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SUMMARY

We present a Bayesian approach for monitoring multiple outcomes in single-arm clinical trials. Each
patient’s response may include both adverse events and efficacy ontcomes, possibly occurring at different
study times. We use a Dirichlet-multinomial model to accommodate general discrete multivariate responses.
We present Bayesian decision criteria and monitoring boundaries for early termination of studies with
unacceptably high rates of adverse outcomes or with low rates of desirable outcomes. Each stopping rule is
constructed either to maintain equivalence or to achieve a specified level of improvement of a particular
event rate for the experimental treatment, compared with that of standard therapy. We avoid explicit
specification of costs and a loss function. We evaluate the joint behaviour of the multiple decision rules using
frequentist criteria. One chooses a design by considering several parameterizations under relevant fixed
values of the multiple outcome probability vector. Applications include trials where response is the
cross-product of multiple simultaneous binary outcomes, and hierarchical structures that reflect successive
stages of treatment response, discase progression and survival. We illustrate the approach with a variety of
single-arm cancer trials, including bio-chemotherapy acute leukaemia trials, bone marrow transplantation
trials, and an anti-infection trial. The number of elementary patient outcomes in each of these trials varies
from three to seven, with as many as four monitoring boundaries running simultaneously. We provide
general guidelines for eliciting and parameterizing Dirichlet priors and for specifying design parameters.

1. INTRODUCTION

Patient response in clinical trials is an inherently multidimensional phenomenon, with the
possibility of both adverse and desirable events. In this paper we present a Bayesian approach to
the conduct of single-arm trials of experimental treatments in which patient response is multi-
nomial. Single-arm trials range from conventional phase II evaluations of a new drug to studies of
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complex muiti-stage treatment regimens. Such trials frequently are used to determine whether an
experimental treatment is sufficiently safe and efficacious to warrant evaluation in a large
randomized trial. Our proposed strategy provides a practical framework for monitoring multiple
outcomes continuously, based on multiple simultaneous stopping rules that protect future
patients against treatments with unacceptably high rates of adverse events or low rates of
desirable treatment responses. We incorporate historical data or clinical experience with ‘stan-
dard’ treatment into a multivariate prior distribution on the patient outcome probabilities, and
we evaluate the joint operating characteristics of the stopping rules using frequentist criteria. The
underlying model and monitoring strategy account for inherent interdependencies among the
various outcomes. This extends the designs of Thall and Simon'? from single to multiple
outcomes, and thereby accommodates a broad variety of clinical trials. We are motivated by
experiences with trials of highly innovative and aggressive treatments for rapidly fatal dis-
eases, such as acute leukaemia, where the primary clinical concern is the trade-off between
the chance of improved efficacy and increased risk of adverse treatment effects, such as acute
toxocity or death.

Although patient response in any medical setting is multivariate, the basis for statistical
methods for the design, monitoring and analysis of clinical trials has generally consisted of
a single endpoint. With this approach, typically one relegates all other patient responses to the
status of ‘secondary’ endpoints. As such one may observe them and analyse them informally, for
example, to test hypotheses nominally of incidental or secondary importance, but one ignores
them in the formal statistical design and associated size, power and sample size computations.
Defects of this approach are that it does not provide specific guidelines for safety monitoring, it
does not account for the interrelationships among endpoints, it does not account for the effects of
monitoring adverse events on inference for a primary efficacy endpoint, and it is not realistic
concerning the broad use of multiple endpoints in reporting the results of clinical trials. A review
of 67 published clinical trials (Smith et al.?), which found a mean of 21-7 different endpoints
analysed per trial, illustrates the seriousness of this issue. Furthermore, the trade-off between
toxicity and improved efficacy is a major issue in the evaluation of most new chemotherapies, and
safety concerns are rarely of secondary importance. Standard designs based on a single binary or
time-to-event endpoint essentially ignore this fact.

Many clinical settings involve multiple outcomes. A simple example is a cancer chemotherapy
trial of an experimental treatment in which the major outcomes are disease remission and acute
toxicity, where it is essential to terminate the trial if the observed toxicity rate is too high or the
remission rate is too low. We accommodate such settings by providing stopping rules for adverse
events to protect future patients, and stopping rules for efficacy events to reduce the probability of
continuing a trial of a new treatment unlikely to provide an improvement over standard therapy.
These rules help clear the way for testing other, potentially more effective new treatments. Finally,
we provide a rule for determining whether an experimental treatment is sufficiently efficacious to
warrant termination of a phase II trial and commencement of a large-scale phase III trial. Our
approach also accommodates situations where observation of certain endpoints depends condi-
tionally on the occurrence of earlier events. The structure is thus quite general, and it accommod-
ates rather complicated clinical settings where, to our knowledge, no other effective monitoring
strategy exists.

Several authors have recently addressed the problem of formulating and testing hypotheses
based on multiple endpoints in clinical trials. For settings in which each element of a multivariate
response vector is a measure of treatment efficacy, O'Brien* examined existing methods and
proposed a global test directed at alternative hypotheses that have treatment effects in the same
direction, essentially to conserve power. Pocock et al.,* and Tang et al.%7 provided extensions, the



BAYESIAN SEQUENTIAL MONITORING DESIGNS 359

latter two papers dealing with group sequential tests. Lehmacher et al® extended
O’Brien’s approach to accommodate a sequence of hypotheses in a closed multiple test proced-
ure. Gelber et al.®? proposed a method for combining toxicity and survival outcomes into
a single endpoint.

A limitation of these procedures in settings where both efficacy and adverse events must be
monitored is that they combine all outcomes into a single test statistic. One notable exception is
the group-sequential testing procedure of Jennison and Turnbull,'® who propose use of a bivari-
ate test statistic for trials with two outcome variables which characterize different aspects of
treatment response. This includes the important case of an efficacy and an adverse outcome. Qur
monitoring strategy is motivated by similar considerations, with the essential differences that we
consider only single-arm trials, an arbitrary number of outcomes may be monitored, the data are
monitored continuously, and our framework for constructing stopping rules is Bayesian.

In general, we characterize each patient’s outcome as one of K possible elementary events. We
use a Dirichlet-multinomial model for the event probabilities and corresponding counts. Con-
tinuous variables are discretized. We base stopping boundaries on posterior probabilities of the
incidences of adverse and favourable events with the experimental regimen, compared to prior
experience with standard therapy. We do not use loss functions or decision theory. Rather, we
evaluate the behaviour of the monitoring bounds under fixed values of the multiple outcome
probability vector.

Several considerations motivate our use of Bayesian criteria to construct decision rules
combined with frequentist evaluation of their operating characteristics under fixed values of the
event probabilities. The first is that in general one interprets the results of early clinical trials of
a new regimen subjectively based on informal comparison to prior experience with other,
standard therapies. The monitoring strategy described in this paper provides a formal basis for
this process. Whereas the use of external data or prior opinion is problematic in major
randomized trials, it is inherent in the interpretation of early developmental studies.

