
STATISTICS IN MEDICINE

Statist. Med. 17, 1563—1580 (1998)

SOME EXTENSIONS AND APPLICATIONS OF A BAYESIAN
STRATEGY FOR MONITORING MULTIPLE OUTCOMES IN

CLINICAL TRIALS

PETER F. THALL* AND HSI-GUANG SUNG

Department of Biomathematics, Box 237, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, TX 77030, U.S.A.

SUMMARY

We present some practical extensions and applications of a strategy proposed by Thall, Simon and Estey for
designing and monitoring single-arm clinical trials with multiple outcomes. We show by application how the
strategy may be applied to construct designs for phase IIA activity trials and phase II equivalence trials. We
also show how it may be extended to incorporate the use of mixture priors in settings where a Dirichlet
distribution does not adequately quantify prior experience, randomized phase II selection trials involving
two or more experimental treatments, and trials with group-sequential monitoring for applications involv-
ing multiple institutions. ( 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

This paper presents some practical extensions and applications of a strategy proposed by Thall,
Simon and Estey,1 hereafter TSE, for designing and monitoring single-arm clinical trials with
multiple outcomes. The strategy generalizes the method of Thall and Simon2,3 for phase II trials
with one binary outcome. Rather than proposing a particular design, TSE presented a general
strategy for constructing designs. The strategy allows one to tailor the design of a given trial to
accommodate its specific patient outcome structure, scientific goals and safety requirements. TSE
used Bayesian criteria to determine sample size and generate early stopping boundaries, and
evaluated the design’s frequentist operating characteristics via simulation. Owing to its practical-
ity and generality, and the availability of a menu-driven computer program for implementation,
this strategy has been used to design numerous clinical trials conducted at M.D. Anderson
Cancer Center and other medical institutions.

This broad usage has generated a great deal of feedback. In communicating with statisticians
and physicians using the TSE method, we found that some important applications of the strategy
are not apparent from the five illustrations provided by TSE. These applications include phase
IIA ‘activity’ trials of potential new anti-cancer agents and phase II ‘equivalence’ trials. Our
experience also has shown the need for certain practical extensions, including the use of mixture
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priors in settings where a Dirichlet distribution may not adequately quantify prior experience,
randomized phase II selection trials involving two or more experimental treatments and trials
with discontinuous monitoring. We illustrate how the strategy may be applied or extended to
provide designs in each of these settings. The orientation throughout is toward practical
application. Our aim is to enable practitioners to use the strategy in a wider variety of clinical
scenarios than those described in TSE.

While the focus of this paper is statistical methodology, out of necessity we also address
computational issues. First, several clinical trial scenarios that have arisen in various applications
are not readily accommodated by the original computer program that we provided. In addition,
Lazaridis and Gonin4 pointed out some inaccuracies in the numerical methods used in the
program. To address these problems, we have written a new menu-driven computer program
which includes all of the previous program’s capabilities, accommodates the extensions described
in this paper, and uses more reliable numerical integration and simulation routines. All of the
computations described in the sequel were carried out on a Sun SPARC Station 20 or DEC
AlphaServer 2100 using this new program. Each simulated trial scenario reported here is
based on 10,000 replications. The program is freely available via anonymous ftp from
odin.mdacc.tmc.edu as ‘multcomp97.tar.gz’ in the subdirectory/pub/source.

The remainder of the paper is organized as follows. We first describe the TSE strategy,
including its underlying philosophy and guidelines for practical application. We then illustrate by
example application of the strategy to phase II equivalence trials and phase IIA trials, the use of
discrete mixture priors, trials with discontinuous monitoring, and randomized phase II trials. We
close with a brief discussion.

2. REVIEW OF THE BASIC STRATEGY

We first review the TSE strategy in the context of a continuously monitored single-arm trial of an
experimental treatment evaluated relative to a standard treatment. Subsequently, we build on this
basic structure as necessary.

2.1. Motivation

Our experience arises primarily in oncology, where adverse treatment effects such as severe
toxicity or regimen-related death occur routinely and the case of multiple patient outcomes is
quite common. Consequently, the strategy is oriented toward safety monitoring and accommod-
ates multiple events. The general goal is to provide physicians who conduct a phase II trial of an
experimental treatment with an ethical and scientifically reasonable basis for deciding whether to
stop the trial early.

For the case of a single binary efficacy outcome, the phase IIA design of Gehan5 and the
group sequential phase II designs of Schultz et al.,6 Fleming,7 Chang et al.,8 Therneau et al.9 and
Simon10 each includes interim stopping rules, while Thall and Simon2,3 provide designs with
continuous monitoring. Monitoring efficacy alone may be inadequate, however. A common
phase II scenario is one where a physician has been provided with a statistical design based on
a binary efficacy outcome, but must rely on intuition and clinical experience to decide whether to
stop a trial early if an adverse event rate seems too high. Simple probability computations often
show that early stopping rules actually used by physicians in such circumstances may have very
undesirable properties. Moreover, the nominal operating characteristics of any design based on
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evaluation of response but ignoring likely adverse events are a fiction. Regardless of what
may appear in a written protocol, physicians do not use designs that do not reflect clinical
reality, especially with regard to safety monitoring. Oncologists will certainly terminate a trial if
they believe that the observed rate of an adverse event is unacceptably high, or that the response
rate is too low, and they will do so whether or not the statistical design provides rules for such
decisions.

