
STATISTICS IN MEDICINE
Statist. Med. 2008; 27:2802–2815
Published online 19 October 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sim.3109

Accounting for patient heterogeneity in phase II clinical trials

J. Kyle Wathen1,∗,†, Peter F. Thall1, John D. Cook1 and Elihu H. Estey2

1Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Box 447, 1515 Holcombe
Boulevard, Houston, TX 77030, U.S.A.

2Department of Leukemia, University of Texas, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe
Boulevard, Houston, TX 77030, U.S.A.

SUMMARY

Phase II clinical trials typically are single-arm studies conducted to decide whether an experimental
treatment is sufficiently promising, relative to standard treatment, to warrant further investigation. Many
methods exist for conducting phase II trials under the assumption that patients are homogeneous. In the
presence of patient heterogeneity, however, these designs are likely to draw incorrect conclusions. We
propose a class of model-based Bayesian designs for single-arm phase II trials with a binary or time-to-
event outcome and two or more prognostic subgroups. The designs’ early stopping rules are subgroup
specific and allow the possibility of terminating some subgroups while continuing others, thus providing
superior results when compared with designs that ignore treatment–subgroup interactions. Because our
formulation requires informative priors on standard treatment parameters and subgroup main effects,
and non-informative priors on experimental treatment parameters and treatment–subgroup interactions,
we provide an algorithm for computing prior hyperparameter values. A simulation study is presented and
the method is illustrated by a chemotherapy trial in acute leukemia. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Phase II clinical trials are usually single-arm studies conducted to decide whether an experimental
treatment, E , is sufficiently promising relative to a standard treatment, S, to be studied in a
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large-scale randomized trial. Interim monitoring rules are usually employed to stop the trial early
for futility, and to avoid giving an unacceptable number of patients an inferior treatment. Taylor
et al. [1] provide a simulation-based rationale for conducting such single-arm trials, rather than
randomizing, when there is substantial information on S. Numerous designs have been proposed
for phase II trials [2–7]. Several methods that use regression models to account for covariates
in particular phase II settings have been proposed [8–10]. When the response probabilities in
prognostic subgroups are exchangeable one can use a hierarchical Bayesian model [11]. In a
setting where the assumptions required for using a hierarchical model are not appropriate, however,
a general method for phase II trials that accounts for patient heterogeneity between prognostic
subgroups is not currently available.

To see why such a method is needed, consider a trial including good (G) and poor (P) prognosis
patients where the historical response probabilities with S (or their means under a Bayesian
formulation) are �S,G =0.45 and �S,P =0.25. Suppose that an improvement of 0.15 within each
subgroup is desired, that is, response probabilities �E,G�0.60 and �E,P�0.40 with E are targeted.
Such a trial often is designed, based on either frequentist or Bayesian criteria, by conducting
simultaneous but separate trials within the subgroups, using two separate sets of rules that stop
the trial and declare E not promising within the G subgroup if �E,G�0.60 is unlikely, and
within the P subgroup if �E,P�0.40 is unlikely. This approach is inherently flawed since, if an
agent that does not provide an improvement in one subgroup is unlikely to provide an improvement
in the other subgroup, then the design cannot exploit this fact since the data from the two subgroups
are not combined in any way. A common alternative approach that does use the combined data
is simply to ignore patient prognosis, assume average historical and targeted probabilities, say
(0.45+0.25)/2=0.35 and (0.60+0.40)/2=0.50, and conduct a conventional single-arm trial. As
an alternative, London and Chang [12] propose a stratified phase II design that adjusts for patient
heterogeneity. However, these approaches are both flawed since, in the presence of treatment–
subgroup interactions, they lead to designs with very large false-positive error and false-negative
error (FNR) rates within each subgroup.