The second motivation for our approach is that many clinicians involved in the development of
improved therapies find themselves comfortable with Bayesian concepts. Clinicians asked to
provide a single value of a parameter required to implement a frequentist design often respond by
giving a range of values, describing the parameter’s distribution along that range and citing data
from previous trials. Moreover, we have received extremely positive responses from clinicians at
M.D. Anderson Cancer Center to whom we have provided Bayesian designs based upon this
approach.

Decision-theoretic methods have seen little practical application in clinical trials, due to the
difficulty in quantifying loss functions and the often elaborate mathematical framework. More-
over, the nature of decision-making at the end of a trial is generally difficult to quantify.!! The use
of frequentist criteria to evaluate a Bayesian monitoring design is a scientifically sound and
extremely practical alternative to the use of formal decision theory in conjunction with Bayesian
probability criteria for monitoring clinical trials. Ho'? used frequentist criteria to evaluate
a group sequential Bayesian rule for comparing two Gaussian samples. Recently, Etzioni and
Pepe!? proposed a Bayesian model for jointly monitoring two adverse outcomes in a clinical trial,
combined with the use of frequentist inferences at the end of the trial. Other Bayesian approaches
to multiple testing and estimation problems are described by Dixon and Duncan,'* Louis'*® and
Berry.“'”

Section 2 presents the general monitoring approach for single-arm trials with multiple discrete
outcomes, including descriptions of the Dirichlet-multinomial model, stopping criteria, and
guidelines for constructing monitoring boundaries. Section 3 describes five applications that
illustrate the general approach. We discuss general issues and extensions in Section 4.



360 P. THALL, R. SIMON AND E. ESTEY

2. THE GENERAL APPROACH
2.1. The Dirichlet—multinomial model

Let A,, ..., Ax denote all possible combinations of patient response, with corresponding category
probabilities # = (#,, ...,0x_),and 6y = 1 — 8, — ... — B4_,. For example, if one monitors both
complete remission (CR) and acute toxicity (TOX) in a cancer chemotherapy trial then, denoting
the complement of CR by CR, the four elementary response categories are 4, = [CR and TOX],
A, = [CR and TOX], A; = [CR and TOX] and A4, = [CR and TOX]. We consider only trials in
which it is reasonable to treat patient response as discrete. In particular, we accommodate
continuous variables by discretizing them, for example, replacing the time T of disease progres-
sion by the indicator of the event [T > 5] for a particular fixed s, or more generally by
fsi<T<s,]and [T 2 s,] f 5, < 5, are clinically important times.

Leti=1,2,... index patients, j = 1, ..., K index the categories of response, and ¢t = E, S index
treatment, where E denotes the experimental and S the standard treatment. Our first model
assumption is that (1) conditional on 8 the observed patient responses are independent with Pr
[patient i has outcome A; when treated with E] = 6 ;, for all i and j. This implies in particular
that the response rates, while random, do not change in some systematic manner during the
course of the trial, which might occur due to a change in some aspect of treatment or supportive
care. We denote by X, ; the number of patients out of the first n scored who experience
elementary outcome A;. Conditional on 8, the vector X,, = (X, , ..., X, x) follows a multinomial
distribution in » and . Our second model assumption is (2) a priori, g and 8 follow
independent Dirichlet distributions Dir(a,) = Dir(a, 4, -..,a, ), t = E, S, written 8, ~ Dir(a,) for
brevity. Denoting the probability vector p = (py,...,px-1), With px=1—p; — ... — px—1, the
Dir(a) PDF is

I'(a; + ... + ax)pa,—l i1
T(a;)..Tag) ' £

where each p; > 0, p; + ... + py_, < 1 and I'(*) is the gamma function. The important special
case where K = 2 is that when X, = (X,,,,X, )} is binomial and 8 = 8, is beta, and we write
Dir(a,b) = Beta(a,b). Denoting a.=a; + ... +ax, if 6~ Dir(a) then E(0;) =a;/a. =y,
var(f;) = p;(1 — pp)f(a. + 1) and cov(f;, 0} = — u;u/(a. + 1). We also require the foliowing addi-
tional properties of the Dinchlet family.

f(p;a) =

Theorem I: Under assumptions (1) and (2) above,

0| X, ~ Dir(ag + Xp1,....0ex + X5x)- (1)
Theorem 2: If (8, ...,0x—,) ~ Dir(a,, ...,ax), then forany r = 1,...,.K — 1,

K
{91,...,0,)~Dir(al,...,a,,, Y, a,-) (2)

Jj=r+1

( Z 9]96r+1&---’91(—1)~ Dil'( Z aj,ar+1,---,ax), 3
i=1 i=1

and

r+1 -1
( 2 9:‘) By, ....8,) ~ Dir(ay,...,a,+4)- @)
=1
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Theorem 1 says that the Dirichlet is a conjugate prior for the multinomial. Statements (2) and (3)
of theorem 2 say that the Dirichlet family is closed under collapsing of categories, while (4) says
that it is closed under conditioning. For example, if K = 4 and we combine categories 1 and 2,
then the corresponding distribution of (8, + 6,,83) is Dir(a; + a,4s,a,4), while (8, + 6,)/
(61 + 02 + 93) ~ Bcta(al + 02,03) and 91/(91 + 92 + 63) o~ Beta(al,az + a3).

For a phase II trial of E, we require an informative prior on fg, based on some combination of
historical data and clinical experience (see Freedman and Spiegelhalter'®). In practice, it is often
appropriate simply to take as ; as the number of responses in the jth category from historical data
on S. We also require that the prior of 8; be at most slightly informative, to reflect properly the
fact that we usually know little about E at the outset of a phase II trial. Since we can regard
ag =ag, + ... + agx as a dispersion parameter, with larger values corresponding to smaller
variances of the 8;’s, we set ag, = K so that the prior amount of information on 8 corresponds to
that of the uniform distribution Dir(l, ..., 1} on the (K — 1)-dimensional square.

Sometimes it is useful to reparameterize a Dir(a) distribution as follows. For a given simple or
compound event, say A,, marginally 8, is distributed Beta(a,,a; + ... + ag). Generalizing Thall
and Simon,’ first note that (a;,a, + ... + ag) corresponds on a one-to-one basis to (a,,a), which
in turn corresponds to y; = a;/a_and W oo = the width of the 90 per cent probability interval of
the Beta(a,,a, + ... + ax) distribution, running from the 5th to the 95th percentiles. Given g,
and W] g0, there are K — 2 parameters that remain among a,, ..., ax from the original Dir(a), and
we may specify these either as a;’s or as K — 2 means from among y,, ..., #x. This reparameteriz-
ation is useful if the clinician wishes to describe the prior in terms of the response category means.
When W corresponds to a compound event C, one implements this approach simply by referring
to the marginal distribution of . to compute W..

2.2. Stopping criteria

In general, our objective is to monitor all clinically important events. We thus consider trials
where the clinical focus is two or more simple or compound events obtained from the elementary
outcomes A4,, ..., Ax. We define the monitoring criteria for each event marginally, that is, in terms
of that event alone, both for simplicity and because clinicians think in terms of these event rates.
Since the monitoring rules operate simultaneously, however, it is essential to evaluate their joint
behaviour, based on a consistent probability model for 6 and X,.

