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SUMMARY

A Phase 1IB clinical trial typically is a single-arm study aimed at deciding whether a new treatment
E is sufficiently promising, relative to a standard therapy, S, to include in a large-scale randomized
trial. Thus, Phase IIB trials are inherently comparative even though a standard therapy arm usually
is not included. Uncertainty regarding the response rate Og of S is rarely made explicit, either in
planning the trial or interpreting its results. We propose practical Bayesian guidelines for deciding
whether E is promising relative to S in settings where patient response is binary and the data are
monitored continuously. The design requires specification of an informative prior for Og, a targeted
improvement for E, and bounds on the allowed sample size. No explicit specification of a loss
function is required. Sampling continues until E is shown to be either promising or not promising
relative to S with high posterior probability, or the maximum sample size is reached. The design
provides decision boundaries, a probability distribution for the sample size at termination, and
operating characteristics under fixed response probabilities with E.

1. Introduction

Phase II clinical trials are usually single-arm studies aimed at estimating the activity of a new
therapy. They are especially prominent in cancer therapeutics, where new treatments frequently
arise as combinations of chemotherapeutic agents and growth factors or as varying dose or radiation
fractionation schedules. Early Phase II trials, known as Phase IIA trials, are conducted to determine
whether a drug has any antidisease activity. Phase IIB trials are conducted to better determine the
degree of activity of drugs or combinations known to be active. Such trials are of great importance
because they are used to identify treatments that are sufficiently promising, relative to a standard
therapy S, to include in a randomized comparative trial with S. Thus, Phase II trials are inherently
comparative, regardless of whether they include a control arm of patients treated with S. They
provide an essential bridge between small Phase I trials, which determine the maximum tolerated
doses of drugs, and large-scale randomized Phase III trials.

To implement most of the commonly used designs for Phase II trials, such as those proposed by
Gehan (1961), Fleming (1982), and Simon (1989), the clinician must specify a single value of the
patient response rate ®g to S. In many cases, however, there is uncertainty regarding ®g. For
example, it is common for a clinician to give a range of values when asked to provide the response
rate of S. Under such circumstances it may be inappropriate to insist on a single value of @4 for
planning purposes, since the resulting design and analysis would treat an inherently variable
quantity as if it were a constant. A more realistic approach should explicitly account for the
clinician’s uncertainty regarding Oy, both in planning the Phase II trial and in interpreting its results.

When reliable historical data on S are available, they may be incorporated formally into the trial
design and possibly into the subsequent statistical inferences as well. Thall and Simon (1990) use
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empirical Bayes methods to incorporate data from historical pilot studies of S into both the trial
design and a final test of efficacy. In the absence of such data on S, clinical experience and current
belief regarding the efficacy of S may be represented by a probability distribution on ®g, and in this
case a Bayesian approach is appropriate. Although the two approaches differ philosophically, both
provide formal models for randomness in the standard therapy response rate.

In this paper we present a Bayesian approach to the design and analysis of Phase II clinical trials.
We consider settings where patient response is binary (success or failure) and the data are monitored
continuously. The aim is to provide simple, practical guidelines for deciding whether a new therapy
E is promising relative to S while accounting explicitly for uncertainty regarding the response rates
of S and E. The design requires the clinician to provide a prior for Oy, a targeted improvement for
E, and bounds n,,, and n,,,, on the allowable sample size. A flat or weakly informative prior for @
is used. No explicit specification of a loss function is required. The trial continues until E is shown
with high posterior probability to be either promising or not promising or until n,,,, is reached. In
application, the design simply consists of a sequence of upper and lower decision cutoffs for
continuously monitored data and frequentist operating characteristics, including the probability
distribution of the sample size N.

Mehta and Cain (1984) take a similar approach to fixed-sample-size pilot studies, using posterior
probabilities that E is active compared to a fixed standard for S to derive charts for early termination
and for posterior probability intervals. Ho (1991) examines some frequentist properties of a group
sequential Bayesian rule for comparing two Gaussian samples. Analogously to the approach taken
by Ho, we use a Bayesian framework to obtain decision rules and then evaluate the behavior of the
design so derived under fixed values of the experimental treatment success probability.

Specific criteria for generating the decision boundaries are given in Section 2. Methods for eliciting
and quantifying prior information are discussed in Section 3. Section 4 presents numerical operating
characteristics of the design for a range of priors and decision parameters. Guidelines for selecting design
parameters based on these results are provided. In particular, the formulation appears useful for
determining whether a nonrandomized Phase II trial is appropriate, since highly disperse priors on Og
produce designs that are unlikely to yield conclusive results without very large sample sizes. An
application is described in Section 5, followed by a general discussion in Section 6.