There is an extensive literature on group sequential methods for monitoring randomized
trials.11~14 A discussion of the distinction between formal statistical rules and practical aspects of
data monitoring is given by Friedman et al.,11 chapter 12. In recent years there has been
a substantial increase in papers proposing practical Bayesian methods.15~20 There are few
practical methods available that provide physicians with a means to quantify the clinical
experience and standards underlying early stopping decisions based on multiple outcomes,
however. In practice, clinicians who conduct trials often must rely on informal judgement alone
for safety monitoring. The available methods that accommodate multiple outcomes in phase II
appear to be the general Bayesian strategy of TSE1,21 and the hypothesis test-based designs for
trials with a bivariate binary (efficacy, toxicity) outcome proposed by Bryant and Day22 and
Conaway and Petroni.23,24 Designs for randomized trials with (efficacy, toxicity) outcome have
been proposed by Jennison and Turnbull25 and Cook and Farewell.26

2.2. Model

Early stopping decisions are inherently comparative. We formalize this by first specifying
a standard treatment S against which the experimental treatment E will be evaluated, even
though there is no S arm in the trial. In practice, S may refer to one treatment or a composite of
several. The trial of E is terminated if, compared to prior clinical experience with S, the observed
rate of one or more adverse outcomes is unacceptably high, the observed rate of an efficacy
outcome is unacceptably low, or possibly if the efficacy rate is so high that it is desirable to report
the results immediately and organize a phase III trial. In making these comparisons, an important
scientific requirement is that the variability or uncertainty about the patient outcome probabilit-
ies h

S
under S be quantified honestly. Thus, a prior for h

S
is required. A maximum of M patients

are treated if the trial is not stopped early, with M chosen to obtain posterior probability
estimates that have a given level of reliability.

The following model was chosen by TSE to accommodate a broad array of clinical scenarios,
hence it is rather simple. Many elaborations are possible, and we discuss some possibilities in
Sections 5 and 8. The design process begins by working with the physician to specify the partition
MA

1
,2,A

K
N of all possible elementary patient outcomes. This must be done in such a way that

each event to be monitored is the union of one or more of the A
j
’s. For a patient treated with

t"E or S, the probability vector corresponding to the elementary events is h
t
"(h

t,1
,2, h

t,K~1
),

with h
t,K

"1!h
t,1

2!h
t,K~1

. The probability g
t
(C ) that a patient treated with t experiences

a given compound event C is the sum over the subvector of h
t
corresponding to the elementary

events comprising C. Each patient’s outcome is characterized by a vector Y"(½
1
,2,½

K
) with

a single indicator ½
j
"1 if the elementary outcome A

j
occurred and the remaining K!1 entries

0. The sum over the first n patients is Y
1
#2#Y

n
"X

n
"(X

n,1
,2,X

n,K
).

The model assumptions are (i) X
n
D h

E
is multinomially distributed with parameters n and h

E
and

(ii) a priori h
t

follows a Dirichlet distribution with parameters a
t
"(a

t,1
,2, a

t,K
), denoted

h
t
&Dir(a

t
), for t"E, S. The probability density function of the Dir(a

1
,2, a

K
) distribution for
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the probabilities h"(h
1
,2, h

K
) of a partition of K events is given by

fh (p1
,2, p

k
D a

1
,2, a

K
)"!(a

0
)

K
<
j/1

paj~1
j

! (a
j
)

where we denote a
0
"+K

i/1
a
j
, ! ( ) ) is the gamma function, p

1
#2#p

K
"1, 0)p

j
)1

for all j and each parameter a
j
'0. The mean vector l"E(h)"(a

1
,2, a

K
)/a

0
and

var(h
j
)"k

j
(1!k

j
)/(1#a

0
). Due to the constraint that the arguments sum to 1 this is a (K!1)-

variate distribution, and when K"2 this is the well-known univariate beta distribution with
parameters a

1
and a

2
. In particular, each compound event probability g

t
(C) follows a beta

distribution, each marginal count X
n
(C ) is conditionally binomial in n and g

E
(C ), and a posteriori

h
E
DX

n
&Dir(a

E
#X

n
).

The Dir(a
S
) prior should reflect clinical experience with S whereas the Dir(a

E
) prior should

reflect the fact that E is a new treatment. Thus, an informative prior on h
S
is used. When historical

data consisting of the K elementary outcome counts are available they may be used as the
Dirichlet parameters a

S
. Otherwise, one must work harder to elicit the Dir(a

S
) prior. A non-

informative or weakly informative prior on h
E

is used, typically characterized by
a
E,1

#2#a
E,K

"K and l
E
"l

S
, although l

E
may be adjusted to reflect either an optimistic or

pessimistic prior.
The posterior probability j (C, d)"Pr[g

S
(C )#d(g

E
(C) D X

n
] is used as an early stopping

criterion for each compound event C to be monitored, where d is a fixed constant specified by the
clinician. Although j (C, d) depends on X

n
and the priors, for brevity we suppress these additional

arguments. For an adverse event ¹ the trial stops if j(¹, d
T
)'p

U
(¹ ), where p

U
(¹ ) is a fixed

upper probability cut-off and d
T

is a small non-negative slippage, typically in the range
0)d

T
)0)10. The slippage quantifies the maximum amount of increase in g

S
(¹ ) that one will

tolerate. For an efficacy outcome R the trial stops if j (R, d
R
)(p

L
(R), corresponding to an

unacceptably low rate of R, where d
R

is a targeted efficacy improvement, typically
0)15)d

R
)0)25. If it is also desired to stop the trial early if E is promising compared to S with

regard to g (R), then one uses the additional criterion j (R, d
R
)'p

U
(R). If a goal of the trial is to

decrease the probability g (¹ ) of an adverse event ¹ by a target d
T
'0, then one may simply use

the efficacy criterion j(¹M , d
¹M )(p

L
(¹M ), defined in terms of the complement ¹M of ¹. This is

identical to j (¹, !d
¹M )'1!p

L
(¹ ). In oncology, it is often the case that E is likely to increase

the probabilities of both an adverse outcome ¹ and an efficacy outcome R. An approach that we
find useful in such settings21 is to ask the physician to specify d

T
as the maximum allowed increase

in g (¹ ) which is an acceptable trade-off for a desired increase d
R

in g(R). Given minimum sample
size m, the probability criterion for each C generates a stopping boundary in terms of MX

n
(C),

n"m,2, MN. We use the multiple stopping bounds together, and E is considered promising
compared to S in terms of the defined safety and efficacy outcomes if the trial does not terminate
early. To obtain confirmatory comparative evaluation of treatment effects, however, comparison
to historical controls is not a substitute for a randomized trial.