Let (jy,...,j,) be r distinct indices from (i,...,K) such that C= A4; v ...u A4, is a given
outcome of interest, and denote = 6;, + ... + 8; = Pr(C). In a single-arm trial of E the prior of
s is unchanged, whereas we update the prior on g repeatedly as we observe patient responses.
The decision rule for monitoring the incidence of C is one of three types, each of a general form
based on comparison of the posterior distribution of 5 given X, to the distribution of #s. We
monitor the data for each n, beginning at a minimum sample size m and continuing until we either
make a decision or we reach a predetermined maximum sample size M. The monitoring criterion
is the posterior probability

Pr[’fs + o< qE|X,J = /'I,(X,,'jl + ...+ X,,Jr,n; as,ag,é],

where 6 > (0 is a design parameter that quantifies the desired increase (for efficacy outcomes) or
largest allowable increase (for adverse events) in the probability of C. Denoting the beta density
and CDF by b and B, respectively, the above probability equals

1—3
L {1 — B.e(p + 6)} bys(p)dp . (5)
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Denote a =a;, + ... +a;, f={a. —(a;, + ... + a;)} and X (C) = X, ;, + ... + X, ;, for brev-
ity. We can easily evaluate expression (5) by numerical integration using the facts that
Hs ~ Beta(as, ﬂS) and, by (1), that quxn ~ Beta(aE + Xn(C)’ ﬂE +n-— Xn(c))-

The first two types of monitoring boundaries correspond to an efficacy event C, which we
define as any outcome for which a higher probability is clinically desirable. An efficacy event in
a phase II trial typically characterizes short — or intermediate — term treatment success, and
increasing its likelihood is usually the primary clinical goal of the trial. If a targeted improvement
of 6(C) in the mean of #g is the efficacy goal, then we terminate the trial and declare E ‘not
promising’ compared to S if

Prns + 0(C) < 1| X,] < p(C) (6)

for a given small value of the lower criterion probability p,(C). Essentially, (6) ensures early
termination of the trial if E is unlikely to provide the desired 6(C) improvement. We obtain the
corresponding upper boundary from the criterion that the trial be terminated and E declared
‘promising’ compared to S if

Pr[ns < ng|X,] 2 pu(C) (7)

for a given large value of py(C). This rule simply says that we should declare E efficacious, in terms
of the event C, if a posteriori it becomes likely that the probability of achieving the clinical
outcome C when we treat patients with E exceeds the corresponding probability associated
with S. Thall and Simon! proposed the criteria (6) and (7) to monitor phase II trials with a single
binary outcome. Freedman and Spiegelhalter'? suggested a similar approach, that does not use
decision theory, for randomized trials with one outcome under a Gaussian model.

We use the third type of stopping boundary to maintain approximate equivalence in the rate of
a given adverse event, which we define as any outcome for which a lower probability is clinically
desirable, equivalently as the complement of an efficacy event. For an adverse event T with
probability #(T'), the rule is to terminate the trial if

Prns(T) + o(T') < ne(T)| X,] 2 pu(T) ®

for large upper criterion probability py(7). We have found this rule highly desirable when used
together with the efficacy rule (6) in trials where the efficacy event C and the adverse event 7" have
non-empty intersection. This situation corresponds to that described in Section 2.1 where the
innovative aspect of E is likely to increase the rates of both C and T, and one regards an increase
of &(T) in the rate of the adverse event as the largest clinically acceptable price that one can pay
for a 8(C) increase in the rate of the efficacy event.

For example, in the (CR, TOX) example noted earlier, C = CR = A; U 4, denotes complete
remission and T = TOX = 4, u A; denotes acute toxicity, hence 4; = [CR and TOX] is both
desirable and undesirable. In particular, the probability of 4, is likely to be increased by a more
aggressive therapy, that is, in many trials of new combination bio-chemotherapies we may
anticipate that the rates of both CR and TOX will increase. If, for example, we target an
improvement of §(CR) = (15 in CR rate and we consider an increase of {TOX) = 0-10 in the
TOX rate an acceptable tradeoff for the desired CR rate improvement, then we would use the
rules (6) and (8) together to monitor both CR and TOX, with the possibility of using the ‘upper’
efficacy criterion (7) as well. The use of stopping rules for one or more adverse events in such
circumstances helps to reduce the probability of outcomes in which the best one can say is ‘The
treatment was a success but the patient died’.
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2.3. Constructing the Stopping Boundaries

Computation of a stopping boundary that corresponds to an event C relies on the facts that the
posterior of # given X, is Dir(ag + X,), that 1 depends on X, only through x=X, ; + ... +
X, ;.» and that i{x, n;as,ag,d) is an increasing function of x. Thall and Simon''? discuss this in
detail in the context of single-arm trials with one binary efficacy outcome. Given the criterion
probabilities p; {C) and py{C) for the stopping criteria (6) and (7), where p; (C) is a small value such
as 0-01-0-20 and py(C) is a large value such as 0-80-0.99, we define the lower and upper decision
cutoffs, respectively, for monitoring the efficacy endpoint C as

L,(C) = the largest integer x such that A(x,n; g, 7g, 6(C)) < pL(C),
U(C} = the smallest integer x such that A(x,n; 7g, 7g,0) 2 py(C).

The corresponding decision rules for C at stage n, each applied under the condition that we have
not hit a stopping boundary prior to stage n, are as follows:

IfX,; +..+X,,; < L,(C), then stop the trial and declare E not promising. {9)
If X, ; + ...+ X,; = U,(C), then stop the trial and declare E promising. (10)

As discussed in Thall and Simon,? in some trials one may consider it desirable to use the lower
efficacy boundary, since it is clinically more protective, but not the upper bound. The point here is
that one may use either of the two rules (9) or (10) without the other. For monitoring an adverse
event T'= A, , U ... U 4, based on (8), the upper decision cutoff is

U,(T) = the smallest integer x such that A(x, n; 7, ng, (7)) = pu(T)
and the corresponding decision rule in terms of the data is if
Xy + oo + Xy 2 Un(T) (1)

then stop the trial. As we observe each patient response, the multinomial vector X, is updated to
X,+1 and thus we update the counts X, ;, + ... + X, ;, of C and X, ,, + ... + X, of T and
compare them to their stopping bounds, with the obvious elaboration if we monitor more than
two events.

We choose design parameters to obtain monitoring boundaries which have desirable proper-
ties when used jointly. To do this, we first evaluate the marginal operating characteristics of the
design that corresponds to each single outcome of interest while ignoring the others. We then use
these results to construct several joint design parameterizations for monitoring all of the events
together and evaluating each design under relevant fixed values of the multiple outcome
probability vector. We repeat these steps in collaboration with the clinician until we obtain
a design which is ethically, medically and statistically desirable.

3. APPLICATIONS

The operating characteristics for each design considered here are based on 10,000 simulated trials.
We performed all computations in C on a Solbourne 5/600 computer, using the Bays-Durham
shuffling algorithm (see Press et al,>® Chapter 7.1) to generate random numbers for
the simulations. Each run of 10,000 took about 30 to 120 seconds, depending upon machine
load, so that we could evaluate even the most complicated designs very quickly under multiple
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parameterizations. A menu driven computer program which carries out the necessary computa-
tions is available from the first author on request.

