This paper is motivated by the problems, noted
above, that arise in phase I trials when either the
schedule is fixed and an MTD is found, or the per-
administration dose is fixed and an MTS is found.
We propose a new paradigm for phase I clinical
trials that simultaneously optimizes both the dose
per adminstration and the overall schedule. The
design examines a matrix of possible (dose and
schedule) combinations. Each patient is assigned a
combination using previous patients’ data, with
decision criteria based on the posterior under a
Bayesian model using time-to-toxicity as the
outcome. The goal is to determine a maximum-
tolerated dose and schedule (MTDS) in terms of the
overall risk of toxicity. Our formulation allows both
the dose and the timing of each administration to
vary among patients. This accommodates settings
where a patient’s dose per administration is
decreased if a low-grade toxicity is observed, and we
also allow a patient’s actual doses or administration
times to deviate from planned values due to logisti-
cal difficulties or human error. Consequently,
although the design examines a predetermined
matrix of (dose and schedule) combinations, the
model allows each patient’s treatment to consist of
an arbitrary sequence of administration times and a

corresponding sequence of doses, so that the likeli-
hood reflects the actual data in the trial.

Motivating example describes the trial that moti-
vated this research and that will be used for illustra-
tion. Probability model presents notation and
probability models, including methods for eliciting
and calibrating priors. Choosing (dose, schedule)
combinations provides criteria for evaluating (dose,
and schedule) pairs and rules for trial conduct.
Section 5 illustrates the method via simulations as
applied to an allogeneic cell transplantation trial,
and we conclude with a discussion in Section 6.

Motivating example

In allogeneic blood or bone marrow cell transplan-
tation (allotx) for treatment of leukemia, a patient
(host) receives cells (the graft) from a donor who
has been matched on a number of human leuko-
cyte antigen sites. The graft contains T-cells and
natural killer cells that coordinate a positive
immune response that kills leukemia cells, called a
graft versus leukemia (GVL) effect. However, allotx
recipients who initially respond to treatment have
a substantial risk of disease recurrence due to prolif-
eration of residual leukemia cells. As a result, inves-
tigators continue to seek agents that can be given to
allotx recipients after they achieve a response in
order to reduce the risk of disease recurrence.

Epigenetic DNA changes are reversible modifica-
tions of the DNA-histone complex that do not
require alterations in nucleotide sequences [5].
Addition of a methyl group to gene promoter areas
(DNA methylation) is associated with gene silenc-
ing, and abnormal methylation patterns are com-
monly seen in cancer cells. Hypermethylation of
promoter regions appears to suppress genes
involved in leukemic cell growth. Methylation is
maintained by the enzyme cytosine DNA methyl-
transferase, with inhibition of this enzyme leading
to hypomethylation and subsequent reactivation of
tumor suppressor genes. Vidaza® (5-azacitidine)
inibits DNA methyltransferase by forming covalent
adducts with the enzyme, activating silent genes
that may lead to cell death, and also may induce
phenotypic modification of the leukemic cells to
facilitate immune recognition and potentiation of
the donor cells’ GVL effect. Vidaza® has been
approved by the US Food and Drug Administration
for the treatment of myelodysplastic syndrome
(MDS), a blood cell disease that often progresses to
acute myelogenous leukemia (AML). The recom-
mended dose and schedule for MDS patients is
75 mg/m2 given subcutaneously, daily for seven
days, with this seven-day cycle repeated every four
weeks. No data exist, however, on what a safe dose
and schedule for AML patients might be.
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The method described here was motivated by the
desire to design a phase I trial to optimize both 
the schedule and the dose per administration of
Vidaza® in AML. The trial currently is ongoing at
M.D. Anderson Cancer Center. For the purpose of
determining an optimal (dose and schedule) pair,
‘toxicity’ is defined as any of the following adverse
events (AEs): (1) severe (grade 3 or 4) toxicity of the
kidney, liver, heart or lung or neural toxicity, as
defined by standard NCI grading criteria; (2) severe
graft versus host disease; (3) systemic infection that
cannot be resolved by antibiotics within two weeks;
(4) severe hematologic toxicity, with thrombocy-
topenia and or neutropenia or (5) an AE of any of
these types that leads to subsequent delay or termi-
nation of therapy, or a dose reduction. Each patient
may receive up to four courses of therapy, and the
dose may be reduced up to two times for reasons
other than the toxicities listed above. Thus, a
patient’s treatment may consist of an initial dose
and the times at which it was administered, a
second, possibly lower dose, along with its admin-
istration times, and so on, up to four courses. In
practice, a patient’s administration times may
deviate from the planned schedule due to practical
difficulties in adhering to the schedule over several
months of therapy, or intentional delay of a
planned course by the physician to allow a patient
to recover from a low-grade toxicity. Additionally, a
patient may receive the wrong dose due to human
error. Thus, an important feature of our model is
that it accommodates each patient’s actual treat-
ment sequence by accounting for the contribution
of each dose and its time of administration to the
patient’s overall risk of toxicity.