2. Decision Criteria
The sequence of patient responses to E will be denoted Y,, Y5, ..., with each ¥, = 0 or | as the
treatment is a failure or a success. The total number of successes out of the first n patients is thus
X, =Y, + -+ Y, Weassume that conditional on O, the Y¥,’s are exchangeable with Pr[Y, = 1]
= 0O =1 — Pr[Y, = 0]. In particular, this implies that the response rate does not *‘drift’’ over the
course of the trial. We address settings in which the data are monitored continuously, i.e., all X, are
observed up to some predetermined practical limit n,,,, and the clinicians wish to declare E
promising, not promising, or to terminate the trial at any time based on the most recent data. Such
circumstances reflect actual clinical practice in decision-making with experimental therapies in
many Phase II trials, as compared to what is assumed implicitly by fixed-sample-size one-stage or
group sequential protocols. We shall also assume that an informative prior 75 for ®4 may be elicited
from the clinicians, but require that the prior 7 of ®g be at most slightly informative. Reasons for
this latter requirement will be discussed in Section 3. We model g and g as beta distributions for
simplicity and convenience. This will be denoted =, = beta(a,, b,) for t = S or E. In particular, a
beta(a, b) distribution has mean u = a/(a + b) and variance u(l1 — w)/(1 + a + b), so in general it
may be characterized equivalently in terms of its mean and the concentration parameter ¢ = a + b.
Denote the probability density function (pdf) and cumulative distribution function (cdf) of a
beta(u, b) distribution by f(-; a, b) and F(-; a, b), respectively. Our criterion function for
determining the trial decision cutoffs is the posterior probability

Ax, n; ws, g, 8y) = Pr(@g + 8y < Og|X, = x out of n)

1-80
=f {l =F(p+8¢; ag +x, bg + n—x)}f(p; ag, bg) dp,
0

forn = 1,2, ..., i using the fact that the posterior density of O given X,, is beta(ug + X,,,
bg + n — X,,). This is easily evaluated via numerical integration. Let p; and p, denote predeter-
mined probabilities, with p, a small value such as .01-.05, and p; a large value such as .95-.99. The
upper and lower decision cutoffs are
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U, = the smallest integer x such that A(x, n; 7g, g, 0) =py,

L, = the largest integer x < U,, such that A(x, n; 7s, mg, 8y) <pL-

The decision rule at stage n is as follows:

If X,, = U, stop and declare E promising.
If X, < L,, stop and declare E not promising.
IfL, <X, <U,andn < np,,, then continue, i.e., treat another patient.

The trial is declared inconclusive if X,, has not hit a stopping boundary by n = n,,-

The rationale for the lower cutoff criterion is that a treatment that is very unlikely to provide an
improvement of at least §, over ®g does not warrant further consideration. The upper cutoff
criterion simply says that any treatment that is highly likely to offer an improvement over S is
considered promising. Although the probabilities p; and p, bear a superficial resemblance to Type
I error rate and power in classical hypothesis testing, they are in fact quite different criteria.

3. The Priors

For eliciting a prior on @g, we find it convenient to describe the beta(a, b) distribution equivalently
in terms of its mean u = a/(a + b) and Wy, = the width of the 90% probability interval running from
the 5th to the 95th percentiles. The clinician is first asked to specify the mean of ®4 and the value
of W,,. A computer plot of the corresponding beta(a, b) pdf may be used to enhance the clinician’s
conceptualization of the prior, with this process repeated until appropriate values of ¢ and b are
obtained. A nice discussion of the process of eliciting and quantifying beta(«, b) priors is given by
Lindley and Phillips (1976).

Since both g and 7 play fundamental roles in determining the decision boundaries of the design,
it is essential that 7 be formulated so that it realistically reflects limited knowledge about ® while
also generating a practically useful design. In terms of the concentration parameter ¢g = ag + bg
of g, we thus require that 2 < ¢ < 10: the dispersion of 7 is roughly no more than that of the
uniform distribution on [0, 1] but no smaller than that of the posterior corresponding to a small pilot
study of E. Given a targeted improvement §, for E over S, we set the mean 7 equal to ug + §,/2.
This centers 7 at the average of the means of the priors corresponding to the most pessimistic view
that E is on average identical to S and the optimistic view that E provides the targeted improvement
8,- For the prior used here, ag = ¢glus + 8,/2) and by = cgll — (ug + 8,/2)]. Thus 7 is determined
by ug, ¢g, and §,, and in particular the mean of 7 is an explicit function of the mean of 74 and the
targeted improvement.

The use of a flat prior on O is motivated by several considerations. If we allow 7 to be highly
concentrated around ug + §, or even ug + §,/2, i.e., if 7 is informative and optimistic, then
Pr[®g < O] will be large a priori and the upper criterion may be satisfied without treating any
patients at all. While such prior optimism regarding the efficacy of E is encouraging, we shall insist
on empirical clinical information as a basis for deciding whether E will be administered to a large
number of patients in a Phase III clinical trial. Simply put, we require that the Phase II trial provide
real clinical experience with E and we do not allow the prior to dominate the data. By the same
token, a prior for O that is highly concentrated around ug reflects a rather pessimistic view, and
subsequent clinical results that per se show a highly favorable performance by E may not produce
a posterior on O that satisfies the upper decision criterion. Moreover, if clinicians really feel such
prior pessimism regarding @, then a Phase II trial of E probably is not warranted in the first place.

Our prior 7 is similar to but not the same as ‘‘reference prior’’ in the sense that we wish the
posterior to be dominated by the data and not the prior so that the trial results may be used by others
who have their own priors. Thus we have chosen it by first varying 7 and studying the corre-
sponding posterior probability distributions, in terms of the empirical behavior of the resulting
decision rules, then restricting 7 to a set of priors yielding designs with desirable properties.
Bernardo (1979, p. 115) provides a formal basis for choosing a reference prior by defining it to be that
which maximizes the amount of missing information about the parameter that would be expected a
posteriori based on an infinitely large sample. To our knowledge no reference prior in the sense of
Bernardo has been developed for Bernoulli sampling with a sequential stopping rule.