2.3. Evaluation of operating characteristics

First, several vectors p"(p
1
,2, p

K
) of fixed probabilities, each characterizing a clinical scenario

of interest, are specified. The trial is simulated and its operating characteristics (OCs) are
evaluated under each scenario. The OCs consist of early stopping probabilities, possibly broken
down by reason for stopping, and achieved sample size distribution, which may be summarized
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conveniently in terms of selected percentiles. Thus, we are concerned with the likelihood that the
trial stops early and the distribution of the number of patients treated, rather than the conven-
tional frequentist type I and type II error probabilities typically associated with a test of
hypothesis.

If some aspect of either the OCs or the boundaries is undesirable to the clinician, then one
modifies the design parameters accordingly and repeats the simulations. This usually involves
adjusting the probability cut-offs p

U
and p

L
, although evaluation of OCs may provide insights

that motivate changes in other design parameters. This is iterated until the clinician is happy with
all aspects of the design. In our experience, the design process may move from an individual
physician to a group at the section or department level, where more extensive experience may
motivate changes in fundamental model components such as the outcome set, standard prior or
trial goals. Naturally, the design and its operating characteristics depend on the two priors, and
a sensitivity analysis may be carried out if desired.

Specification of each fixed vector p may not be entirely straightforward. For example, in the
bivariate (response, toxicity) outcome case where p"(p

1
, p

2
, p

3
, p

4
) and the marginal probabilit-

ies are p
1
#p

2
"Pr[response] and p

2
#p

4
"Pr[toxicity], there are infinitely many p for each

pair (p
1
#p

2
, p

2
#p

4
). For example, the scenario in which Pr[response] increases by 0)15 and

Pr[toxicity] increases by 0)05, compared to their standard mean values obtained from p"l
S
, we

require a third parameter to specify p fully. This general problem was pointed out by Lazaridis
and Gonin4 in studying the bone marrow transplantation (BMT) application described by TSE.
They argued that, when evaluating OCs in the 2]2 setting, one must account for the sensitivity to
the third parameter, which may be characterized as the joint probability p

2
of both response and

toxicity, as a conditional probability, or as an odds ratio. In more complex settings, we suggest
working with the physician to characterize each scenario by starting with l

S
and moving

probability mass from one elementary outcome to another in a way that makes sense
clinically.

Although the frequentist properties of our designs with which we are primarily concerned
consist of the probability that the trial terminates early and the sample size distribution, the
designs also have a more common frequentist interpretation. One may consider the parameters as
being the fixed values l

E
and l

S
, the null hypothesis to be l

E
"l

S
, and the alternative to be some

value of l
E

which is associated with the general conclusion that E is promising compared to S. If
one then considers early termination of the trial as acceptance of the null and continuation to the
maximum M as acceptance of the alternative, then under continuous monitoring what we call the
early stopping probability n is a type II error under the alternative and 1!n is a type I error
under the null. To complete this frequentist interpretation under group-sequential monitoring,
which we discuss in Section 7, an additional final decision would be required at the completion of
a trial that does not terminate early. This could be done by simply recording whether or not the
probability criteria for early stopping are met at the end of the trial when computing the overall
stopping probability of the trial under the given null and alternative values of l

E
. Alternatively,

one could require that a more specific criterion such as Pr[g
S
(C )(g

E
(C ) D final data]'p

U
be

satisfied for primary efficacy outcome C and some large cut-off probability p
U

to declare
E promising, or to ‘reject the null’ under the frequentist interpretation. Thus, our Bayesian criteria
could be used to develop purely frequentist designs. In this regard, however, we feel that such
a hypothesis testing framework may be somewhat misleading in the context of a phase II trial. In
general, the best that can be accomplished in a single arm trial of an experimental treatment is
that the patients in the trial are protected from an unsafe or inefficacious treatment by formal
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stopping rules, and, if the trial does not terminate early, reasonably reliable estimates of the
various outcome probabilities can be obtained to determine if E is promising.

3. PHASE II EQUIVALENCE TRIALS

To avoid ambiguity, we first make the following distinction between phase III, or confirmatory
equivalence, and phase II equivalence. Let g denote the probability of a single binary efficacy
outcome. For given slippage d*0, typically in the range 0)05)d)0)10, we say that E is
d-equivalent to S in the confirmatory sense if a posteriori j (!d)"Pr[g

S
!d(g

E
D data] is large

and moreover this probability is based on data from a randomized trial of E versus S. This is
a Bayesian analogue of the common frequentist approach to establishing equivalence in which,
given a fixed standard k

0
, a randomized trial is conducted to test the null hypothesis k

E
)k

0
!d

versus the alternative k
E
'k

0
!d, with the size computed at k

E
"k

0
!d and the power usually

computed at k
E
"k

0
. We conduct a phase II equivalence trial in such a way that, to continue the

trial to the n#1st patient, we require only that j
n
(!d)"Pr[g

S
!d(g

E
DX

n
]*p

L
for small p

L
.