Probability model

General form of the hazard and likelihood

Suppose one wishes to evaluate J doses,
d1 � d2 � · · · � dJ, and K nested schedules, s(1), . . .,
s(K). The kth schedule is a sequence of administra-
tion times, s(k) � (s1, s2, . . ., sm

(k)), with s(k) a subse-
quence of s(k�1) for each k � 1, . . ., K � 1, and m(1)

� m(2) · · · � m(K). Here, ‘dose’ is the amount of the
agent given at each administration. For example, a
patient given d2 under schedule s(3) � (s1, s2, . . .,
sm(3)) receives the cumulative amount d2m

(3) of the
agent in m(3) successive administrations, unless
therapy is terminated early due to toxicity. Thus, a
patient’s assigned treatment is indexed by the pair
( j, k), representing (dj, s(k)), there are M � JK such
pairs under consideration, and the total amount of
the agent given to the patient increases with both
dose and schedule.

In the motivating study, there are three doses of
interest: 8, 16 and 24 mg/m2, and four schedules,
for a total of M � 12 combinations. One course 
consists of five consecutive daily administrations.
Ideally, the first course begins 40 days post-trans-
plant, although this may vary since the physician
may decide to delay administration due to early
complications, such as infection. We thus define
the time to toxicity from the time when the first
course is actually begun, the patient’s enrollment
time. The first schedule, s(1) � (0, 1, 2, 3, 4), consists
of one course. The second schedule includes one
additional course starting 28 days after the begin-
ning of s(1), so that s(2) � (0, 1, 2, 3, 4, 28, 29, 30, 31,
32) � (s(1), s(1) � 28). The third and fourth schedules
are defined similarly, with s(3) � (s(1), s(1) � 28,
s(1) � 56) and s(4) � (s(1), s(1) � 28, s(1) � 56,
s(1) � 84). Figure 1 provides a schematic representa-
tion of the 12 (dose schedule) combinations evalu-
ated in the trial. We denote the maximum length of
follow-up for each patient specified by the investi-
gators by �, which should be large enough to
include toxicities arising from the longest schedule,
s(K). In the motivating trial, � � 116 days, which is
28 days after the start of the fourth course.

Our model generalizes that used by Braun et al. [4]
by extending it to allow the dose per administration to
vary and also using a new parameterization to facili-
tate computation. While other models are possible, we
use this model here because it is robust (Robustness
Section, Table 4, below) and because our primary focus
is the new algorithm for optimizing (dose, chedule).
Let t* denote a time, from the start of the trial, when
one evaluates the data and either assigns a particular
pair (j, k) to the next patient or terminates the trial
early if no pair is acceptable. Denote by e the study
time when the patient’s therapy begins. We denote the
time to toxicity by Y and let Yo be the patient’s
observed time from e to either toxicity or last follow-
up at study time t*. Thus, Yo � Y if e � Y � t* or
Yo � t* � e if e � Y � t*. Let � � I(Yo � Y) indicate that
the patient has toxicity by study time t*. Let h(u|		, d)
denote the hazard of toxicity associated with a single
administration of dose d of the agent given u days pre-
viously, where 		 is a vector of model parameters; we
define h(u|		, d) � 0 for u � 0. Let s � (s1, . . . , sk) denote
the patient’s sequence of administration times and
ds � (dj(s1)), . . . , dj(sk)) the corresponding doses up to
study time t*. Thus, j(s�) indexes the dose given to the
patient at time s� after entry, at study time e � s�. The
overall hazard of toxicity at study time t* for a patient
treated with schedule s and doses ds is 
(t*|		, s,
ds) � ��

k
� 1h (t* � e � s�|		, dj(s�)). Consequently, the

patient’s cumulative hazard function at t* is �(t*|		, s,
ds) � ��

k
� 1 H(t* � e � s�|		, dj(s�)), where H(x|		, d) � �0

x �0
x

h(u|		, d) du, with survivor function Pr(Y � t*|		, s, ds) �
F̄(t*|		, s, ds) � exp{ � �(t*|		, s, ds)} and density 
f(t*|		, s, ds) � 
(t*|		, s, ds)F̄(t*|		, s, ds). Let n* denotes
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the number of patients enrolled up to t*. For the ith
patient, ei is the entry time, the sequence of adminis-
tration times up to t* is ei � si � (ei � si,1, . . ., ei � si, ki),
and dsi � (dj(si,1), . . ., dj(si, ki)

) is the corresponding
sequence of doses, i � 1, . . ., n*. For treatment
sequences (si, dsi

) and outcome data (Yi
o, �i), patient i

has likelihood Li(		|Yi
o, �i, si, dsi

) � 
(Yi
o|		, si, dsi

)�
i

F̄(Yi
o|		, si, dsi), and the overall likelihood at t* is

L(		|datan*) � �i�1
n* Li(		|Yi

o, �i, si, dsi
).