The numerical value Wy, = .20 corresponds to reasonably informative priors on ®4. For example,
for w = .20 this converts to (a, b) = (8.15, 32.6), corresponding roughly to the beta posterior
obtained from a study of 39 patients with seven successes, starting from a uniform prior. From
another viewpoint Pr[@g < .40] = .997 for this prior, so it would be appropriate in the case where
the clinician believes that the mean success rate of S is .20 and moreover is nearly certain that it is
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Figure 1. Beta probability density functions for u = .20 and W,, = .10, .20, .30, and .40.

no larger than .40. For u = .50 and W,, = .20, the values of (a, b) increase to (33.4, 33.4),
corresponding analogously to the posterior from a study of roughly 65 patients. This illustrates the
fact that more information is required to obtain the same posterior probability interval width when
the mean is .50 rather than .20. For W, = .30, corresponding to a more disperse prior on ®g, the
respective beta parameters decrease to (3.28, 13.10) for u = .20 and (14.6, 14.6) for u = .50. These
correspond roughly to the beta posteriors obtained from studies of the standard treatment based on
14 and 27 patients, respectively. In contrast, W,, = .10 corresponds to a highly informative prior on
O, since for ug = .20 this would be the beta posterior obtained from a study of 169 patients. To
compare the dispersion of my to that of mg, we note that for ug = .30, which is determined by
s = .20 and §, = .20, the values cg = 2 and 10 correspond to Wy, = .716 and .442, respectively,
so our recommended priors on O are quite disperse compared to those used for Og.

Beta densities with mean .20 and W,, ranging from .10 to .40 are shown in Figure 1. This
illustrates the facts that a prior with Wy, = .10 is highly concentrated about its mean, whereas
Wy = .40 corresponds to a prior so disperse that it reflects almost no real knowledge about the
success rate.

The design parameters thus consist of (us, Wy,), cg and §, to determine the priors, and (p, py)
for the decision boundaries. We allow §, to play a dual role, since it determines ug and also
parameterizes A for comparison to p; when determining the lower boundary. Once these few
parameters are specified, the design is obtained by first computing the decision boundaries {L,,, U,,,
n =1,2,...}, with these used in turn to evaluate the design’s operating characteristics.

4. Frequentist Operating Characteristics

We next evaluate the design’s behavior under a variety of circumstances corresponding to what
might realistically be anticipated in the clinical setting described earlier. While the design’s decision
boundaries are obtained based on a Bayesian framework, which regards the success probability of
E as a random quantity in order to reflect actual uncertainty, we evaluate the design’s behavior
under fixed values of this success probability, which we denote by pg. Each computation requires
the design parameters ug, Wy, g, and §,, the decision boundaries, and the assumed true probability
pe of a successful treatment with E. We study the designs for values of py ranging from ug to
ms T .20. The value pp = ug corresponds to an experimental treatment having true success prob-
ability equal to the mean of the clinician’s prior on the standard treatment success probability, and
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Figure 2. Box plots of 25th, 50th, and 75th percentiles of the achieved sample size distribution
for ug = .20 and cg = 2.

in this case E does not provide a treatment advance over S. The values pg = ug + .15 and
s + .20 correspond to cases in which E is clinically superior to S. To avoid possible confusion,
we note the important distinction between the prior mean ug = ug + 8, /2 of mg, which plays a fun-
damental role in the computation of A and hence in determining the decision boundaries, and the
assumed fixed values of pg used to evaluate the design.

Each design’s operating characteristics are summarized in terms of p, = Pr[E is declared
promising], p_ = Pr[E is declared not promising] and the empirical 25th, 50th, and 75th percentiles
of the achieved sample size N. The values of p, and p_ and of the probability distribution of N were
computed analytically using the recursion given in the Appendix. The sample size boundaries
Nmin = 10 and n,,, = 65 and cutoff criteria probabilities (p, , py) = (.05, .95) were used throughout,
unless otherwise indicated. The value n,,,, = 65 was chosen for illustration because Phase II trials
of larger size often are impractical.

General patterns of variation in the sample size are illustrated in Figure 2, which presents box
plots of the distribution of N for standard prior mean ug = .20 and experimental treatment prior
concentration parameter cg = ag + bg = 2. Figure 3 presents corresponding graphs of p,, p_, and
the probability 1 — p, — p_ of an inconclusive trial. In both Figures 2 and 3, the true experimental
treatment success probability pg is varied from pug = .20 to ug + .20 = .40 for each combination of
Woo = .20, .30 and §, = .15, .20. The patterns in which N, p,, and p_ each vary with W,,, §,, and
pg are similar for other values of ug and cg.

A general message of Figure 2 is that both the median and variability of the achieved sample size
increase as the prior on @g becomes less informative or as the targeted improvement §, is decreased.
For Wy, = .20 in this case the median of N varies from 12 to 19; when W,, is increased to .30, N
becomes moderately higher at §, = .20 and substantially higher at §, = .15. Values of the true
success rate pp midway between ug and pg + 8, produce the largest values of N.