The practical point is simply that the phase II trial terminates early if the posterior probability of
a slippage no larger than d is small. Otherwise, the completed phase II trial provides evidence that
there is some hope of subsequently establishing confirmatory equivalence, or even superiority of
E over S, via a large randomized trial.

The following application illustrates settings where E embodies a qualitative innovation over S,
hence it is appropriate to require only phase II equivalence rather than improvement over S to
continue the trial. Currently available treatments for patients with metastatic breast cancer are
unlikely to provide a cure. Although autologous BMT provides a complete remission rate over 50
per cent, median remission duration is only about one year. Success in treating other diseases by
transplanting autologous peripheral blood progenitor cells (PBPCs) rather than bone marrow
cells motivated a trial of this therapeutic modality for metastatic breast cancer patients. The
experimental treatment began with a myeloablative regimen consisting of doxorubicin, paclitaxel
and cyclophosphamide plus cytokine support followed by PBPC infusion. Patient outcomes were
scored over the first four months post-transplant. As illustrated in Figure 1, the relevant
compound events were death (D"A

5
) and, among patients who survived four months, complete

remission (CR"A
2
XA

4
) and severe, grade*3 toxicity (TOX"A

3
XA

4
). The outcome space

was constructed in this way because it was desired to score CR and TOX only among patients
who survived, rather than using the combined adverse outcome DXTOX as is often done in other
trials. The clinician specified prior means (0)34, 0)55, 0)02, 0)03, 0)06) based on experience with
approximately 300 patients, hence a Dir(102, 165, 6, 9, 18) prior was used for h

S
. The standard

mean probabilities of the three outcomes to be monitored were thus k
S
(CR)"0)58,

k
S
(TOX)"0)05 and k

S
(D)"0)06. The trial goals were to maintain equivalent rates of each of

these events, with long-term goal to estimate disease-free survival if the trial did not terminate
early. Thus, the early stopping criteria were j (CR, 0)(p

L
(CR), j (TOX, 0)'p

U
(TOX) and

j (D, 0)'p
U
(D). The values p

U
(TOX)"0)99, p

U
(D)"0)98 and p

L
(CR)"0)06 were used to

obtain desirable OCs. A maximum sample size of M"54 was specified to ensure a 95 per cent
posterior probability interval for g

E
(CR) of width )0)25. Specifically, if 31/54 (57)4 per cent) CRs

are observed, then Pr[m
0>025

(g
E
(CR)(m

0>975
D X

54
(CR)"31]"0)95 with the percentiles

satisfying m
0>975

!m
0>025

"0)697!0)448"0)249. A minimum sample size m"6 was used,
although the stopping bound X

6
(TOX)*3 required that X

n
(TOX)*3 also be applied for

n"3, 4 and 5, with a similar runback for D.
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Figure 1. Patient outcomes for the metastatic breast PBSC transplantation trial

Table I. Metastatic breast cancer PBSC transplantation equivalence trial operating characteristics

Clinical scenario Sample size percentiles

p
1

p
2

p
3

p
4

p
5

n N
10

N
25

N
50

N
75

N
90

Null case

0)34 0)55 0)02 0)03 0)06 0)20 17 54 54 54 54

p
DEATH

C 0)15

0)265 0)475 0)02 0)03 0)21 0)92 6 10 18 31 49
0)29 0)50 0 0 0)21 0)91 6 10 18 31 50

p
TOX

C 0)15

0)265 0)475 0)095 0)105 0)06 0)89 6 12 21 37 54
0)265 0)475 0)17 0)03 0)06 0)91 6 11 19 32 51

p
CR

B 0)15

0)49 0)40 0)02 0)03 0)06 0)81 7 11 21 41 54
0)46 0)43 0)05 0 0)06 0)81 7 11 21 43 54

Table I summarizes the OCs. The notation ‘p
DEATH

C 0)15’ means that the fixed probability
vector (p

1
,2, p

5
) characterizing the clinical scenario is one in which p

DEATH
"p

5
"k

S
#0)15,

that is, the probability of death is 0)15 larger than the mean probability of death under S.
Similarly, ‘p

CR
B 0)15’ means that p

CR
"p

2
#p

4
is 0)15 smaller than k

2
#k

4
, that is, the CR

probability under the scenario is 0)15 smaller than the mean probability under S. The notation
‘N

10
, N

25
, N

50
, N

75
, N

90
’ refers to the specified 10th to 90th percentiles of the achieved sample

size distribution. In a phase II trial where the goals include an improvement in an efficacy
outcome or a drop in an adverse outcome it is desirable to have a high early stopping probability
n in the null case where p"l

S
. In contrast, for a phase II equivalence trial it is desired to have

a low n under the null case and high n if any adverse (efficacy) event rate is too high (low), in terms
of the fixed vector p. Although the stopping probability n"0)20 when p"l

S
may seem high, the

price of a smaller null n is a drop in one or more of the n values under one of the other scenarios.
Because k

S,1
#k

S,2
"0)89, alternative scenarios obtain mainly by moving probability from
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Figure 2. Early stopping probabilities by reason for stopping in the metastatic breast PBSC tansplantation trial, with

p(CR), p(¹OX) and their odds ratio fixed at their null values under k
S
in (a) and p(¹OX) and p (CR D¹OX)/p (CR D¹OX)

fixed at their null values in (b)

A
1
XA

2
to the three other elementary events. We include two possibilities for each undesirable

scenario in Table I to illustrate how this may be done, although for given p
DEATH

, p
TOX

and p
CR

the
OCs were insensitive to variations in p.