This model accommodates each patient’s actual
sequence of administration times and doses, which
often deviate from his/her planned treatment. For
example, suppose a patient’s planned treatment
was two courses with 24 mg/m2 at each of the 10
administrations, but the patient began the first
course two days late, was reduced to 8 mg/m2 in the
second course due to a grade 2 infection, and was
given 16 mg/m2 by mistake at the 10th administra-
tion. Then, the patient’s actual treatment would be
s � (2, 3, 4, 5, 6, 30, 31, 32, 33, 34) and ds � (24, 24,
24, 24, 24, 8, 8, 8, 8, 16). While this is not any of
the 12 (dose, schedule) combinations being studied
in the Vidaza® trial (Figure 1), the model allows this
patient’s data to be included in the likelihood.

It may be unclear how to score Y for some
patients. The definition of toxicity in the Vidaza®

trial includes grade 2 toxicities that cannot be
resolved therapeutically within two weeks from
onset or that necessitate a dose reduction. We chose
to score such toxicities as occurring at the time of
initial onset. For example, if a patient has a grade 2
thrombocytopenia starting at day 10 of therapy that
persists beyond day 24 and requires a dose reduction,
we define Yo � 10 and � � 1. However, if the throm-
bocytopenia is resolved by day 24, then it is not
scored as a toxicity, and at day 24 we define Yo � 24
and � � 0, provided that no other toxicity has
occurred. This approach is conservative in that toxi-
city is assumed to have occurred as soon as possible.

Single administration hazard function

The probability model is determined by the partic-
ular form of h, for which we employ a reparameter-
ized version of the triangular hazard function used
by Braun [4]. In this model, for each per-adminis-
tration dose j � 1, . . ., J, denote 		j � (aj, bj, cj), with
		 � {		1, . . ., 		J} and each entry of 		 positive-valued.

116 TM Braun et al.
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The hazard of toxicity associated with a single
administration of dose dj is

(1)

This is a triangle having base of length bj � cj
and area equal to aj, with the height of the triangle,
2aj/(bj � cj), occurring at u � bj. The area of this 
triangle is the cumulative single-administration
hazard Hj � aj for dose dj. The constraint that 
the per-administration cumulative hazard of toxic-
ity increases with dose says that  a1 � a2 � · · · � aJ. 
In some applications, however, the risk of toxicity
may reach a plateau or may even decrease with a
higher dose or longer schedule, such as in studies of
anti-infection agents that have adverse effects, and
such an ordering constraint is inappropriate.

Establishing priors

To enforce the constraint a1 � a2 � · · · � aJ so that
F(�|		, dj, s(k)), the probability of toxicity by �,
increases with dose, we let aj* � aj � aj � 1 for j � 2,
with a1* � a1. We assume that (a1*, . . ., aJ*) follows a 
J-variate lognormal prior with all correlations equal
to zero, although a posteriori, the aj*’s may be corre-
lated. Denoting the marginals by aj* ~ LN(
aj

*, �a
2),

this implies that E(aj*) � exp(
aj* � �a
2/2) and

var(aj*) � exp(2
aj* � �a
2) {exp(�a

2) � 1}. Similarly,
(b1, . . ., bJ) and (c1, . . ., cJ) each follow J-variate log-
normal priors, with marginals bj ~ LN(
bj

, �b
2) and 

cj ~ LN(
cj
, �c

2) for each j. We chose the multivariate
lognormal for its generality and tractability.
Denoting 

j � (
aj*, 
bj, 
cj) and �� 2 � (�a

2, �b
2, �c

2),
the model has three J location hyperparameters,


 � (

1, . . ., 

J) and three scale hyperparameters,
��2 � (�a

2, �b
2, �c

2); we denote 		̃ � (

, �� 2). In
Application Section, we will illustrate how to deter-
mine 		̃ in the context of the application.

Appropriate values for the prior mean and vari-
ance parameters may be elicited from the investiga-
tors in many ways [6], although in general, it is
easiest to elicit values on domains with which the
investigator is familiar [7]. Thus, we elicit the
expected values of the following three quantities for
each dose j � 1, . . ., J:

1. �j,1 � log{1 � Fj(�|s(1), 		)} � m(1)aj, the trans-
formed probability of toxicity by time � under
the shortest schedule s(1),

h u

a

b c
u
b

a

b c

b c u

cj

j

j j j

j

j j

j j

j
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2. �j,2, the time until the maximum hazard is
reached for one administration of dose j, and

3. �j,3, the time from the peak of the hazard until
the hazard vanishes completely or becomes
negligible for a single administration of dose j.

In practice, one elicits the mean probability
E{Fj(�|s(1), 		)|		̃ } and then derives E{�j,1|		̃ } �
�log[1 � E{Fj(�|s(1), 		)|		̃]. We will use the superscript
(e) to denote elicited values, with �j,�

(e) the elicited
mean of �j,�,� �1,3.