The plots in Figure 3 show that the Type I and Type II error rates and the probability of an
inconclusive trial all increase as the prior on ®g becomes more disperse or as the targeted
improvement is decreased. In terms of both sample size distribution and decision probabilities, the
design based on W,, = .20 and §, = .20 appears to be the most attractive. If prior knowledge about
S is characterized by W,, = .30 then N is very likely to take on substantially larger values compared
to the case where Wy, = .20, and the trial has a nontrivial probability of being inconclusive. The
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Figure 3. Plots of p, (line with solid box), p_ (line with empty box), and Pr[Inconclusive trial]
=1 — p, — p_ (dashed line), for ug = .20 and ¢y = 2.

design based on a target improvement of §, = .20 may still provide acceptable operating charac-
teristics in this case, but use of §, = .15 is probably ill advised.

The ways in which N, p, and p_ each vary with W,, and §, in Figures 2 and 3 also hold true for
other combinations of ug and c¢g. The corresponding designs for ¢ = 2 and ug = .50 are about
equally attractive compared to those shown in Figures 2 and 3, so it appears that varying the
standard mean response rates from .20 to .50 does not have a large effect on the design’s operating
characteristics. When the concentration parameter cg of 7 is increased from 2 to 10, however, the
problems noted above for Wy, = .30 become even more extreme. The situation ¢ = 10 and W, =
.30 would arise, e.g., in the case ug = .20, if the priors were based, respectively, on two earlier
studies in which 14 patients were treated with S and 8 patients were treated with E. This is very
different from the setting that we address with our design, namely one in which there is considerable
experience with S but little is known about E, so it is not surprising in the former case that a
single-arm study of E has poor operating characteristics.

Numerical results corresponding to standard treatment prior means ug = .20 and .50 are
presented in Tables 1 and 2, respectively. These tables illustrate the manner in which the design’s
operating characteristics vary with ¢ and ug. The other design parameters are varied through each
combination of Wy, = .20, .30 and §, = .15, .20. Both p, and p_ decrease or remain constant as ¢g
is increased from 2 to 10, with a few small exceptions. This is because more data are required to
reach a decision when the prior on O is more concentrated around its mean ug + §,/2. Several
interesting patterns emerge as ug is increased from .20 to .50: in all cases p, increases and p_
decreases, while achieved sample size increases for pg = ug. These results may be attributed to the
fact that the binomial variance is largest for values of p close to .50.

An important issue is how the design behaves for highly informative priors, since this corresponds
to circumstances in which the clinicians have had a great deal of experience with the standard
therapy. The first two rows of Table 3 present the operating characteristics of a design based on a
prior with Wy, = .10, followed by the corresponding values for Wy, = .20 repeated from Table 1 to
facilitate comparison. Since the values of p_ for pp = ug + .20 are rather high, specifically p_ = .173
for Wy, = .10 and p_ = .150 for W,, = .20, we hypothesized that more stringent decision criteria
might produce a more attractive overall design. We therefore examined behavior of the correspond-
ing designs with p; = .02 and py = .98, the results of which are also given in Table 3. The more
extreme cutoffs produce a design with very attractive operating characteristics when Wy, = .10.
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Table 1
Operating characteristics for us = .20, (py, py) = (.05, .95), (Npins Hmax) = (10, 65), and true
Pr[Success] = pg.

. e=2 =10
_ Woo =20 W =30 Wy =20 Wy =.30

6 = .15 N 10 14 32 1121 65 12 20 45 19 43 65
Pe = Ms D .071 .024 .046 .008
P .835 .703 813 592

O = .15 N 10 16 38 14 43 65 12 26 55 30 65 65
Pp = Mg + .15 P, .700 461 .685 333
p_ .165 .097 .109 .045

6 = .15 N 10 13 25 11 22 61 11 18 34 17 41 65
PE = Mg + .20 P 875 17 883 .609
D 077 .043 042 016

o, = .20 N 10 12 20 10 13 30 10 13 24 11 19 39
PE = Mg Py .070 .029 058 013
p_ .920 .896 .929 .866

0y = .20 N 10 13 22 11 17 46 11 1525 14 31 65
PE = g + .20 D, 832 714 .844 643
p_ 150 .098 131 .063

*N = (25th, S0th, 75th) percentiles of achieved sample size, p, = Pr[E declared promising], and p_ = Pr(E
declared not promising].

Although this is certainly a matter of opinion, we recommend calibrating the values of p; and py, in
this manner to obtain desirable designs when =g is highly informative.

The use of more stringent decision criteria reveals what may be a subtle effect of the fixed upper
bound on N. Note that as (p,, py;) change from (.05, .95) to (.02, .98) in Table 3, the value of p, for
PE = Ms t .20 increases from .827 to .872 when Wy, = .10, but decreases from .832 to .766 when
Wy = .20. This may be atiributed to the fact that N is more disperse for Wy, = .20 and thus hits
the upper bound of 65 more often when the termination criteria are made more stringent, resulting
in a a loss of power.

The case of a disperse prior on Qg is more problematic. Tables 1 and 2 indicate that when Wy, =
.30 it is advisable to use a targeted improvement of 5, = .20 rather than .15, since the latter produces
undesirable designs in most of the cases studied. To examine the effects of an even more disperse

Table 2
Operating characteristics for ug = .50, (py, py) = (.05, .95), (M 1
Pr[Success] = pg.