In this article we present a Bayesian methodology for the design and conduct of single-arm
phase II clinical trials with binary or time-to-event (TTE) outcomes that accounts for hetero-
geneity between patient prognostic subgroups when treatment–subgroup interactions are present.
Our formulation generalizes the approaches of Thall and Simon [5] and Thall et al. [13]. In
each case, we assume a regression model with linear term including treatment–subgroup inter-
actions. Owing to the importance of specifying priors that accurately reflect knowledge about
the standard treatment and patient prognosis, while also providing a design with good proper-
ties, we provide an algorithm for computing numerical values of the prior hyperparameters. We
propose monitoring rules, which may be applied continuously, periodically or after successive
cohorts of patients, that allow accrual to be terminated in some subgroups while continuing in
the others. We employ computer simulation to calibrate design parameters in order to obtain a
design having good frequentist operating characteristics. Our aim is to provide a practical method-
ology with a wide range of potential applications and provide free software for implementing the
method.

In Section 2 we present the regression model underlying the method and provide an algorithm
for prior specification. Section 3 defines the decision criteria. Section 4 presents the results of
a simulation study comparing our method to three alternative methods. Section 5 describes an
application of our method to a clinical trial in relapsed acute myeloid leukemia (AML) and we
conclude with a discussion in Section 6.
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2. PROBABILITY MODEL

2.1. A parametric likelihood

To account for patient heterogeneity in a parsimonious but reliable way, we assume K prog-
nostic subgroups, identified by the categorical covariate Z ∈{0,1, . . . ,K −1}. Denote the subgroup
membership indicators I (Z =k), for k=0,1, . . . ,K −1. For t= S or E , we assume linear compo-
nents of the form

�t,Z (h)=�+
K−1∑
k=0

{�k+�k I (t=E)}I (Z =k) (1)

denoting �0 = 0 for convenience. The kth element of b=(�0,�1, . . . ,�K−1) is the historical effect
of subgroup k compared with the baseline subgroup 0, and the kth element of s=(�0,�1, . . . ,�K−1)

is the E-versus-S treatment effect within subgroup k. The model parameter vector h=(�,b,s) is
2K -dimensional. In terms of the parameters, the purpose of the trial is to learn about s. We allow
the treatment effects to differ between subgroups in order to provide a basis for a design that allows
the trial to reach different conclusions within different subgroups. As we will show in Section 5,
assuming the simpler model with a single E-versus-S effect, �=�0=�1=·· ·=�K−1, may lead to
a design with very poor properties when treatment–subgroup interactions are present. The linear
terms characterizing treatment and prognostic subgroup effects are summarized as follows:

Subgroup �S,Z (h) �E,Z (h)

0 � �+�0
1 �+�1 �+�1+�1
...

...
...

K −1 �+�K−1 �+�K−1+�K−1

The parametrization used here is critical to how well the method performs. It was chosen because
it allows borrowing strength across subgroups and reflects the fact that much more is known
a priori about the standard treatment. Specifically, by including the parameter � in the linear
term for all subgroups and the same � j for each subgroup j , the model borrows information in
a desirable way. One consequence of the parametrization is that the prior variance is smallest for
the ‘baseline’ subgroup (subgroup 0, treated with S). It ensures that, within each subgroup j , the
linear term �S, j (h) of the treatment group S will have a smaller variance than �E, j (h) for the
corresponding experimental subgroup. This reflects the knowledge available, since much more is
known about S. If an alternative parametrization were used where the prior for �t,Z is normal
with mean �t,Z and variance �2t,Z , then there would be no borrowing of information between the
subgroups and one would effectively be conducting separate trials for each subgroup.