3.1. The HLA non-identical donor BMT trial

In patients diagnosed with the haematologic malignancies leukaemia, lymphoma or myelodys-
plastic syndrome, BMT using marrow cells from a human leukocyte antigen (HLA) identical
sibling offers a potentially curative treatment. Unfortunately, only about one-third of such
patients have HLA-identical siblings. An alternative for the other two-thirds is to transplant
marrow from donors whose cells match the patient’s at several of the HLA loci. Graft-versus-host
disease (GVHD) and transplant rejection (TR) are major complications associated with this
approach. The following design has been used at M.D. Anderson Cancer Center for a phase 11
trial of XomaZyme-CD5 + , cyclosporine and methylprednisone given as a post-transplant
prophylaxis for GVHD in patients receiving partially T-cell depleted marrow from an HLA-
matched unrelated or one-antigen-mismatched related donor.

Both GVHD and TR were monitored for 100 days post transplant, producing the 2x 2
structure given in Table I, which also appears in Thall and Simon.?® We obtained the standard
therapy Dirichlet prior parameters ag = (as,;,8s 2,053, 85,4) by first eliciting the elementary
outcome means and the dispersion parameter W go = 0-20 for Pr[GVHD] = 65, + 65, from
the clinician, then converting (s, 1, is,2, Hs,3, Ws,00) t0 a5 as described in Section 2.1. The efficacy
event is A; U A, = [GVHD], and 4, u A, = TR is the adverse event. The study objectives were
to obtain an improvement of 0-20 in Pr[GVHD] = f¢; + 65, while maintaining with high
posterior probability a TR rate no more than 0-05 above that of standard therapy. We chose
a maximum sample size of 75 to ensure that if the trial ran to completion the posterior of
0g,1 + Og; will have 92-5 per cent probability interval of width 0-20. The formal decision rules are
to stop the trial if

Pr[Bs'l + 93'2 + 020 < 95,1 + 65'2 | X,,] < 0'02, (12)
or
Pr[fsz + 05 + 005 < 05, + 0.4 | X,] = 0:80. (13)

Table II gives this design’s operating characteristics. We obtained the design parameters by
first evaluating the design which monitors only GVHD for various numerical values of

p(GVHD) and 6(GVHD), and we likewise evaluated the design that monitors only TR for
several values of py(TR) and &(TR). We then chose the criterion probabilities p, = 0-02 and
pu = 0-80 to obtain desirable operating characteristics when the two rules are used jointly. We
began this process with 8(TR) = (-10, that is, to allow 0-10-equivalence in the TR rate. The
clinician’s reaction to the fact that the two monitoring boundaries jointly produced a stopping
probability of 0-37 for fixed values p(GVHD) = 0-40 and p(TR) = 0-30, however, was that 0-37
was too low, that is, the design was not sufficiently protective if the TR rate increased from 020 to
0-30, even with the desired improvement in GVHD rate. Decreasing (TR) to 0-05 produced the
desired operating characteristics, with a termination probability of 0-68 and a median of 33
patients in the case noted. This is the sort of approach which we recommend in general, since one
may obtain the numerical properties of several design parameterizations very quickly via
simulation. In the best case given in Table II, namely with the desired (-20-improvement in

GVHD rate and a 0-10 drop in rejection rate, that is, p(GVHD) = 0-40 and p(TR) = 0-10, the
design has a 91 per cent chance of continuing to conclusion with 75 patients.
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Table I. Qutcomes and standard prior for HLA non-identical donor BMT trial

Patient response Probability Mean a5

A; = [No GVHD and No TR] 8, 0-05 2:037
A, = [No GYHD and TR] 0, ¢15 6111
Ay = [GVHD and No TR]) 05 075 30-355
A, = [GVHD and TR] 0, 0-05 2:037

Table II. HLA non-identical donor BMT trial operating characteristics

True probabilities Stopping probabilities Achieved sample size
No GVHD TR Due to: 25th 50th 75th
GVHD + TR - Both = percentiles
0-20 010 0-94 + 000 — 000 = 094 11 18 33
0-20 0-20 0-87 + 009 — 001 = 095 11 14 30
020 0-30 0:67 + 036 — 005 = 098 11 i4 22
*0-20 0-40 048 + 066 — 014 = 100 11 12 18
10-40 010 0-08 + 001 — CG00 = 009 75 75 75
0-40 020 008 + 012 - 000 = 020 75 75 75
040 030 008 + 060 — 000 = 0468 14 33 75
0-40 0-40 0-05 + 093 — 001 = 097 11 13 23

* Worst outcome: No improvement in GVHD rate and mean rejection rate increases from 20 per cent to 40 per cent
T Best outcome: Mean GVHD-free rate increases from 20 per cent to 40 percent and rejection rate drops to 10 per cent

Graphical representations of the design’s operating characteristics are given by contour plots of
the probability of early termination (Figure 1) and of sample size (Figure 2), which show how
these design properties vary with fixed values of p(GVHD) and p(TR). In these plots the most and
least desirable pairs of these probabilities are in the lower right and upper left portion of the
graph, respectively. The design is highly likely to terminate early with a relatively small number of
patients when it is desirable to do so, and it is likely to accrue the maximum 75 patients when the
true rates of GVHD and TR are more desirable.

An important provision is that one must score each patient’s outcomes at day 100. If one scores
GVHD or TR at the calendar times of their occurrence, then a bias will result because, by
definition, these events occur sooner than the ‘success’ events of lasting the 100 days without
GVHD or TR. In general, to avoid such bias one should score the binary indicator of [T = ¢,] for
any waiting-time variable T for each patient at ¢, after the patient’s entry date, not at the calendar
time of occurrence when T < ty. To see the potential problem, consider a trial of T = time to
relapse or death in which the true probability of [T > one year] is 0-50, this is considered an
acceptable rate, and 40 patients are entered simultaneously. By month nine of the trial, about 15
events should have occurred, but no patients can yet be scored as reaching the success goal of one
year. If one scores events at their calendar times, then at month nine the summary statistic is 15
events out of 15 scored and the trial surely will terminate, even though the true rate of [T > one
year] is an acceptable 0-50. In practice, this provision presents minimal difficulty, since one scores
patient outcomes in exactly the same time sequence as the patients enter the trial, shifted ¢, into
the future.
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Figure 1. Contour plot of Pr[Early Stopping] as a function of fixed values of Prf No GVHD] and Pr{Transplant
Rejection] for HLA non-identical donor BMT trial

An additional rule to use in conjunction with the above for monitoring each event is the
following: if, at the calendar time t* of any individual patient “failure’, even under the assumption
that all patients accrued but not yet evaluated will have successes, the trial will meet a future
stopping criterion for this failure event, then one should terminate the trial at t*. This simply
applies a well-known advantage of sequential monitoring, and in our setting it protects those
patients whom we would have accrued and treated with E after calendar time ¢*.