We derive additional functions of the hyperpara-
meter vector 		̃  by assuming that �j,1 has an inverse
Gamma (IG) distribution with variance (�j,1

(e))2/
(�1 � 1), and that �j,2 and �j,3 have IG distributions
with respective variances (�j,2

(e))2/(�2 � 1) and
(�j,3

(e))2/(�2 � 1). We use the same value �2 in the dis-
tributions of �j,2 and �j,3 as they both describe time
durations and differ in nature from �j, 1. Since �j,1,
�j,2 and �j,3 correspond, respectively, to m(1)aj, bj and
cj, we use the following method-of-moments
approach to solve for 		̃  by equating the elicited
moments of �j,1, �j,2 and �j,3 to their corresponding
theoretical moments. Denoting �0,1

(e)
� 0, we solve the

following set of equations for 		̃ :

(2)

(3)

(4)

(5)

(6)

(7)

Comparing Equations (2) and (3) shows that
exp(�a

2) � 1 � (�1 � 1)�1, hence �a
2 � log{�1/(�1 � 1)},

which is a function solely of �1. Comparing
Equations (4) and (5) and Equations (6) and (7),
shows that �b

2 � � c
2 � log{�2/(�2 � 1)}. Thus, �1

and �2 are tuning parameters that determine the 
informativeness of the prior. Solving for the prior
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location parameters gives 
aj* � log([�j,1
(e)

� �j�1,1
(e) ]/

m(1)) � �a
2/2, 
bj � log(�j,2

(e) ) � �b
2/2 and 
cj

�
log(�j,3

(e)) � �c
2/2. Thus, ��2 is determined by the

tuning parameters �1 and �2, and given � 2, the
elicited quantities are used to determine the prior
location parameters 

.

Choosing (dose schedule) 
combinations

Because trial conduct uses decision criteria based on
the most recent posterior computed when a new
patient is accrued, the data must be monitored con-
tinuously, making the design computationally
intensive. We compute the posterior of 		 using
Markov Chain Monte Carlo (MCMC) methods as
described in Appendix. For each ( j, k), we base 
decisions on Fjk(		) � F(�|		, dj, s(k)), the cumulative
probability of toxicity within � days after 
enrollment for a patient treated with dose j and
schedule k. We will say that the pair (j, k) is accept-
able if:

(8)

where Fmax is a fixed upper bound on the probability
of toxicity by � specified by the physician and pu is
a fixed decision cut-off, typically, set to 0.80 or
larger. This is similar to the criterion used for 
defining acceptable toxicity used by Thall and 
Cook [8], in the context of dose-finding based on
efficacy and toxicity. We denote the set of accept-
able (dose schedule) combinations by O*. If O* is the
empty set, then all (j, k) combinations are unaccept-
able and the trial is terminated. If O* has two or
more elements, then we compute the distance
measure

(9)

for each (j, k) � O*, where �o is a desired target 
for Pr(Y � �) specified by the physician. We 
assign patient n* � 1 to the element of O* having
smallest djk*.

To protect patient safety, we constrain O* to
include only (j, k) pairs with doses that are at most
one dose above and/or one schedule longer than
those combinations already assigned to previous
patients. If ( j*, k*) is the pair that was assigned to
the previous subject, and no pair with higher dose
or longer schedule has previously been tried, then
the next patient may be assigned any pair (j, k) for
which j � j* � 1 and k � k* � 1; we call this the ‘do
not skip’ rule. Thus, one may de-escalate, stay at 
( j*, k*), increase either dose or schedule by one

d E Fjk jk
* ( )= { } −| | |θ data o

n* �

Pr ( ) maxF F pjk uθ > | <data *n{ }

level, or increase both dose and schedule by one
level, as shown by Figure 1. These restrictions 
only apply to untried (j, k) pairs when escalating,
and we place no restriction on de-escalation of
either dose or schedule. Combining all of the above
criteria and rules, our algorithm for trial conduct is
as follows:

Trial Conduct

1) Treat the first patient at the lowest (dose, sched-
ule) pair, (j, k) � (1, 1).

2) For each patient after the first, based on the
current posterior of 		, determine the set, O*, of
acceptable (j, k) combinations.

3) If O* is empty, then stop the trial and conclude
that no (j, k) combination is acceptable.

4) If O* is not empty, then assign the next patient
to the element of O* with smallest djk*, that is, the
combination whose posterior mean cumulative
probability of toxicity by � is closest to �o.

5) If the study is not terminated before N patients
have been enrolled and fully evaluated with
follow-up to �, select the pair ( j*, k*) that mini-
mizes djk* as the optimal (dose and schedule)
combination.

For example, suppose that the first patient has been
assigned to combination (1, 1) and has not experi-
enced toxicity. Due to the ‘do not skip’ rule, there
are four possible (dose, schedule) combinations for
the next patient: O* � {(1, 1), (1, 2), (2, 1), (2, 2)}. If
we assign the second patient to combination (2, 1),
and both enrolled patients have not experienced
toxicity when the third patient is enrolled, then
there are now six possible (dose, schedule)
combinations for the third patient: O* � {(1, 1), (1,
2), (2, 1), (2, 2), (3, 1), (3, 2)}. This process is
repeated with all successively enrolled patients.
Note that if (j, k) is determined to be unsafe by
Equation (8), then all pairs ( j�, k�) with j� � j and
k� � k must be unsafe.