Figure 2(a) illustrates the manner in which n varies with the true probability of death, overall
and by reason for stopping. The standard mean value k

S
(DEATH)"0)06 is shown by the vertical
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Table II. Some Bayesian phase IIA designs which stop early if a posteriori Pr[p
0
)h

E
Ddata](p

L
for fixed

target p
0

p
0

p
L

Stopping bounds* Prob[stop early]

0 1 2 3 4 5 M"20 M"30 M"40

0)15 0)005 19 36 — — — — 0)046 0)046 0)055
0)010 15 32 — — — — 0)087 0)087 0)103
0)020 12 28 39 — — — 0)142 0)163 0)171
0)040 9 23 34 — — — 0)234 0)270 0)290

0)20 0)005 15 28 37 — — — 0)037 0)044 0)051
0)010 13 24 33 — — — 0)055 0)069 0)077
0)020 10 21 29 37 — — 0)107 0)142 0)164
0)040 7 18 26 33 — — 0)237 0)252 0)272

0)25 0)005 13 22 29 36 — — 0)026 0)038 0)042
0)010 11 19 26 33 39 — 0)060 0)069 0)072
0)020 9 17 24 30 36 — 0)096 0)111 0)128
0)040 7 14 21 26 32 37 0)186 0)209 0)239

* p
0
"0)20, p

L
"0)010Nstop if [d responses]/n patients )0/13, 1/24 etc. up to n"maximum sample size M

dotted line. We computed each probability vector by fixing p (CR)"p
2
#p

4
"0)58,

p(TOX)"p
3
#p

4
"0)05, and the odds ratio p (CR)p (TOX)/p(CR)p (TOX)"51/55, their null

values, and varying p (DEATH)"p
5

over the domain 0)01 to 0)285. Most of the change in
p occurs due to p

1
decreasing as p

5
increases. Alternatively, we may allow p(CR) to decrease as

p(DEATH) increases by fixing p (TOX) and p(CR D TOX)/p(CR D TOX) as their null values. This
produces Figure 2(b). The three stopping probabilities may sum to a value larger than the overall
stopping probability because more than one bound may be hit simultaneously in a given trial.
This sort of empirical analysis suggests deeper issues pertaining to the manner in which the
multiple bounds interact, although we do not pursue them further here.

4. PHASE II ACTIVITY TRIALS

Once one has established the maximum tolerated dose of a new agent in a phase I trial, the next
step is to determine whether it has any anti-disease effects in a phase IIA, or ‘activity’ trial. The
goal is to decide whether the response probability is at least a given level p

0
, usually in the range

0)15)p
0
)0)25. Gehan5 proposed the first phase IIA design, consisting of two stages. At stage 1,

one tests p(p
0

versus p*p
0

to achieve a given power at p
0
. If p(p

0
is accepted then the trial

terminates, otherwise additional patients are treated in a second stage, with the stage 2 sample
size determined to estimate p with a given reliability.

We can achieve these goals by a simple adaptation of the Bayesian method for a single binary
outcome. Owing to its flexibility, this yields a broad and intuitively appealing set of designs. Since
the effective standard response rate is 0 or possibly a small value in the range 0)05—0)10, to obtain
a phase IIA design we simply replace g

S
#d in the definition of j with the fixed value p

0
, set

m"1, specify a reasonable value of M, and stop the trial early if Pr[p
0
(g

E
D X

n
](p

L
. Table II

provides designs for an array of parameterizations corresponding to some likely phase IIA
settings. For example, the parameters p

0
"0)20, M"40 and p

L
"0)01 give a design with early
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stopping probability n"0)077 if the true response rate is 0)20. Equivalently, 0)077 is the false
negative probability. This design stops early if there are at most 0 responses in the first 13
patients, 1 in the first 24 or 2 in the first 33. An interesting aspect of constructing stopping rules in
this way is that the number of stages is a consequence of the numerical values of p

0
, M and p

L
,

rather than an additional design parameter specified separately as in a typical group-sequential
design.

An important ethical consideration in designing any phase II trial is the question of whether
E is appropriate for the particular patient group. Phase IIA trials typically evaluate new agents
that may not even have any anti-disease activity. Thus, it is only appropriate to conduct the first
trial of a new agent in a patient group where either there is no effective treatment or the best
available treatment has a very low response rate, typically near 0)05. This is the primary reason
why phase IIA trials are conducted most often in salvage patients with very poor prognosis. It is
unethical to test a new agent, which may be inactive, in a patient group where there is an
established treatment with a high response rate. For example, if k

S
"0)60 in a group of untreated

patients, then it is unethical to conduct a phase IIA trial of a completely new agent in that patient
group.

5. MIXTURE PRIORS

In a trial to evaluate the efficacy of a new vaccine in late stage melanoma, patient outcome was
characterized by a single binary indicator of response. The prior for the response probability h

S
with interferon, the standard treatment, reflected experience with several hundred patients in
numerous trials. The clinician specified a mean of k

S
"0)15, but also said that observed rates

varied from 0 to 50 per cent. A beta prior with parameters beta(0)15 N, 0)85 N) for large historical
sample size N is not consistent with this upper limit, however, since it does not spread enough
probability mass on the upper limit of the domain from 0)40 to 0)50. Thus, a prior for h

S
with

mean 0)15 but with a heavier tail was needed.
We obtain a simple extension that accommodates this sort of setting as follows. In general, one

may specify m component priors Dir(a
S,1

),2, Dir(a
S,m

) and weights w
1
,2, w

m
such that the

discrete mixture which is Dir(a
S,j

) with probability w
j
has the desired properties. If historical data

on S are available, one may simple let a
S,j

be the event counts from the jth historical trial, with the
w
j
’s reflecting their relative sample sizes. Otherwise, one may mimic this structure by specifying

m Dirichlet components such that w
1
l
S,1

#2#w
m
l
S,m

equals a specified overall mean vector
and the dispersion parameters reflect the amount of clinical experience. An ordinary Dirichlet
prior is used for h

E
. Since no additional data on S are observed the prior and posterior of h

S
are

the same, hence j (C, d)"+m
1
w

j
j
S,j

(C, d). Extending the model in this way thus provides a much
broader family of priors while not introducing any new computational problems.