) = (10, 65), and true

max

g =2 cp = 10
L W= 20 Wee =30 Wy = .20 Woo = .30
8 = .15 N 1118 42 12 28 65 1225 55 22 65 65
P = s D, 134 085 .094 034
P 721 567 703 464
8 = .15 N 10 18 39 10 28 65 1424 53 22 62 65
Pr = s + .15 D, 754 601 729 487
P 110 063 081 028
8 = .15 N 10 13 26 10 17 40 1119 32 16 30 62
Pr = ps + .20 P, 917 832 914 764
P .040 022 025 .008
8, = .20 N 10 12 23 11 16 35 11 16 26 1425 52
Pr = Hs P, 139 .097 108 045
P 842 778 865 759
8 = .20 N 10 12 21 10 13 31 1116 26 12 24 50
Pr = s + .20 P, 881 835 889 787
D 101 052 .087 032

*N = (25th, 50th, 75th) percentiles of achieved sample size, p, = Pr[E declared promising], and p__ = Pr{E

declared not promising].
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Table 3
Operating characteristics for highly informative priors on Og. All designs correspond to
us = .20, 8, = .20, and cg = 2.

Pe N D p_

(L, py) = (.05, .95) Woo = .10 .20 10 12 16 107 .893
.40 10 11 18 .827 173

Woo = .20 .20 10 12 20 .070 .920

.40 10 13 22 .832 150

(pL, py) = (.02, .98) Wy, = .10 .20 10 14 29 .052 932
.40 1117 28 .872 .107

Woo = .20 .20 1119 38 .022 .887

.40 112250 .766 .065

prior, we considered a design based on g with Wy, = .40; the results are presented in Table 4 along
with those of the corresponding design with Wy, = .30 repeated from Table 1 for comparison. The
highly disperse prior produces a design requiring a very large number of patients and having an
unacceptably low probability of detecting a large true improvement. Although relaxing the decision
criteria to (p;, py) = (.10, .90) produces a design with more acceptable properties, we believe that
when knowledge about the standard therapy is so limited a randomized control arm of patients
treated with S should be included, since this deals with the problem more directly by obtaining
empirical information on ®¢ where it is lacking. In this case an unbalanced randomized two-arm trial
may be appropriate. This situation is analogous to the case of limited or highly variable historical
data on S in the empirical Bayes setting treated by Thall and Simon (1990). Since it is not entirely
obvious how such a trial would be formulated using the present approach, we leave the relevant
details for future consideration.

An alternative approach to evaluating operating characteristics is to incorporate a priori uncer-
tainty regarding ©. We did this by first sampling a value of pr according to 7, then simulating a

sequence of independent, identically distributed (iid) binary responses Y,, Y,, ... according to pg
and comparing the successive sums X,, = Y, + --- + Y, to the decision boundaries. This was
Table 4

Operating characteristics for a highly disperse
prior on Og. Both designs correspond to
us = .20, 8, = .20, cg = 2, and
(pL, Pyu) = (.05, .995).

Wo, PE N P+ p-

.30 .20 10 13 30 .029 .896
.40 11 17 46 714 .098

.40 .20 10 20 57 .008 762
.40 14 65 65 343 .064

Table 5
Unconditional probabilities of declaring E promising or not promising for ug = .20,
(P, pu) = (05, .95), (Mmin> Mmax) = (10, 65) based on the prior distribution of O

cp =2 cp = 10
Woo = 20 Wy = .30 Woo= 20 Woy = .30
8 = .15 N 10 10 13 10 11 19 12 17 37 14 32 65
P, 388 328 357 238
P 574 546 498 393
1-p, —p_ 038 126 145 369
8 = .20 N 10 10 12 10 10 14 10 13 22 1119 54
P, 404 354 431 301
P 587 573 542 480
1-p, —p_ .009 073 027 219

*N = (25th, S0th, 75th) percentiles of achieved sample size, p, = Pr[E declared promising], and p _ = Pr(E
declared not promising].
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repeated 2,000 times for each design and the proportions of runs in which E was declared promising,
not promising, or the simulated trial was inconclusive were recorded. The results for ug = .20 are
given in Table 5. The values of p, and p_ in Table 5 have very different interpretations from the
operating characteristics given in Tables 1-4, because randomizing pg according to 7y reflects what
may be anticipated a priori averaging over a flat prior on @, rather than for a single fixed value of
pe. For example, with 8, = .15, ¢ = 2, and W,, = .20, the unconditional prior expectation is .388
that there will be a positive result, and .038 that the trial will be inconclusive.

5. An Application

The approach proposed here has been used to design a clinical trial of fludarabine + ara-C +
granulocyte colony stimulating factor (G-CSF) to treat poor-prognosis patients suffering from acute
myelogenous leukemia (AML) at The University of Texas M. D. Anderson Cancer Center. This
AML patient subgroup is defined in terms of unfavorable cytogenetic abnormalities and the presence
of an antecedent hematologic disorder. Using established treatments, to date there are virtually no
survivors beyond 2 years among such patients. The clinical endpoint for the trial is complete
remission (CR) of the leukemia. The innovative aspect of the treatment is the use of the growth
factor G-CSF, since the standard therapy currently is fludarabine + ara-C alone.