Application

Design and priors

The Vidaza® trial has three doses, d1 � 8, d2 � 16 and
d3 � 24mg/m2 and four schedules with m(1) � 5,
m(2) � 10, m(3) � 15 or m(4) � 20 administrations.
The trial will enroll a maximum of N � 60 patients,
with each patient followed for up to � � 116 days.
Using the trial conduct algorithm given above, a
(dose, schedule) combination is assigned to each
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new patient at the time of his/her enrollment. The
goal is to find a (dose, schedule) combination with
mean probability of toxicity by � closest to �o � 0.30.
The investigators believed that the single-adminis-
tration hazards for the three doses have expected
peaks at �1,2

(e) � 18, �2,2
(e) � 14 and �3,2

(e) � 10 days, respec-
tively, with expected remaining durations of
�1,3

(e) � 10, �2,3
(e) � 14 and �3,3

(e) � 18 days. They also
believed that the expected probabilities of toxicity by
116 days for the three doses under the shortest
schedule are 0.20, 0.25 and 0.30, so that �1,1

(e) �
�log(1 � 0.20), �2,1

(e) � �log(1 � 0.25) and �3,1
(e) � �log

(1 � 0.30). We derived 		̃ using this elicited informa-
tion as described in Establishing priors. The prior is
characterized by �a

2 � �b
2 � �c

2 � 1.1, 

1 � (�3.66,
2.34, 1.75), 

2 � (�4.90, 2.09, 2.09) and 

3 � (�4.83,
1.75, 2.34). The safety criterion parameters for
applying Equation (4) were defined to be Fmax � 0.30
and pu � 0.80, so that a pair (j, k) is deemed
acceptable if �80% of the posterior mass of Fjk(		) is
above 0.30.

Simulation design

For the simulation study, we specified seven scenar-
ios in terms of fixed true probabilities of toxicity by
day � � 116, Fjk

true, for each ( j, k). These scenarios are
summarized in Table 1 and illustrated by Figure 2. 
In scenario 1, all 12 combinations are safe, with
Fjk

true � 0.30, and the pairs (2, 4) and (3, 4) have Fjk
true

closest to 0.30. Scenarios 2 and 3 have several com-
binations with Fjk

true � 0.30, and all 12 combinations
are toxic in scenario 4. In each of scenarios 5–7, com-
bination (2, 2) has F22

true � 0.30, but the scenarios
differ in terms of how the Fjk

true values of the other
combinations vary around combination (2, 2).

Based on the input from the principal investiga-
tor, patient inter-arrival times were simulated from
an exponential distribution with mean of two weeks,
reflecting an accrual rate of about two patients per
month, and we simulated 10% of all toxicities to be
low-grade, which are classified as dose-limiting at
their onset if they fail to resolve within two weeks.
Thus, there is a two-week delay in the recording of
toxicities that began as low-grade toxicities.

We determined the values �1, �2 and pu used for
the actual trial by first running an extensive series
of preliminary simulations using candidate values
1.1 � �1 � 3, 1.1 � �2 � 14 and pu � {0.70, 0.75,
0.80, 0.85, 0.90}. Initially, we examined multiple
combinations of the three parameters under sce-
nario 4, our ‘worst-case’ scenario, and we selected a
set of (�1, �2, pu) combinations to ensure a high
probability (�90%) of stopping early, to ensure a
safe design. Once we found a subset of safe (�1, �2,
pu) combinations, we ran additional simulations
using those combinations under each of the other
scenarios to identify final values giving a design

with good properties under all scenarios. We found
that �1 � 1.5, �2 � 1.5 and pu � 0.80 reliably
chooses (j, k) pairs with Fjk

true close to the targeted
�ο � 0.30 in each of the non-worst case scenarios,
while forcing early termination of the study with at
least 90% probability under scenario 4.

To examine the design’s robustness, we gener-
ated the Yi’s from each of the several different para-
meterizations of Weibull, exponential and
lognormal distributions under each scenario. In
Tables 2 and 3, we report simulation results for an
exponential distribution with scale parameter
chosen so that each Fjk

true equalled the value speci-
fied in Table 1. Table 4 summarizes results under
scenario 5 when the Yi’s are generated from a
Weibull distribution with shape parameter 0.4 and
a lognormal distribution with variance equal to
that of the exponential. The scale parameters of the
Weibull and lognormal distributions were chosen
so that Fjk

true equalled the value specified in Table 1.

Simulation results

Table 2 gives the selection frequency and the mean
number of patients assigned to each (dose, schedule)
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Table 1 The fixed toxicity probabilities of each (dose, schedule)
pair under each of scenario in the simulation study

Dose (mg/m2)