3.2. The IAG frial

Patients with newly diagnosed acute myelogenous leukaemia (AML) are heterogenous with
respect to prognosis, depending primarily upon cytogenetic abnormalities, presence or absence of
an antecedent acute haematologic disorder, and patient age. A phase II trial of idarubicin
(I} + ara-C (A) + granulocyte colony-stimulating factor (G-CSF) for both remission induction
and remission maintainance was carried out at M.D. Anderson Cancer Center in ‘intermediate’
prognosis AML patients. The rationale for this combination was the success of I + A (IA) in an
earlier trial, and that both in vitro and clinical evidence suggested that the growth factor G-CSF
would increase the sensitivity of AML blast cells to chemotherapy.

Traditionally, the binary variable that indicates whether a patient has achieved complete
remission (CR) by one month has been used to define patient response in phase II bio-
chemotherapy trials in acute leukaemia. One problem with this approach is that it scores
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Table III. Qutcomes and standard prior for IAG trial

Patient response Probability Mean an.;
Ay, =[CR and RD 2z 6 months] &, 0-5849 31
A, =[CR and RD < 6 months] a, 02642 14
A; =[No CR] 8, 01509 8

a patient who achieves CR by day 30 post induction but relapses or dies shortly thereafter as
a treatment success. Moreover, patients who achieve CR but subsequently relapse have a much
lower overall survival rate, largely due to the reduced probability of achieving a second remission
after relapse. The goal of the I + A + G — CSF (IAG) trial was to achieve more durable
remissions compared to IA, hence the usual one-month timeframe for defining patient response
was extended to seven months. Denoting RD = first remission duration, the specific goals were to
increase Pr{RD > 6 months]CR] by &(RD)= 015 while maintaining the CR rate within
6(CR) = 0-10. We thus defined the three response categories given in Table IIl, with standard
therapy defined as 1A and the Dirichlet prior on 8;, determined by the response category counts
from the earlier IA trial. Tables I and IH together illustrate the flexibility of the general approach,
since we determine the standard treatment prior parameters by the event probability mean vector
s and a dispersion parameter W;in the former, and in terms of the Dirichlet parameters ag = a5
in the latter.

All patients in the trial were evaluated for CR, the equivalence outcome, at 30 days post
initiation of therapy, and each patient in the subgroup who achieved CR was subsequently
evaluated for the binary event [RD > 6 months] at 1 4+ 6 = 7 months after initiation of therapy.
Regarding CR as an adverse outcome and applying (3) and (4), the probabilities that serve as the
basis for the stopping rules are thus f; = Pr[CR], which is ~ Beta(as,a, + a,), and 1 = 8,/
(6; + 6;) = Pr[RD > 6 months|CR], which is ~ Beta(a;,a,). Denote X, ; = the number of
patients out of the first n evaluated who fail to achieve CR by day 30, etc. For the subgroup of
patients entering CR, the effective sample size for the number who achieve a six-month remission
duration is X, ; + X, ; = X, cr, rather than n. That is, for given 6 = (p,,p;) and n, we first
observe X, - which is ~ binomial in (n,p, + p,), and subsequently observe X, ;, which, given
X, cr i§ ~ binomial in (X, ,p:/(p1 + p2))- As each patient’s study time reaches day 30, we
update X, 3 and X, 4; 3= X, 3 + 1 or X, ; depending upon whether the patient did or did not
enter CR. For patients entering CR, if X, cg = k at the time a patient reaches the seven-month
endpoint, then X, ,;; = X3, or X, , + 1 depending upon whether the patient did or did not
relapse prior to six months after achieving CR.

The early termination criteria are to stop the trial if

Pr[6s 3 + 010 < g 3| X, 3 out of n] = 090, (14)
or

Pr[ts + 015 < 75| X, ; out of X, cr] < 0-10. (15)

The termination rule that corresponds to (14) is of the form X, ; > U,(CR). To monitor
six-month remission duration among the subgroup of patients achieving CR, the inequality in (9)
takes the form X, , < Ly, _(RD).
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The rationale for using equivalence 6(CR) = 0-10 and efficacy (RD) = 0-15 is as follows. Since
the mean CR rate with IA was (-85 while the mean six-month RD rate among those achieving CR
was (69, a drop of 0.10 in the CR rate and increase of -15 in conditional [RD > 6 months] rate
would produce a mean Pr[CR and RD > 6 months] = 0-75 x 0-84 = 0-63, which is a modest
improvement over the mean of 0-59 for the rate of this most desirable outcome obtained with IA.
If we can maintain the mean CR rate at 0-85 with JAG, however, then the mean Pr{CR and
RD > 6 months] = 0-71, a substantial improvement over IA. Again, we chose the criterion

probabilities py(CR) =090 and p,(RD) = 0-10 to obtain a design with desirable operating
characteristics.

We chose the maximum sample size to ensure that, if the trial runs to completion, a posterior 95
per cent probability interval for 1), will have width 0-20, which requires 50 patients to enter CR
for evaluation of six-month remission duration. If the observed CR rate is 0-85 or 0:75, then we
will accrue 50/0-85 = 59 or 50/0-75 = 67 patients, respectively. For true CR rates much lower, the
trial is likely to terminate early. Table IV gives operating characteristics of the IAG trial design.

Since [RD 3> 6 months] and CR cannot both occur in the same patient, each patient’s outcomes
can contribute to at most one of the stopping events. For true CR rate < -65 there is at least a 77
per cent chance the trial will terminate early, and the probability of early termination is much
higher if remission duration does not improve. In the best case, where true CR rate is maintained
at 0-85 and we achieve the targeted improvement of 0-15 in the conditional probability of
six-month remission duration, there is a probability of 0-85 that the trial will not stop early. In this
case the median sample size is 58 patients with the expectation that 41/58 = 714 per cent of these
will achieve the most desirable outcome, compared to 31/53 = 58-5 per cent with IA.

3.3. A double-intensification BMT trial

In treatment of non-Hodgkin’s lymphoma by BMT, prior to transplant the patient first under-
goes conventional-dose chemotherapy to reduce the number of cancer cells, then receives
intensification with high-dose chemotherapy, followed by transplant and a post-transplant
regimen to reduce the rates of GVHD and infection. An innovation in this process is to repeat the
intensification stage, a more aggressive approach which may have a higher risk of early death but
also an increased chance of long-term survival in those who do not die early. In a phase II
double-intensification BMT trial in patients with malignant lymphoma, conventional-dose
chemotherapy was followed by intensification with cyclophosphamide (CYC) + etoposide + cis-
platin, followed by G-CSF to accelerate recovery of white blood cell and platelet counts. Patients
next received a second intensification with thiotepa + busulfan + CYC, and then underwent
transplantation and standard post-transplant therapy. High risk, typically chemotherapy refrac-
tory patients having HLA-compatible donors, were given allogeneic BMT (from a donor’s bone
marrow), with all others in the trial receiving autologous cells (from the patient’s own marrow).
Patients who received autologous transplant were divided into three risk groups, defined by the
pathologic characteristics (grade) of their lymphoma.