The Bayesian approach was adopted in part due to the desire to carry out the study quickly and
efficiently, since the number of patients accrued in this group is limited to about 4 per month while
their survival is so poor with current treatment. Moreover, it is both feasible and desirable to
continuously monitor AML patient responses at M. D. Anderson. The clinician’s prior on the
standard success rate had a mean of .50 with W,,, = .20, reflecting overall clinical experience and
a recent study in which 22 of 45 such patients treated with fludarabine + ara-C achieved CR. The
design based on these parameters with ¢ = 2 and §, = .20 was implemented. As can be seen from
Table 2, this design has an 88% probability of correctly identifying a 20% improvement in CR rate
and a 10% probability of missing such an improvement. If the true E success rate is only .50, there
is an 84% probability of correctly declaring the treatment not promising and a 14% probability of
incorrectly declaring it promising. For true success rates (.50, .55, .60, .65, .70) the corresponding
sample size distributions have medians (12, 15, 15, 15, 12) and 75th percentiles (23, 28, 29, 26, 21).
Based on the current accrual rate, the median trial duration thus should be 3-5 months, and even if
pg = .60 there is a 75% chance that the trial will terminate after about 7 months.

6. Discussion

Many authors have proposed the use of Bayesian methods in clinical trials and medical statistics.
Nearly three decades ago Novick and Grizzle (1965) and Cornfield (1966a, 1966b), among others,
argued cogently for such an approach, although their suggestions seem to have been largely ignored
in clinical practice. In recent years the biostatistical literature has shown a renewed interest in
Bayesian methods, including general articles by Berry (1985, 1987), Racine et al. (1986), and
Spiegelhalter and Freedman (1988).

Sylvester and Staquet (1977, 1980) and more recently Sylvester (1988) have proposed decision-
theoretic Bayesian methods for Phase II clinical trials. They take the classical approach in which a
decision rule is obtained by minimizing the Bayes risk, using a two-point prior on . They address
the problem of optimizing the sample size and decision cutoff of a single-stage design where n is
fixed, with the objective simply to determine whether a new drug is active. In contrast, we
intentionally avoid the difficulties associated with specification of a loss function, although a loss
function certainly is defined implicitly in our formulation.

If a trial is inconclusive using our approach, the disposition of E will depend on what other
regimens are available, the results that have been obtained for them, and additional considerations
such as toxicity and cost. Even in such a case, the current trial will have been successful in
producing a useful estimate of the efficacy of E. Moreover, it is unlikely that investigators or
sponsors would be interested in Phase II trials that are likely to be as large as some Phase III trials.

Several generalizations and modifications of our approach are motivated by purely practical
considerations. The first is the idea noted earlier that a randomized two-arm trial may be more
appropriate in situations where limited knowledge about S is reflected in a highly disperse prior. This
was discussed by Meier (1975). Thall and Simon (1990) dealt with the analogous problem in an
empirical Bayes setting where a single-stage design is desired and historical data on S are limited.
They determined the proportions of patients randomized to E and S arms by minimizing the variance
of the estimated mean treatment effect difference.

Another design modification would be to impose an additional early termination rule based on the
predictive probability of obtaining a conclusive result, i.e., the conditional probability based on
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current data that E will be declared either promising or not promising after accrual of n,,, patients.
The use of predictive probabilities for decision making in clinical trials has been discussed by several
authors, including Herson (1979), Spiegelhalter and Freedman (1986), Grieve (1988), and Choi and
Pepple (1989). In the present context, a desirable goal might be to terminate the trial early if it is
highly unlikely that the trial will ever produce a conclusive result. Formally, for m < n,,,, and x <
Z < X + Ng,y — m, the conditional distribution of X,, given X,, is the beta-binomial pdf

Rmax — M\ B(z + dg, nmax — 2+ bg)
P, = zlX, = 1=
’ Z— X B(x +ag, m —x + bg)
where B(u, v) is the beta function. In general, this could be used to compute Pr[X,, = U

max ”lllxl\

[ X,, = X] at any interim point and the trial terminated if it is less than a specified cutoff p,. Based
on our numerical results, such a rule would be of most value when the true success rate of E is
midway between ug and ug + 8.

A slightly different objective in some Phase II trials is to determine whether E is not unacceptably
worse than S. This might be appropriate if negative side effects associated with E were substantially
less severe than those of S. Also, Phase II studies sometimes have the objective of ensuring that a
candidate experimental treatment for a randomized trial appears competitive to the standard. The
approach proposed here could be easily modified to accommodate this objective by replacing the
event [®g < O] used for the upper probability comparison with, say, [@g — .05 < Op].

In a cooperative group setting it may be impractical to monitor data continuously. For example,
interim monitoring for common diseases such as non-small-cell lung cancer may slow down the trial
since registration must be suspended while the continuation criteria are checked. In such a setting,
especially where further confirmation of an informative prior on @ is desired, interim monitoring
and preliminary stopping rules may be undesirable. The interpretation of results at the end of the
trial could consist of informal examination of the posterior distribution of @ — O for a set of prior
distributions, including an informative prior if that is of interest. This type of application is rather
different from what we have in mind here: in addition to the ability to monitor the data continuously,
we find the decision structure of the proposed Phase II design very useful both for planning purposes
and for interpretation of results. However, a fixed-sample-size version of our design could be
constructed based on the width of the posterior distribution of O or O — Oq.