Scenario Schedule 8 16 24

1 4 0.22 0.26 0.30
3 0.16 0.18 0.23
2 0.09 0.12 0.18
1 0.05 0.07 0.11

2 4 0.31 0.45 0.62
3 0.18 0.32 0.54
2 0.09 0.21 0.40
1 0.03 0.14 0.28

3 4 0.55 0.62 0.72
3 0.45 0.50 0.62
2 0.30 0.32 0.50
1 0.10 0.26 0.35

4 4 0.57 0.73 0.78
3 0.55 0.65 0.75
2 0.53 0.60 0.65
1 0.50 0.54 0.58

5 4 0.30 0.48 0.70
3 0.14 0.32 0.55
2 0.12 0.30 0.48
1 0.10 0.28 0.45

6 4 0.50 0.60 0.75
3 0.30 0.50 0.60
2 0.12 0.30 0.50
1 0.03 0.15 0.30

7 4 0.10 0.60 0.70
3 0.05 0.50 0.60
2 0.03 0.30 0.55
1 0.01 0.10 0.50
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Figure 2 The fixed toxicity probabilities of each (dose, schedule) pair under each of scenario in the simulation study. The
dashed horizontal line represents the target toxicity probability 0.30

pair under each of the scenarios using the proposed
design, referred to as ‘MTDS.’ As a basis for compar-
ison, we also include results for a conventional
phase I dose-finding design using the continual
reassessment method (CRM) [9] with the schedule
fixed at schedule 4, assuming Pr(Yi � 116|dj, sched-
ule 4) � pj

exp(�) for j � 1–3, with ( p1, p2, p3) � (0.10,
0.30, 0.50) and � following a normal prior with
mean 0 and variance 2. Table 3 displays summary
statistics for both the MTDS and CRM designs
under all seven scenarios. We consider (dose, sched-
ule) combinations with 0.20 � Fjk

true � 0.40 to be
acceptable choices, with boldfaced values in Table 2
corresponding to such combinations.

In scenario 1, the MTDS design identifies one of
the four acceptable combinations as optimal 87% of
the time, with an average of about 38 patients
assigned to one of these four combinations. The
CRM assigns all 60 patients to an acceptable combi-
nation, because in this case, the CRM design fortu-
itously only examines schedule 4. In scenario 2, one
of the five acceptable combinations is identified as

optimal by the MTDS design in 81% of the simula-
tions, with an average of nearly 42 patients
assigned to one of these five combinations and
around seven patients assigned to combinations
with Fjk

true � 0.40. Because the CRM design is
limited to doses with schedule 4, it can possibly
find only the one acceptable combination (1, 4) in
scenario 2, which it identifies as the MTD 66% of
the time, with 41 patients assigned to that combi-
nation. The CRM terminates early with no dose
selected 16% of the time, in contrast to 0% for the
MTDS design, because the other two doses are
extremely toxic under schedule 4. That is, there is a
probability 0.16 that a truly safe agent, when appro-
priately administered, will be abandoned based on
a conventional phase I trial using the CRM. The
limitations of fixing schedule and only varying
dose are further illustrated by Table 3. In particular,
the CRM has probability 0 of selecting an accept-
able dose under each of scenarios 3, 6 and 7, where
all of the acceptable doses are at schedules below
schedule 4.
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In scenario 3, the MTDS design identifies one of
the four acceptable combinations as optimal 88%
of the time, with about 43 patients assigned to one
of these four combinations and 13 patients assigned

to combinations with Fjk
true � 0.40. Because all three

doses are unacceptably toxic under schedule 4 in
scenario 3, the CRM is unable to find an acceptable
dose simply because it never examines a lower
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Table 2 Simulation results for the MTDS method and the CRM used within schedule 4. For each (dose, schedule) pair, column (a)
gives the selection percentage and column (b) gives the mean number of patients assigned to the pair. Boldface values correspond to
pairs with toxicity probability between 0.20 and 0.40

Dose (mg/m2)

8 16 24

Scenario Method Schedule (a) (b) (a) (b) (a) (b)

1 MTDS 4 0.02 3.5 0.16 10.1 0.44 13.1
3 0.01 2.6 0.06 6.4 0.25 11.4
2 0.00 1.6 0.00 3.5 0.05 6.5
1 0.00 1.0 0.00 0.1 0.00 0.3

CRM 4 0.47 30.6 0.31 17.8 0.19 10.3

2 MTDS 4 0.17 8.6 0.08 5.7 0.00 0.2
3 0.10 6.7 0.29 11.7 0.01 1.3
2 0.00 2.8 0.19 10.6 0.13 8.7
1 0.00 1.1 0.00 0.5 0.03 2.2

CRM 4 0.66 41.2 0.18 12.1 0.00 0.4

3 MTDS 4 0.01 2.9 0.00 0.5 0.00 0.0
3 0.06 6.1 0.01 1.6 0.00 0.0
2 0.26 13.7 0.14 9.9 0.01 1.7
1 0.03 3.3 0.19 7.3 0.29 12.4

CRM 4 0.03 15.6 0.00 1.1 0.00 0.0

4 MTDS 4 0.00 0.8 0.00 0.0 0.00 0.0
3 0.00 1.7 0.00 0.2 0.00 0.0
2 0.00 3.7 0.00 2.0 0.00 0.2
1 0.08 11.1 0.02 5.1 0.00 3.7

CRM 4 0.01 13.8 0.00 0.5 0.00 0.0

5 MTDS 4 0.19 8.8 0.04 3.7 0.00 0.1
3 0.09 6.5 0.19 9.7 0.00 0.7
2 0.01 3.4 0.24 12.3 0.06 5.8
1 0.00 1.4 0.09 3.1 0.08 4.6