With this approach, early success was defined as 75-day survival and late success as one-year
disease-free survival. The design thus must accommodate monitoring of 75-day survival in the
combined subgroups, with long-term relapse and survival monitored separately in each sub-
group, as illustrated by Figure 3. Denote X = time from the initiation of treatment to death and
R = time to relapse. Since relapse can occur only in patients who survive the initial 75 day
double-intensification regimen, the three elementary outcomes are A4; =[X <75 days],
A, = [75days € min(X, R) < one year], and A; = [min(X, R) > one year]. This patient group is
homogeneous with respect to short-term survival, specifically 8; = Pr[A,] is the same for all
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Table IV. 1AG trial operating characteristics

Assumed true probabilities Pr[stop] Achieved sample size
Pr[CR] Pr[RD 2 6|/CR] CR +RD=TOTAL Nys Nso Nis
0-85 0-69 0-01 + 085 =086 14 19 43
085 -84 001 + 014 =015 55 58 60
075 0-69 012 + 075 = 0-87 15 20 40
075 0-84 0-16 + 0-13 =029 22 62 67
0-65 0-69 048 + 0-48 = 096 14 18 26
0-65 0-84 067 + 009 =076 15 33 69
0-55 0-69 0-80 + 0-19 = 099 12 14 18
055 0-84 0-96 + 003 = 0:99 12 14 23

Standard (f4) mean Pr[CR] = 0-85
Standard mean Pr{RD > 6| CR] = 0-69 (target = (-84)

patient subgroups, but patient heterogeneity is a factor in long-term survival or relapse. Index the
four patient subgroups by j = 1 for allogeneic transplant and j = 2, 3 and 4, respectively, for
autologous transplant with high, intermediate and low grade lymphoma, so that a priori
long-term prognosis improves as j increases. By theorem 2, (8,,8;,) ~ Dir(a,, a; 2, 4; 3) in sub-
group j, with the long-term survival probability §; 5 = 1 — 8, — 8;, also stratum-specific. Note
that a;, + a;3 = a, ; does not vary with j; otherwise, the distribution of §, would not be
homogeneous across patient groups. The measure of treatment efficacy was one-year disease-free
survival, A, monitored in subgroup j in terms of t; = Pr;[min(7, R) > one year|7T > 75
days] = Pr;[A;3| 4, v A3] = 0;3/(6;.2 + 0;3) ~ Beta(a; 3,a;,), 1 <j< 4. The adverse outcome
Ay =[T <75 days), that is, early death, has probability 8, ~ Beta{a,a,3), and this was
monitored in the combined subgroups.

The clinician specified the priors for standard (single-intensification) therapy in terms of
iy = 0-85 and W] o9 = 0-20 for the distribution of 1 — @;, which determines 4, and a; 3, and then
the means E(t)) = a;3/(a,,;) of the conditional one-year survival probabilities, which were
E(zy) = E(z5)} = 0-20, E(t3) = 030, and E(z,) = 0-40. Although 75 ; and 75, have identical priors,
the first two subgroups were monitored separately to allow for the possibility of different response
rates. As before, we used a flat prior for 8; with means equated to those of 85 in each subgroup.
The criterion to terminate the entire trial was

Pr[fs, + 005 < ¢, | X,] = 085, (16)
and the criterion to terminate subgroup j per se was
Pr[zs; + 020 < 15| X, ;] < pr.;(43), (17)

where py ;(4s) = 0-05 for subgroups 1, 2 and 3, and 0075 for subgroup 4. As in all of our
applications, we examined a range of values for py and p;_; to obtain a design with good operating
characteristics. Termination of the trial due to (16) corresponds to failure of the double-intensifi-
cation regimen due to an unacceptably high early death rate, compared to single-intensification.
The clinician considered an increase of 6(4,) = 0-05 in the probability of death during the first 75
days an acceptable trade-off for a 0-20-improvement in the conditional probability of one-year
survival, since with single-intensification on average the latter is only 0-40 even in the most
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Figure 3. Schematic of double-intensification BMT trial design

favourable subgroup. We chose the maximum sample size in each subgroup subject to practical
limitations in accrual rates, with each M; chosen to obtain a posterior 90 per cent probability
interval for z; having width 0-90, so that M; = M, = M, = 39 and M; = 40. Total maximum
sample size thus is 157/0-85 = 185 or 157/0-75 = 210 for true 75-day survival probability
P75 = 0-85 or 075, if the trial runs to completion in all subgroups, with a high likelihood of early
termination if p,s is much below 0-75. The maxtmum trial duration is nearly five years. The trial
thus has two stages, with stage 2 (one-year disease-free survival) monitoring beginning for each
patient at day 75, provided (s)he has survived that long. Again, to avoid bias one scores 75-day
survival at day 75 post initiation of treatment, not at the time of death, for patients dying during
the initial period. Likewise, for patients surviving the initial 75 days, one scores subsequent
long-term disease-free survival at one-year. Table V summarizes the operating characteristics of
this design. We used a maximum sample size of 157/0-65 = 242 in the stage 1 computations. All
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Table V. Double-intensification BMT trial operating characteristics

Stage 1
True Pr[T* > 75days] Pr[stop] N5 Nsg Nys
065 093 11 15 29
0-75 0-49 18 242 242
0-85 006 242 242 242
Stage 2
Patient subgroup Pror P, Maximum  True conditional Pr[stop] N,s Nso Ny
mean sample size  Pr[T* 2z 1 year]
Allogeneic or 020 005 39 020 0-80 10 12 23
high grade 0-40 04 39 39 39
lymphoma
autologous
Intermediate 030 005 40 030 0-80 10 16 33
grade [ymphoma 0-50 011 40 40 40
autologous
Low grade 040 0075 39 0-40 0-82 10 14 29
lymphoma 0-60 014 39 39 39
autologous

T* = time to relapse or death

stage 2 probabilities in Table V are conditional on A4, U A3, reflecting the way BMT specialists
view each stage of patient response in this clinical setting. For example, to obtain an overall
stopping probability in patient subgroup 4 when the true p;s =085 and the conditional
probability of one-year survival is 0-40, denoting S; = [stop at stage j], one simply computes
pr[S,] + Pr[S;|8,]1 x Pr{8§;] = 0-06 + 0-13(1-0-06) = 0-18.

Each of the final two examples has a more complex structure than those considered thus far,
and they illustrate how we can implement the general approach when there are more possible
patient outcomes and three or four monitoring bounds.

3.4. A two-agent anti-infection trial

Serious infections are a major complication of cancer chemotherapy, and trials of new antibiotics
are constantly ongoing. No one antibiotic kills all infection-causing micro-organisms, and
administration of one antibiotic to kill a pathogen may predispose the patient to infection by
another, a phenomenon known as ‘supra-infection’, Generally, the effects of an antibiotic can be
evaluated within three days. These include cure of the infection, supra-infection or persistence of
the original infection, or death.