Phase IIB trials are inherently comparative, except in the case of a new disease or where there is
no effective treatment, hence a numerical standard for Oy is required for designing the trial. Since
this must be obtained from some combination of empirical data and subjective clinical experience,
there will always be uncertainty regarding ®¢, whether one regards it as a random parameter in a
Bayesian setting or as a statistical estimate from a frequentist viewpoint. Using an empirical Bayes
approach, which is in fact frequentist and not Bayesian, Thall and Simon (1990) showed that ignoring
the variability inherent in a statistical estimate 6 leads to an underestimate of the required trial
sample size or to inflated Type I and Type II error rates. In the Bayesian setting, this is analogous
to declaring Pr{@g + &, < Og|X, = x out of n] either very large or very small because Og is
incorrectly treated as a constant and the new data on E are thus given unrealistically heavy weight.
Under either approach, ignoring the randomness in g or in és thus may lead to an overstatement
of the Phase II trial results, which may lead in turn to large-scale randomized trials of inferior new
treatments or to the discarding of superior new treatments. We thus argue that, regardless of
statistical philosophy, a proper scientific approach should begin with an honest account of the
information available on S, whether it is objective data or subjective clinical experience.

RESUME

Un essai thérapeutique de Phase IIB est spécifiquement un essai & une branche visant a décider si
un nouveau traitement E est suffisamment prometteur, comparé a une thérapeutique standard S,
pour entreprendre un essai randomisé a grande échelle. De la sorte, les essais de Phase IIB sont
comparatifs de fagon enhérente, méme si une branche correspondant a la thérapeutique standard
n’est habituellement pas incluse. L’incertitude concernant la réponse ®g de S est rarement rendue
explicite, que ce soit en planifiant I’essai ou en interprétant ses résultats. Nous proposons des lignes
directrices pratiques, bayésiennes, pour décider si E est prometteur par rapport & S dans des
contextes ou la réponse du patient est binaire, et oul les données sont suivies continiment. Le plan
nécessite la spécification d’une information a priori pour @g, d’une amélioration souhaitée par E, et
de limites pour la taille d’échantillon possible. Aucune spécification explicite de fonction de perte
n’est requise. L.’échantillonnage se poursuit jusqu’a ce que E soit considéré soit prometteur soit non
prometteur relativement a S, avec une probabilité a postériori élevée, ou bien que la taille maximum
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d’échantillon soit atteinte. Le plan permet d’obtenir les limites de décision, une distribution de
probabilité correspondant a la taille d’échantillon effectuée en fin d’essai, et les caractéristiques de
performance sous des probabilités de réponse a E fixées.
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APPENDIX

The probability distribution of N, p, = Pr[E is declared promising], and p_ = Pr[E is declared not
promising] may be computed under the assumption of beta priors as follows. At stage n define L,
= —1if it is impossible to declare E not promising, and U, = n + 1 if it is impossible to declare
E promising, e.g., if n < n,;,. Recall that the beta pdf and cdf are denoted f(p; a, b) =
p“ X1 = p)*"'B(a, b) and F(p; a, b) = [£ f(u; a, b) du, for 0 < p <1, a > 0, and b > 0. Each
of the following results holds for these values of p, a, and b.
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Lemma. (a) F(p; a, b) = F(p;a + 1, b), and (b) F(p; a, b) < F(p; a, b + 1).

Proof. (a) This is an immediate consequence of the decomposition

F b ——-——«F(aer) 1 by F 1, b
. — a _ + . +1, ,
(p; a, b) e+ Dro) p(l = p) (p; a )

given as 26.5.16 by Abramowitz and Stegun (1965), since the first term is greater than or equal to 0.
For part (b), F(p; a, b)) = 1 — F(1 — p; b, a) by 26.5.2 of Abramowitz and Stegun (1965), while
F(1 — p; b, a) = F(1 — p; b + 1, a) by part (a). Thus F(p; a, by <1 - F(1 —p; b + 1,a) =
1 —{1l = F(p;a, b+ 1)} = F(p;a, b+ 1).

Denote & x, n) = 1 — AMx, n; 7g, 7, 0) for convenience, and note that A(x, n; 7g, 7, 0) = pyy
if and only if &x, n) <1 — py = qyu.

Theorem 1. If &x, n) < gy then &x + 1, n + 1) < gy.
Proof.

1
Ex+1,n+ l):f f(p; as; bs)F(p; ag +x+ 1, bg + n—x) dp
0

I
Sf f(p; as, bs)F(p; ag +x, bg +n —x) dp (A1)
0

by part (a) of the Lemma. Expression (A.1) equals & x, n), which implies the desired result.
Theorem 2. 1f &x, n + 1) < gy then & x, n) < qy.

Remark 1. 1f U, < n, then &U,,, n) < qy. Theorem 1 implies that &U,, + 1, n + 1) < g. Since
U, . is the smallest integer y such that &y, n + 1) < gy, it follows that U,,,, < U, + 1, hence as
n— n + 1 the upper boundary increases by at most 1. If U, = n + 1, then since U,,,, < n + 2, it
follows that U,,, < U, + 1. Similarly, Theorem 2 implies that the upper boundary is monotone
nondecreasing.