In the above application, we used five beta(a, b) component priors with means 0)05, 0)15, 0)25,
0)35 and 0)45, each with dispersion a#b"100, hence (a

S,j
, b

S,j
)"100(k

S,j
, 1!k

S,j
). The mix-

ture weight w"(0)6, 0)1, 0)1, 0)1, 0)1) yield the desired overall mean of +5
1
w
j
k
S,j
"0)15. Figure 3

shows a plot of this prior. Although this particular formulation certainly is not unique, it
corresponds more closely to the stated clinical experience than does a simple beta prior since it
yields Pr[h

S
*0)50]"0)016 rather than 0.

The trial goals were to: (i) stop and declare the vaccine not promising compared to interferon if
an improvement of 0)30 over h

S
was unlikely; (ii) stop and declare the vaccine promising if an

improvement in h
S

was likely, and otherwise treat M"30 patients. Thus, both upper and
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Figure 3. Five-component beta mixture prior for the vaccine trial

Figure 4. Decision probabilities for the vaccine trial

lower early stopping bounds were desired. The formal stopping criteria were j(RES, 0)30)(0)02
and j(RES, 0)'0)92. These criteria are an application of Thall and Simon.2,3 Figure 4 summar-
izes the design’s OCs, with the probabilities that the vaccine is declared not promising, declared
promising or that the trial is inconclusive represented, respectively, by dashed, solid and dotted
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lines. The goals of this design are rather optimistic in that d"0)30 is quite large. A large sample
size would be required to obtain comparable OCs for the more typical values d"0)15 or 0)20.

6. RANDOMIZED PHASE II SELECTION TRIALS

In many settings it is desired to carry out phase II evaluation of two or more experimental
treatments simultaneously, with each compared to a common fixed or random standard. There is
an extensive literature on the general problem of ranking and selection.27,28 The goal here is not
to obtain confirmatory comparative results, however, as done for example in the two-stage
selection and testing designs of Thall et al.29,30 or Schaid et al.31 Rather, the aim is to select one or
more of the experimental treatments for subsequent evaluation, as in Simon et al.32 or Thall and
Estey.33 We show by example how to adapt the TSE strategy to achieve this type of goal. Our
approach is simply to randomize patients among the experimental treatments while applying the
same early stopping criteria to each arm. Depending upon one’s goals, one may use any
appropriate criterion at the end to select among the treatments not terminated early.

If an acute myelogenous leukaemia (AML) patient either fails to achieve CR with initial
chemotherapy (is ‘resistant’) or has achieved CR but has relapsed in less than a year, subsequently
it becomes more difficult to achieve a CR. These are referred to as salvage patients, since the next
round of treatment is an attempt to save patients who have failed initial therapy. In an attempt to
improve on the CR rate of 11 per cent achieved in this patient group with cytosine arabinoside
(ara-C), it was decided to test three new chemotherapy combinations. These were topotecan
(topo)#ara-C, topo#etoposide (VP-16) given before the topo, and VP-16 given after the topo.
A randomized phase II trial was conducted, with each arm compared to the historical experience
with S"ara-C. Figure 5 illustrates the outcomes monitored, each at two months after initiation
of treatment. CR was scored only among patients alive at two months and a distinction was made
between death with and without TOX. A Dir(25, 3, 35, 6, 2, 10) standard prior was used, based on
event counts from historical data on 81 AML salvage patients treated with ara-C at M.D.
Anderson. For each of the three experimental treatment probability vectors, we used a Dirichlet
prior with mean vector l

S
and a

1
#2#a

6
"6. The goals were the same in each experimental

arm, namely to improve the CR rate while controlling the death and toxicity rates. The specific
early stopping criteria used in each arm were j (CR, 0)20)(0)005, j(TOX, 0)05)'0)98 and
j(D, 0)'0)95. Thus, a slippage of 0)05 in g

S
(TOX)"h

S,3
#h

S,4
was a trade-off for a 0)20 increase

in g
S
(CR)"h

S,2
#h

S,4
. A maximum of 120 patients were randomized among the treatment arms.

The selection criterion was simply to choose the treatment, among those not terminated early,
having the highest posterior mean g(CR).