The following design is based on the common idea in medicine that if a treatment proves to be
effective in a patient then it should be continued, but if it is ineffective then a different treatment
should be tried. Denote two antibiotics by D; and D,. At each of two consecutive three-day
periods, the patient has one of the three possible outcomes I_ = [Alive and No Infection],
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Figure 4. Schematic of anti-infection trial design

I, = [Alive and Infection] or [Dead]. All patients receive the anti-infection agent D, at the start
of the trial, then are evaluated at day 3. If a patient is still alive and infected after three days (1 ),
then D, is discontinued and D, is employed; otherwise, D, is continued. Patients with early
success I_ receive D, again during the second stage. Each patient is re-evaluated at day 6.
Figure 4 illustrates this scheme. Note that this design uses D; as a first choice with D, as
a substitute if D, fails. If the clinician desires a symmetric comparison between D, and D,, one
could randomize patients to two arms, apply the above strategy in the first arm and reverse the
roles of Dy and D, in the second.

Here we use three monitoring criteria: (i) to improve the rate §; = Pr[A4,] of complete success
with D,; (i) to improve the conditional rate t4 = 8,/(84 + 65 + 0s) of stage 2 success among
those with infections at stage 1, that is, of switching to D, if D, is not successful; and (iii} to
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Table V1. Anti-infection trial operating characteristics

Case True probabilitics Overall early Achieved sample size
stopping probability

P1 Ca PDEATH Nys Nso Nas
(* 048 43 017 0-82 15 31 61
) 0455 0375 027 094 i1 21 38
(3) 0-48 058 014 071 17 37 82
4 063 043 015 G-42 43 82 82
&) 0-63 0-58 009 012 82 82 82

py = Pr{i_ at day 3 and at day 6], ¢, = Pr[J_ at day 6|{, at day 3]
* Null case

control the overall death rate 8; + 65 + ¢;. The three stopping criteria are thus

Pr[fs,; + 6(4,) < 85,11 X,] < pLl4y), (18)
Pr[7s.4 + 0(As) < 74| X,] < pL(4d), (19)

and
Pr[0s s + 056 + 05,7 + 6(Death) < 0 3 + g6 + 05 7| X,] = pu(Death). (20)

Table VI gives operating characteristics for this design with (py(A,), pL(44s), pu(Death)) =
(0025, 0-05, 0-80) and (6(A,), 6(A4), 5(Death)} = (015, 0-15, 0-05). The prior for the standard
treatment probability vector had mean vector (048, 0-10, 0-02, 0-15, 0-10, 0-10, 0-05) with
Wi e0 = (r20. We determined the criterion probabilities following the general approach described
in Section 2.3. In the null case 1, we set the true probabilities of complete success (py), stage 2
success among those with infections at stage 1 {c,), and death (pprarn) equal to the corresponding
means of fg; here the design has an 82 per cent chance of stopping early with a median of 31
patients. In case 2, where we increased ppraru by 010 over the standard mean of 0-17, the early
termination probability is 0-94 with a median sample size of 21, so the design is highly protective
against an increase in overall death rate. In case 3, we increased ¢, by the targeted §(4,) = 0-15
but left p, at its null value. In case 4, we increased p, by the targeted 6{4,) = 0-15 but left ¢, at its
null value. We regard each of cases 3 and 4 as a partial treatment improvement. In case 5, the best
state of nature considered, we increased both p, and ¢, by their targeted values, and the trial has
an 88 per cent chance of running to completion with 82 patients.

3.5. A general leukaemia chemotherapy trial

The following structure accommodates many bio-chemotherapy trials in acute leukaemia. It
consists of two stages, each lasting three months, with CR and survival monitored during stage 1,
and relapse and survival monitored during stage 2. Figure 5 gives the general structure and
elementary events. In particular, we consider CR; = [Alive and in CR at 3 Months] =
Asu A, U As U Ag early treatment success. An important point here is that a patient who enters
CR but relapses prior to three months is in A, = [No CR, Alive], hence is a treatment failure.
Under the usual way of scoring in terms of early CR, one would count such an outcome as
a success. We monitor patients in CR ; for an additional three months, and partition CR; into one
of the four elementary outcomes 4; = CR; n[Relapsed, Dead], 44 = CR3; n[No Relapse,
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Figure 5. Schematic of general leukaemia bio-chemotherapy trial design

Dead], A5 = CR; n[Relapse, Alive], 46 = CR; n[No Relapse, Alive]. As before, for a patient
who dies during the first three months, we score 4, at month three and not at time of death.
Likewise, we score stage 2 relapses and deaths at month 6, and not at the times of their
occurrences. For example, we categorize a patient in CR3 who subsequently relapses and then
dies prior to month 6 as A; at month 6, with X, ,, 3 = X, ; + 1 at that time. This structure
generalizes that used in the TAG trial, aside from the stage 1 timeframe, and we can similarly
collapse or modify it to accommodate a particular clinical situation.

Suppose that the goals of the trial are to increase the conditional probability of six-month
success Pr{4¢|CRs] = 16 = 04/(05 + 04 + 05 + 0¢) among those achieving CR, while control-
ling the early rates 8, and 8, of death and resistance and also the conditional six-month death
rate 734 = (03 + 04)/(03 + 04 + 85 + 8¢). The four stopping criteria are thus

Pr[6s,, + 6(A() < 05,11 X,] = pu(4,), (21)

Prlfs.; + 6(42) < 821 X,] 2 pul42), (22)
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Table VII. General leukaemia bio-chemotherapy trial operating characteristics

Case True probabilities Overall early Achieved sample size
stopping probability

P P2 €34 Cs Nzs  Nso  Nis
(1)* 0317 0142 0062 0753 094 19 28 64
(2) 0317 0142 0062 0903 16 159 170 179
(3 0317 0142 0112 0728 0978 18 25 47
4 0417 0142 0062 0712 0-996 18 24 36
%) 0317 0242 0062 0712 0998 17 23 34
(6) 0417 0242 0062 (646 1-000 15 23 30

p1 = Pr[Dead at month 3], p, = Pr[Alive, No CR at month 3],
¢34 = Pr[Dead at month 6|CR3], cs = Pr[Alive, in CR at Month 6| CR;]
* Null case

Prits 3.4 + 6(A30 As) < 05,34 Xa] 2 pu(d3 0 Ay) (23)
and
Prltss + 0(A6) < Tes 'Xn] < pr(de)s (24)

with monitoring carried out by comparing each of X, 1, X,.and X, s + X, 4|(n — X4, — X,2)
to appropriate upper (equivalence) bounds, and comparing X, ¢|(n — X, ; — X, ;) to an apropri-
ate lower (efficacy) bound, each at the time of update. If the clinician prefers to think of the stage
2 outcomes unconditionally, we can formulate {23) and {24) in terms of the corresponding
unconditional probabilities &3 + 8, and 8.