This formulation accommodates trials with either binary or TTE outcomes. For the binary case,
denoting the treatment response indicator by Y , we assume the response probabilities �t,Z (h)=
P(Y =1|t, Z ,h)= logit−1{�t,Z (h)} are defined in terms of �t,Z (h). Denoting the data on the first
n patients in the trial by Dn ={(Y1, Z1), . . . , (Yn, Zn)}, the likelihood is the product

L(Dn|h)=
n∏

i=1
{�E,Zi (h)}Yi {1−�E,Zi (h)}1−Yi (2)

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:2802–2815
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For TTE outcomes where Y may be either the time to treatment failure or the time to clinical
response, we denote Y 0= time to the event or right censoring, �= I (Y =Y 0), with ft the probability
density function (pdf) and Ft the survivor function for treatment t= S or E . The likelihood of
data Dn ={(Y 0

1 ,�1, Z1), . . . , (Y 0
n ,�n, Zn)} takes the form

L(Dn|h)=
n∏

i=1
fE,Zi (Y

0
i |h)�i FE,Zi (Y

0
i |h)1−�i (3)

For many applications with TTE outcomes, it is reasonable to assume exponentially distributed
event times with means E(Y |t, Z ,h)=e�t,Z (h), so that the pdf and survival functions are ft,Z (y|h)=
e−�t,Z (h) exp{−y e−�t,Z (h)} and Ft,Z (y|h)=exp{−y e−�t,Z (h)}. To facilitate exposition, we will
present and illustrate the method in the binary outcome case. Modifications needed to deal with
TTE outcomes will be described in Section 6.

2.2. Establishing priors

To reflect prior knowledge about S and the effects of patient prognosis, we assume an
informative prior on (�,b). In contrast, since little is known about the effects of E at
the start of the trial, to ensure that the trial design is ethical and its results persuasive,
no undue information should be introduced into the prior for E . We therefore assume
a vague prior on s. This generalizes the approach of Thall and Simon [5], who dealt
with the homogeneous case with two response probabilities, �E and �S , assuming beta
priors. In the present regime, for tractability we assume normal priors on all parameters:
�∼N(��,�

2
�),�k ∼N(��k

,�2�k
) for k=1,2, . . . ,K −1, and � j ∼N(�� j ,�

2
� j ), j =0,1, . . . ,K −1,

where �2�, �2�1
, . . . ,�2�K−1

must be ‘small’ and �2�0, . . . ,�
2
�K−1

must be ‘large’ in some suitable

sense. Denote the hyperparameter mean vector by w� =(��,��1
, . . . ,��K−1

,��0, . . . ,��K−1
), the

variance vector by w�2 =(�2�,�
2
�1

, . . . ,�2�K−1
,�2�0, . . . ,�

2
�K−1

), and the vector of all 4K hyperpara-

meters by w=(w�,w�2). When applying Bayesian methods to conduct small- to moderate-sized
clinical trials with outcome-adaptive decision rules, the numerical values of the hyperparameters
are very important because they may substantively affect the decisions. Since the prior on (�,b|w)

is informative but the prior on (s|w) is non-informative, we provide an algorithm for specifying
numerical values of w that reflect these general requirements.

In some Bayesian models, there is a direct link between the prior hyperparameter values and
a putative number of patients on whom the prior is based, i.e. its effective sample size (ESS).
For our model, there is no clear link between w and such a prior ESS. Since the ESS of the
standard Beta(a,b) distribution is a+b, we will exploit this to determine w by matching prior
moments of the �t, j (h)’s to those of specified Betas. To do this, we first impose the K constraints
E{�E, j (h)}=E{�S, j (h)} for j =0, . . . ,K −1, so that the prior expected response rate of E equals
that of S within each prognostic subgroup. These constraints are only valid for superiority trials
and may be too optimistic for non-inferiority trials. As an alternative, one could impose the K
constraints E{�E, j (h)}= �̂E, j =E{�S, j (h)}−� j , for example, one may use � j =0.05 to 0.10, for
j =0, . . . ,K −1, so that the prior expected response rate of E is less than that of S within each
prognostic subgroup. For each t and j , let ft, j (p), 0�p�1, denote the prior density on �t, j (h)
induced by the prior on h. Given the above constraints on the mean probabilities, we determine
w by matching the first two moments of each ft, j to those of a corresponding beta distribution,
Beta(at, j ,bt, j ), with pdf denoted by f ∗

t, j , having mean at, j/(at, j +bt, j ) and ESS at, j +bt, j . We

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:2802–2815
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assume that estimates of the historical mean response rate and the number of historical patients in
each subgroup are available for S, denoted by �̂S, j and NS, j , respectively, for j =0,1, . . . ,K −1.
That is, we assume that these values may be computed from informative priors on the �S, j (h)’s.
Let NE, j denote the desired prior ESS for the distribution of �E, j (h). Given these values, we will
use the following algorithm to determine w.