Tables III and IV summarize the operating characteristics of this design. Since the three
experimental arms have identical designs, their usual OCs, consisting of within-arm stopping
probabilities and sample sizes, also are identical. We summarize these values based on M"40 in
Table III. Table III shows that this design has very desirable within-arm OCs. We used the null
odds ratio OR"1)43 between p

TOX
and p

CR
to determine p in scenario 2 and varied the OR from

1)1 to 20 in scenarios 3 and 4, although the OCs were insensitive to the OR over this range.
The selection probabilities are given in Table IV. We chose the three scenarios in Table IV as

extensions of three scenarios often evaluated in the case of a single parameter.17~19 Consider the
simpler setting with one binary outcome where the goal is to determine if one of K experimental
treatments E

1
,2, E

K
provides at least a d improvement over a standard null value p

0
. Assuming

that no experimental success probability p
j
is in the interval (p

0
, p

0
#d) and that at least one
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Figure 5. Patient outcomes for the randomized topotecan trial

Table III. Within-arm operating characteristics of randomized phase II topotecan trial

Clinical scenario* n Sample size percentiles

N
10

N
25

N
50

N
75

N
90

(1) Null case: p"l
S

0)85 10 10 15 32 40
(2a) p

DEATH
C 0)10, p

CR
"k

S,CR
0)89 10 10 15 27 40

(2b) p
DEATH

C 0)10, p
CR

C 0)20 0)45 11 18 40 40 40
(3) p

TOX
C 0)15 0)87—0)88 10 10 15 27 40

(4a) p
CR

C 0)20, p
TOX

C 0)05, p
D
"k

S,D
0)12 27—30 40 40 40 40

(4b) p
CR

C 0)20, p
TOX

C 0)05, p
D
B 0)05 0)08 40 40 40 40 40

* Odds ratio of p
CR

and p
TOX

varied from 1)1 to 20 in cases 2—4

Table IV. Selection probabilities for randomized phase II topotecan trial

Scenario Selection probabilities

E
1

E
2

E
3

None

Randomize all patients among arms not terminated

(1) p
E1
"p

E2
"p

E3
"l

S
0)05 0)05 0)05 0)85

(2) p
E1
"p

E2
"l

S
, p

E3
"p

4a
* 0)01 0)01 0)87 0)11

(3) p
E1
"l

S
, p

E2
"p

E3
"p

4a
0)00 0)49 0)49 0)02

¹reat at most M"40 patients in each arm

(1) p
E1
"p

E2
"p

E3
"l

S
0)13 0)13 0)13 0)61

(2) p
E1
"p

E2
"l

S
, p

E3
"p

4a
0)02 0)02 0)88 0)08

(3) p
E1
"l

S
, p

E2
"p

E3
"p

4a
0)00 0)49 0)49 0)02

* p
CR

C 0)20, p
TOX

C 0)05 and p
D
"k

S,D

p
j
*p

0
#d, then the vector of experimental success probabilities p"(p

1
,2, p

K
) that minimizes

the probability of selecting an E
j
having p

j
*p

0
#d is the least favourable configuration (LFC),

characterized by p
1
"2"p

K~1
"p

0
and p

K
"p

0
#d. The three cases in Table IV generalize

the three analogous one-parameter cases: (1) p
1
"p

2
"p

3
; (2) the LFC where p

1
"p

2
"p

0
and

p
3
"p

0
#d; and (3) the lucky case where p

1
"p

0
and p

2
"p

3
"p

0
#d, by replacing the

respective one-dimensional values p
0

and p
0
#d with the vectors l

S
and p

4a
. Although this leads
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to deeper issues regarding definition or derivation of a LFC in the multidimensional setting, we
do not pursue this further here.

If a treatment arm terminates after n(M patients, one may either randomize the remaining
M!n patients among the other arms or not do so and thus have a smaller overall sample size.
The former approach is similar to what is done in adaptive or multi-arm bandit designs. For each
of the three scenarios described above, we computed the selection probabilities under both
approaches. The results comprise the upper and lower portions of Table IV. It may seem that the
second approach is more desirable since there is a savings in sample size. However, under the first
scenario this approach has the undesirable effect of greatly increasing the probability of incorrect-
ly selecting a treatment which is on average equivalent to S, while under the second scenario it
increases the probability of correctly selecting E

3
slightly, from 0)87 to 0)88.

In addition to accommodating multiple outcomes, this approach to phase II selection extends
the two-stage selection designs cited above by replacing one interim test with continuous
monitoring. Thus, we may terminate an arm early if it is not promising, in terms of either safety or
efficacy, at any point in the trial. We can easily modify or extend the design in various ways. Two
important extensions are (1) inclusion of the possibility of selecting more than one treatment, as
in Schaid et al.,19 and (2) incorporation of a standard arm17 rather than relying only on an
informative prior on h

S
. This latter extension produces a rather different type of trial, since one

would require the priors on h
S

and h
E1

,2, h
EK

to be much more similar to each other for the
randomization to be ethical. Additionally, the randomization would allow confirmatory evalu-
ation of g

Ej
(CR)!g

S
(CR) for those E

j
not terminated, given a sufficiently large sample size M.

7. DISCONTINUOUS MONITORING

Because TSE present the method in the context of continuous monitoring, it seems impractical
for use in multi-centre trials. A simple modification that may accommodate such settings is to
update the posterior and apply the decision criteria only at the interim times when the data from
successive patient cohorts of a given size c become available. Applying this approach with, say,
c"6 thus would require monitoring after data became available from the 6th, 12th, 18th patient
etc. This less intensive requirement might be more feasible with multiple institutions involved.