The proof of Theorem 2 is similar to that of Theorem 1, but uses part (b) of the lemma. For the
lower boundary, denote n(x, n) = 1 — A(x, n; 7g, 7, 6,) and g, = 1 — p, so that A(x, n; 7g, 7,
8y) =< p.. if and only if n(x, n) = g;. Theorem 3 is proved similarly to Theorems | and 2.

Theorem 3. If n(x, n) = g, then n(x, n + 1) = g and n(x — 1, n — 1) = g,

Remark 2. Theorem 3 implies that the lower boundary is monotone nondecreasing and increases
by at most 1 as n — n + 1. Theorems 1 -3 together establish the facts that L, = L, _,or L, , + 1
andU, =U,_,orU,_, + 1forn> n,,,, i.e., each boundary either stays the same or increases by
1 as n increases by 1.

Denote C,,={L, + 1, ..., U, — 1}. In particular, C,, = {0, ..., n} for n < n,,;,. Denote the event
that the trial has continued through the nth stage by &4, = {X; € C;, 1 <j < n}, the indicator of the
set S by I[S], and let p = Pr[Y, = 1] = 1 — q. The respective probabilities that E is declared
promising or not promising at stage n are p_(n) = Pr[X,, = U,,and &{,,_,] and p_(n) = Pr[X, < L,
and o, _ 1, for n,;, < n < n,,. Denote 7,(x) = PrlX, =xand &, _|]forx =0,...,nandn =2,
with 7,(x) = p“¢' ™%, x = 0, 1. The following recursion allows {r,(x), L,, < x < U, } to be computed
in sequence for each n = 2 using only p, L,, U,, and the values of {r,_,(x), L,_, < x < U,_,}.

Theorem 4. 71,(x) = pr,_(x — DI[x - 1€ C,_,] + g7, ,(x)I[x € C,_,].
Proof of Theorem 4.

n—1
Ta(x)= > Pr(X,=x, X, =jand A, ;)
Jj=0

=Pr(X,=x,X,.1=x—-1land 4, ;) +Pr(X,, =x, X,-y =x and &, _). (A.2)

The first probability in (A.2) equals
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Pr(Xn =X, Xn—l =x—1, and ‘ﬂan)I[x -l1e Cn—l]
=PrX, = XIanl =x—land o4, y)7,(x—DI[x—-1€C,_] (A.3)

By the Markov property of the random walk {X,, n = 1}, expression (A.3) equals

n’

Pr(X, =x

Xpsr=x—Drp (o= DI[x—1€C,y]=pryp1(x = DI[x - 1€ C,].

Likewise, the second probability in (A.2) equals g, _,(x)I[x € C, _,], which proves the theorem.

Theorem 5. The probability of declaring E promising at stage » is
PI‘[X,, = Un]s n = Npin >
p+(n) =
pPr[anl = Un*l — 1 and ﬂ;x—Z]’[Un = Un—l]’ n > Npip -
The probability of declaring E not promising at stage n is
{PI‘[X,, = Ln]a " = Npip

_(n)=
P qPr[thl = Ln*l + 1 and &qn—-z]][l‘n = L,,,| + l]r n> M min -

Proof of Theorem 5. The equalities are immediate for n = n,;,, since the trial cannot terminate
prior to n,,,. Consider n > n By Theorem 4,

Pr(X, =L, and o, ) =pPr(X, =L, — 1 and 4, ,))I[L, - 1E€C, ]
+ qPr(anl = Ln and ‘ﬂnfz)l[Ln € Cn—l]~ (A4)

By Remark 2,L, , =L, - 1,and L, € C,_, ifand only if L =L,—1.ThusL, -1 €&C,_,,
and (A.4) reduces to

n—1

PI‘(X,, = Ln and ‘Sﬁ)hl) = qPr(X'rl = Ln and &411—2)1[[')1 € Cn—l]

=qgPr(X,-y =L,y +1and A, ,)I[L, =L, +1]. (A.S)
For k = 1,
Pr(X,=L,—kand 4, )=pPr(X,., =L, —k—1and 4, )I[L, —k—-1€C,_;]
+gPr(X,-y =L, —kand A, )I[L, —kEC,_]. (A.6)

Again, since the lower boundary is monotone nondecreasing with jumps of at most  asn — 1 — n,
L, ,=L,—1.ThusL, — k& C,_, forany k = 1, and with (A.6) this implies

Pr(X, =L, —kand A,_,)=0, k=1. (A.7)
Since p_(n) = Pr[X, < L, and 4,_,], it follows from (A.5) and (A.7) that
[),(H) = qPr(Xn~l = Ln—l + 1 and 'Sﬁ)172)1[Ln = Ln—l + 1]

A similar argument holds for p_ (n).
The operating characteristics are then simply

Hmax Hmax

p+= 2 p+(n) and p_= > p_(n),

N= N min N=Nmin

and the distribution of N is obtained from the fact that

p+() +p_(n), n<nmpyy,

Pr{N =n] =
Prlsd, 1], N = Nmax -