CRM 4 0.72 43.2 0.15 11.0 0.00 0.2

6 MTDS 4 0.09 6.9 0.00 0.9 0.00 0.0
3 0.32 12.9 0.03 3.2 0.00 0.2
2 0.13 9.3 0.29 15.0 0.01 3.0
1 0.00 1.2 0.00 1.4 0.11 6.1

CRM 4 0.08 20.6 0.00 1.7 0.00 0.0

7 MTDS 4 0.03 6.1 0.01 2.2 0.00 0.0
3 0.00 2.7 0.09 8.3 0.00 0.4
2 0.00 1.5 0.54 20.9 0.01 5.3
1 0.00 1.0 0.13 3.5 0.19 8.2

CRM 4 0.77 40.1 0.23 19.6 0.00 0.2

Table 3 Summary statistics for the MTDS and CRM designs under each scenario

Scenario

Method 1 2 3 4 5 6 7

Probability of selecting MTDS 0.87 0.81 0.88 n/a 0.71 0.72 0.54
an acceptable dose CRM 0.97 0.66 0.00 n/a 0.72 0.00 0.00

Probability of selecting MTDS 0.00 0.00 0.01 0.90 0.00 0.00 0.00
no dose CRM 0.03 0.16 0.97 0.99 0.13 0.92 0.00

Mean number of MTDS 60.0 60.0 59.5 28.7 60.0 60.0 60.0
patients enrolled CRM 58.7 53.6 16.7 14.3 54.5 22.4 59.9

Observed incidence MTDS 0.22 0.29 0.34 0.54 0.31 0.31 0.33
of toxicity CRM 0.25 0.34 0.55 0.58 0.34 0.51 0.27
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schedule. In scenario 3, the CRM exposes on average
nearly 17 patients to toxic combinations with 55%
of them experiencing toxicity, and nearly always ter-
minates early with all combinations deemed unac-
ceptable. In scenario 4, where no combination is
acceptable, 29 patients on average are enrolled
under the MTDS design before the study terminates,
in contrast to only 14 patients under the CRM.
However, in the scenario where all combinations are
overly toxic the MTDS design assigns a majority of
patients only to combination (1, 1) and its closest
neighbors, with the overall incidence of toxicities
similar between the MTDS and the CRM designs.

Scenarios 5–7 illustrate the MTDS method for dif-
ferent distributions of acceptable (dose, schedule)
pairs over the matrix of 12 pairs studied. Tables 2
and 3 show that the MTDS reliably identifies
acceptable pairs in all of these scenarios. The con-
clusions reached from scenarios 1–4 are re-empha-
sized: because it does not allow schedule to vary, a
conventional CRM dose-finding design is likely to
assign a majority of patients to suboptimal doses
and is often unable to identify an optimal (dose,
schedule) pair. In contrast, the MTDS design assigns
more patients to acceptable combinations and
often has a much greater likelihood of selecting a
combination suitable for further study.

A critical issue illustrated by the simulations is
that the MTDS method is superior to the CRM, or
any method that searches for an optimal dose but
does not allow the schedule to vary. The point is
simply that, if the optimal (dose, schedule) combina-
tion occurs at a schedule different from the fixed
schedule assumed by a method that only varies dose,
such a method will have probability 0 of finding the
optimal combination, as was the case with CRM
under scenarios 3, 6 and 7. Similarly, the MTDS
method also is superior to the MTS method of Braun

et al. [4], which fixes dose while only varying sched-
ule. If the fixed dose is suboptimal for all schedules,
the MTS method will have probability 0 of finding
the optimal combination. We ran additional simula-
tions (not shown) under each scenario in Table 2
using an MTS design that examined all four sched-
ules but assigned all subjects to the same dose of
24mg/m2 (final column of Table 1). In scenario 3, in
which 24mg/m2 is toxic with all four schedules, the
MTS design identified the slightly toxic combination
(3, 1) as optimal in 41% of simulations and treated
an average of 29 subjects with that combination,
compared with 29% of simulations and 12 subjects
with the MTDS design (Table 2). More strikingly, in
scenarios 5 and 7, where the MTS design is restricted
to excessively toxic combinations, this design termi-
nated the trial 83 and 96% of the time, respectively,
with the false negative conclusion that no optimal
combination existed and thus the agent should not
be studied in further clinical trials.

Robustness

Table 4 gives results for the MTDS design under
scenario 5 with toxicity times generated from
Weibull, exponential and lognormal distributions,
described earlier. The first four rows replicate the
values displayed in Table 2. Table 4 indicates that the
performance of the MTDS method varies very little
with the time-to-event distribution, in terms of selec-
tion of acceptable (dose, schedule) pairs and numbers
of patients assigned. Results for other time-to-event
distributions and other scenarios, not shown, were
very similar to those presented in Table 4.