Thall and Simon3 examined the effects of discontinuous monitoring in the univariate binary
outcome case. To determine how this may work when it is necessary to monitor multiple
outcomes, we examine the effects of discontinuous monitoring for the PBPC transplantation trial
discussed in Section 3. Table V presents the OCs for this design with cohort sizes varying from
1 to 18. Naturally, the smaller value of n in the case p"l

S
obtained with c'1 is desirable. For

the other three cases where a large value of n is desirable the decline in n seems acceptable up to
c"9, but the design with c"18 clearly is unsafe. We can deal with this by simply adjusting the
probability cut-offs. If we use the values p

L
(CR)"0)15, p

U
(TOX)"0)97 and p

U
(D)"0)95 with

c"18, then the respective early stopping probabilities under the four scenarios in Table V
become 0)19, 0)85, 0)81 and 0)78, which seems like a reasonable design. The decision rules are to
stop the trial if there are )7/18 or )17/36 CRs, *4/18 or *6/36 toxicities, or *4/18 or *6/36
deaths. Note that, for example, we should terminate the trial if we observe 4 deaths at any point
up to the 18th patient. Failure to take advantage of this simple aspect of the sequential design
would result in patients being treated with a regimen that is certain to be declared unsafe. This
design is similar to a conventional group-sequential trial derived using frequentist hypothesis
testing criteria in the univariate binary case,7~9 with the additional feature that now we monitor
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Table V. PBPC trial operating characteristics with varying cohort size

Clinical scenario c n Sample size percentiles

p
1

p
2

p
3

p
4

p
5

N
10

N
25

N
50

N
75

N
90

Null case

0)34 0)55 0)02 0)03 0)06 1 0)20 17 54 54 54 54
3 0)17 21 54 54 54 54
6 0)11 42 54 54 54 54
9 0)12 36 54 54 54 54

18 0)06 54 54 54 54 54

p
DEATH

C 0)15

0)265 0)475 0)02 0)03 0)21 1 0)92 6 10 18 31 49
3 0)91 6 12 21 36 51
6 0)86 6 12 24 42 51
9 0)82 9 18 27 45 54

18 0)70 18 18 36 54 54

p
TOX

C 0)15

0)265 0)475 0)095 0)105 0)06 1 0)89 6 12 21 37 54
3 0)88 6 12 24 39 54
6 0)84 6 12 30 42 54
9 0)77 9 18 27 45 54

18 0)63 18 18 36 54 54

p
CR

B 0)15

0)49 0)40 0)02 0)03 0)06 1 0)82 7 11 21 41 54
3 0)80 9 15 24 45 54
6 0)71 12 18 30 54 54
9 0)71 9 18 27 54 54

18 0)55 18 18 36 54 54

all of three of the outcomes CR, toxicity and death. Since our focus is early stopping we declare
E promising if the trial does not terminate early. Thus, if the trial does not terminate by the 36th
patient then we treat the last 18 patients simply to obtain reasonably reliable posterior probabil-
ity estimates. This type of design could be made more similar to conventional group-sequential
trials by simply adding an upper probability criterion j(CR)'p

U
(CR) in order to declare

E promising once the data from all 54 patients are available.

8. DISCUSSION

We have presented some applications and extensions of the TSE monitoring strategy that we feel
practitioners will find useful. We chose these five cases based on feedback from others and our
own experiences applying the method. One objective has been to provide designs that we can
derive using the strategy but that are not entirely apparent from TSE. In addition, we have
provided extensions accommodating mixture priors, randomized trials and monitoring by
cohorts of size greater than one.
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To apply the TSE strategy, the physician must be closely involved in specifying the patient
outcomes to monitor, the standard treatment prior and the goals of the trial. We have found that
the Bayesian model provides physicians with a rational framework for what they must do in any
case. While designing trials in this way entails considerably more work than is required for most
conventional designs, the response by clinicians has been extremely favourable. Our experience
has shown that, when physicians collaborate in the process of constructing the design, they are
much more likely to adhere to it in the conduct of the trial. From both a scientific and a clinical
viewpoint, the use of a practical design that realistically reflects the medical phenomenon and that
actually will be followed is highly preferable to an unrealistic design that will be violated in practice.

We have used historical counts for the elementary events from a trial or trials of S as the
parameters of the Dirichlet prior on h

S
. Alternatively, in settings where the clinician specifies the

prior mean probabilities l
S

and the number N of historical patients upon which this mean is
based we have used Nl

S
as the Dirichlet parameters. In either case, the sum of the parameters

could be reduced if it is felt that, aside from the fact that E and S are different treatments, the trial
of E will be conducted differently from the manner in which the trials that produced the prior on
h
S
were conducted. This really addresses the fact that, unavoidably, there is always the possibility

of a trial effect, and this effect may differ between the historical trial or trials and the planned trial
of E. This issue is addressed formally in an empirical Bayes setting by Thall and Simon.34 In the
present context, the essential practical issues are whether the prior on h

S
is an honest representa-

tion of knowledge about the standard, and how downweighting the counts of this prior will affect
the operating characteristics of the design.

Despite its flexibility and generality, the method still has some practical limitations. The first is
that it does not accommodate dose changing during the course of the trial. Although the
conventional clinical trial model is that an appropriate dose is first determined in a phase I trial,
a typical phase II trial often involves one or more dose modifications. A hybrid phase I/II design
allowing interim dose changes while also monitoring efficacy and toxicity has been proposed by
Thall and Russell35 for a particular application, but a general method as yet does not exist.
Another important issue is accounting for patient prognostic factors. This motivates the use of
regression models, which adds another level of complexity. If one is willing to extend or replace
the Dirichlet-multinomial model, then one can use joint priors that account for dependency
between h

S
and h

E
or that allow one to quantify varMg (CR)N and varMg (TOX)N separately, both of

which are desirable properties not enjoyed under the Dirichlet formulation. We have not
examined the sensitivity of the method to the priors, and this sort of conventional Bayesian
robustness analysis might provide additional insights. This is related to an approach recently
proposed by Heitjan36 for the univariate binary case in which one declares E promising if the
posterior convinces someone with a sceptical prior that E is superior to S, and not promising if
the posterior convinces one with an optimistic prior that E is inferior to S. Extension of this type
of criterion to the multivariate case might prove quite useful. Finally, it would be more desirable
from a philosophical viewpoint to construct a fully Bayesian version based on decision theory,
and ideally this may lead to designs with better practical features.
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