To illustrate this general four-boundary monitoring design, we use historical data from 120
patients treated with idarubicin + ara-C (standard therapy) at M.D. Anderson Cancer Center
during 1992 and 1993 to obtain the standard prior parameters as = (38, 17, 2, 2, 12, 49). Thus the
standard mean rates of early (three month) death and resistance are, respectively, 31-7 per cent
and 142 per cent, while the conditional mean rates of stage 2 death and success, among those
alive and in CR at three months, are, respectively, 6-2 per cent and 754 per cent. The trial was
designed to achieve a §(A4¢) = 0-15 improvement in 74 to 90-4 per cent while maintaining 0-05-
equivalence in the each of 8,8, and in the late death rate 75 ,. We specified a maximum stage 1
sample size of 94 patients alive and in CR at month 3, that is, in CR3, to ensure that a 90 per cent
posterior probability interval for the conditional stage 2 success probability T would have width
0-10. As before, we determined the probability criteria py(4,) = py(A4;) = pu(As U 4,) = 090 and
pr(Ag) = 0-05 following the general approach described in Section 2.3.

Table VII gives this design’s operating characteristics for various fixed values of the probabilit-
ies of the events monitored. These are p, = Pr[Dead at Month 3], p, = Pr[Alive But Not in CR
(Resistant) at Month 3], ¢; 4, = Pr[Dead at Month 6]CR;], and c¢¢ = Pr[Alive and in CR at
Month 6 | CR,]. Case 1 is the null case, as in evaluation of the anti-infection trial design, and here
the trial is highly likely to terminate early, although the sample size distribution is somewhat
skewed to the right. Case 2 represents treatment success, with the conditional stage 2 success rate
¢ increased by the targeted 015, and in this case the trial runs to compietion with probability
0-84. In case 3 the late death rate ¢ 4 increases by 0.05, in cases 4 and 5 the early death and
resistance rates each increase by 0-10 while the other remains at its null rate, and in case 6 both p,
and p, increase by 0-10. Cases 3—6 represent different ways in which the rates of death or



BAYESIAN SEQUENTIAL MONITORING DESIGNS 377

resistance for E are higher than those of S, and in all of these cases the trial almost certainly
terminates with a relatively small number of patients.

4. DISCUSSION

Phase II clinical trials are medical studies that assist in the determination of what treatments to
study in large-scale randomized comparative (phase II) trials, and in the design of phase 111 trials.
Phase II trials often utilize short-term endpoints, such as tumour shrinkage, in contrast to phase
I1I trials where survival or disease progression are usually the primary measures of treatment
effectiveness. Moreover, most statistical methodologies for phase II trials assume that there is
a single endpoint of interest (see Gehan,?' Fleming?? Sylvester,?® Simon,?* Thall and
Simon!'%?526). The determination of whether a new regimen is sufficiently promising for
phase III study is usually a complex, multi-faceted process, however, and the actual conduct of
many phase II trials is more complicated than a design based on a single binary efficacy outcome
variable may indicate. There are often several intermediate measures of treatment efficacy, as well
as important adverse outcomes such as toxicity.

Although toxicity is generally dealt with informally in the design and monitoring of clinical
trials, it is often a key issue in the decision of whether to terminate a trial early or to continue
development of a new treatment. Such early stopping rules sometimes are mentioned in trial
protocols, but typically they are ignored in the computation of the design’s operating character-
istics and in planning the sample size. Whereas there is generally an urgent need to terminate
a trial if the observed toxicity rate is unacceptably high or if the efficacy event rate is too low,
a larger sample size is often desirable when such problems do not occur. We have adopted
a design philosophy that takes estimation of the primary efficacy endpoint probability distribu-
tion as the main objective of the trial, with early termination should the rate of any adverse event
prove to be unacceptably high. In this context adverse events include both toxicity and failure to
achieve an efficacy outcome. Our approach accounts for the distinction between adverse and
desirable outcomes, and has the simultaneous goals of controlling the rate of the former while
improving the rate of the latter. Moreover, by accounting for multiple outcomes , it provides
a framework for monitoring both early and late patient responses, so that the sequential,
interactive nature of treatment and response may be accommodated. Use of this methodology per
se in co-operative studies involving many hospitals would be problematic, however, in that
continuous monitoring would likely be difficult, hence a group sequential version might be more
appropriate in such circumstances. For trials involving rapidly fatal diseases, however, one would
then lose much of the protective aspect of the method.

Qur proposed monitoring strategies use Bayesian criteria to construct early stopping rules, but
we perform frequentist evaluation of their operating characteristics under fixed values of the event
probabilities. This is Bayesian inference, because it is based on the information in the posterior.
We do not use a decision-theoretic framework, however. We make a distinction between the
probability distributions on # and &g, which reflect the investigators’ prior experience and
possibly historical data, and an assumed state of nature expressed as a fixed value of 8g. Given the
decision boundaries, frequentist evaluation of the design under fixed parameter values is objec-
tive, and moreover it is easily communicated to both statisticians and physicians. Evaluation of
the operating characteristics under an array of possible design parameterizations is a simple,
practical means of obtaining a design which appeals to the clinician, reflects actual clinical
practice, and has good statistical properties. Naturally, a Bayesian is free to evaluate the final data
in any manner desired, based on the posterior distribution of 8, or based on a set of posteriors
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corresponding to other priors of interest. A frequentist may form confidence intervals or test
hypotheses conditional on the monitoring process and trial outcome.

Several important issues still remain. These include analysis of the method’s sensitivity to the
Dirichlet prior and possible extension to a more complex model for categorical outcomes,
generalization of the model to accommodate continuous responses without discretizing them,
and incorporation of individual patient prognostic variables. We chose the Dirichlet-multinomial
model because it quantifies prior information and accumulating data in a simple and reasonable
manner, and it is highly tractable. In our experience applying the method, we have found the
categorical structure to be quite adaptabie to a broad variety of clinical settings, the discetization
of continuous variables notwithstanding. We are not aware of any other method for dealing
effectively with multiple outcomes at the level of complexity illustrated by our applications.
Moreover, we regard single-outcome phase 11 designs as the standard of statistical practice upon
which we wish to improve. Consequently, we believe that our proposed method provides
a substantial improvement over existing methods currently employed in the design and conduct
of single-arm trials.

Still, the simplicity and tractability of our approach must be weighed against the advantages of
models that have more parameters or that accommodate time-to-event variables directly. One
limitation of our model is that &; and #; may not be independent, and an extension that accounts
for their joint distribution would be more appropriate in such settings. Another problem is that,
in specifying a prior for 8 through elicitation of the dispersion parameter Wy, different reference
events will likely lead to different priors. A multivariate normal prior on the logits of the entries of
(85, 0g) is one reasonable way to deal with these problems, although the associated numerical
computations would be considerably more complex.

The extension to continuous-time models is straightforward in the univariate case. Thall and
Simon?® describe the use of a gamma-exponential model for monitoring a single time-to-event
outcome. Extension of our approach to multiple outcomes is also straightforward in some cases.
For example, the application in Section 3.1 could be modelied with a bivariate log-normal
distribution for the times to transplant rejection and GVHD. Situations involving competing
risks or outcomes that depend on the occurrence of previous events are more difficult to model in
a general continuous-time framework, however. These problems are obviated by discretizing
continuous variables and categorizing outcomes exhaustively.

Another limitation of our method, as with most clinical trial designs, is that it does not account
for individual patient covariates. Between-patient variability typically is quite large in clinical
trials, and it may mask treatment effects. We are currently investigating an extension which
incorporates patient covariate data while providing a more refined parameterization.
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