To study the effects of maximum sample size, we
simulated the trial using the MTDS method with
N � 40, 60 or 80. In scenario 1, the MTDS method
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Table 4 Simulation results for scenario 5 under different time to toxicity distributions. For each (dose, schedule) pair, column (a) gives
the selection percentage, and column (b) gives the mean number of patients assigned to the pair. Boldface values correspond to pairs
with cumulative toxicity probability between 0.20 and 0.40

Dose (mg/m2)

Time-to-event 8 16 24
distribution

Schedule (a) (b) (a) (b) (a) (b)

Exponential 4 0.19 8.8 0.04 3.7 0.00 0.1
3 0.09 6.5 0.19 9.7 0.00 0.7
2 0.01 3.4 0.24 12.3 0.06 5.8
1 0.00 1.4 0.09 3.1 0.08 4.6

Weibull 4 0.25 9.4 0.03 2.0 0.00 0.0
3 0.11 8.4 0.16 7.5 0.00 0.2
2 0.03 4.4 0.20 11.7 0.03 4.0
1 0.00 2.2 0.12 4.9 0.08 4.9

Lognormal 4 0.18 9.0 0.07 5.5 0.00 0.1
3 0.07 5.7 0.17 9.3 0.00 1.2
2 0.01 2.9 0.27 12.2 0.04 6.6
1 0.00 1.2 0.07 1.9 0.10 4.4
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identified combination (3, 4) as optimal 32, 44 and
44% of the time with N � 40, 60 and 80, respec-
tively. In scenario 4, where no combination is safe,
the trial was terminated early 80, 90, and 96% of
the time. In scenario 5, the four acceptable
combinations were identified as optimal in 64, 71,
and 79% of the time. Thus, although the design
performs best with N � 80, our selected sample size
of N � 60 provides very desirable operating
characteristics and improves substantively upon
N � 40.

Discussion

We have proposed a new paradigm for phase I clin-
ical trials aiming to identify a best (dose, schedule)
combination. The specific model and parameteriza-
tion used here were selected for tractability and
robustness, although other models certainly are
possible. We also examined a version of our design
that does not allow ‘diagonal’ escalation, that is,
increasing both dose and schedule simultaneously,
in order to protect patient safety when escalating.
However, this restriction slowed escalation so
severely that far too many patients were assigned to
suboptimal combinations and too few were
assigned to optimal combinations. One also may
impose the safety constraint that escalation from
the current combination ( j*, k*) cannot occur until
a cohort of at least M patients have been assigned to
( j*, k*), analogous to the usual approach in conven-
tional phase I designs. However, we found that
M � 1 yielded a safe design with good operating
characteristics.
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Appendix

We used MCMC with Gibbs sampling for integrat-
ing posterior quantities over the parameter space.
For each integral, we generated a series of random
vectors of model parameters distributed proportion-
ally to the posterior integrand (likelihood times
prior), with each series initialized by using the
mode. At the start of the trial, we initialized the
posterior integrand mode to be the same as the
prior mode. When a new patient enrolled, the
mode was updated by random sampling around the
previous mode. We worked in terms of the log of
the model parameters in order to generate all
random values from normal distributions. We used
two levels of sampling around the previous mode to
ensure a good approximation. The first level gener-
ates 10 000 normally distributed samples using a
large variance for each parameter, roughly two
orders of magnitude larger than that parameter’s
prior variance. In the rare case that this procedure
failed to find a mode, we increased the variance and
the number of samples and repeated. The second
level takes 5000 more samples around the best
mode approximation found at the first level, using
the same variance. For the Gibbs sampling, the
substep of drawing from the conditional distribu-
tion uses importance sampling with a symmetric
normal proposal distribution. For each parameter
		i, i � 1, 2, . . ., 9, we generated 		̃ i ~ N(		i, si), in
which si is approximately the prior standard devia-
tion. Denoting 		̃ � (		1, . . ., 		i � 1, 		̃ i, . . ., 		9), we
computed A � min{1, q(		̃ |data)/q(		|data)}, in which
q(·) is the posterior integrand, and accepted 		̃ i as the
new 		i with probability A. The MCMC convergence
was monitored by comparing the Monte Carlo stan-
dard error (MCSE) to the standard deviation of the
decision variables (i.e. the posterior cumulative
probabilities of toxicity.) We began with 4000
samples and gradually reduced this to a minimum
of 1000 samples until the MCSE was �3% of the
posterior standard deviation. Using the batch-
means method to estimate the MCSE (with batch
size 50), we observed that 1000 random samples
were enough to keep the error ratio �3%. We also
used these samples to construct the posterior mar-
ginal distribution of each model parameter and
confirm that each was a proper distribution with a
unimodal shape.

Optimizing dose and schedule of a new cytotoxic agent 123

http://ctj.sagepub.com Clinical Trials 2007; 4: 113–124

 © 2007 The Society for Clinical Trials. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF MICHIGAN on April 25, 2007 http://ctj.sagepub.comDownloaded from 

http://ctj.sagepub.com


Abbreviations

AML acute myelogenous leukemia
CRM continual reassessment method
DNA deoxyribonucleic acid
GVL graft versus leukemia
IG inverse Gamma
MCMC Markov Chain Monte Carlo

MCSE Monte Carlo standard error
MDS myelodysplastic syndrome
MTD maximum tolerated dose
MTDS maximum tolerated dose and

schedule
MTS maximum tolerated schedule
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