Algorithm for determining prior hyperparameters
Step 1: For each j =0, . . . ,K −1, set aS, j =NS, j �̂S, j and bS, j =NS, j (1− �̂S, j ).

Step 2: Find (��,�
2
�) to minimize

∫ 1
0 | fS,0(p)− f ∗

S,0(p)|dp, subject to (s.t.) the constraint
E{�S,0(h)}= �̂S,0.
Step 3: Given (��,�

2
�) from Step 2, for each j =1, . . . ,K −1 find (�� j

,�2� j
) to minimize∫ 1

0 | fS, j (p)− f ∗
S, j (p)|dp, s.t. the constraint E{�S, j (h)}= �̂S, j .

Step 4: For each j =0, . . . ,K −1, set aE, j =NE, j �̂S, j and bE, j =NE, j (1− �̂S, j ).
Step 5: Given (��,��1

, . . . ,��K−1
,�2�,�

2
�1

, . . . ,�2�K−1
) from Steps 2 and 3, for each j =0, . . . ,

K −1 find (�� j ,�
2
� j ) to minimize

∫ 1
0 | fE, j (p)− f ∗

E, j (p)|dp, s.t. the constraint E{�E, j (h)}= �̂S, j .

The algorithm exploits the facts that, given Step 1, fS,0 depends on w only through (��,�
2
�); given

Steps 1 and 2, for each j =1, . . . ,K −1, fS, j depends on w only through (�� j
,�2� j

); and given

Steps 1–4, for each j =0, . . . ,K −1, fE, j depends on w only through (�� j ,�
2
� j ). The minimizations

in Steps 2, 3, and 5 are carried out using the simplex algorithm of Nelder and Mead [14]. To reflect
prior uncertainty about E in Step 5, reasonable values for NE, j are 1

2 , 1 or 2, which yield suitably
large values for each �2� j . Although the algorithm equates the prior mean response rates for S and
E within subgroups, alternatively one may assume either more skeptical or more optimistic prior
means for the �E, j (h)’s. For example, if the more optimistic targets �̂S, j +� j with all � j>0 are
desired, e.g. � j =	 j or 	 j/2, then these values would be used as the prior means E{�E, j (h)} and
in place of �̂S, j in Steps 4 and 5 of the algorithm for determining w.

2.3. Computing posteriors

Let � denote the K ×K diagonal matrix with diagonal elements equal to w�2 . Combining the
likelihood and priors from the previous sections, the posterior of h after observing Dn is

f (h|Dn) ∝L(Dn|h) f (h)

=
n∏

i=1
{�E,Zi (h)}Yi {1−�E,Zi (h)}1−Yi ×exp

{
−1

2
(h−w�)

T�−1(h−w�)

}

=
n∏

i=1

exp[Yi {�+(bT+sT)X(Zi )}]
1+exp{�+(bT+sT)X(Zi )}

×exp

{
−1

2
(h−w�)

T�−1(h−w�)

}

where X(K)=I(Z=K) and we denote X(Z)=(X0(Z), . . . , XK−1(Z)). Since f (h |Dn) is not conju-
gate to the prior distribution, we use Monte Carlo Markov chain (MCMC) methods [15] to compute
posterior probabilities.
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3. DECISION CRITERIA

Typically, E must provide evidence of a response rate greater than that of S to be considered for
a randomized phase III study. Formally, in subgroup j , E must provide a specified improvement
	 j over S. We thus apply the subgroup-specific early stopping rules


(Dn,h, j,	 j )=Pr{�E, j (h)>�S, j (h)+	 j |Dn}<p j for j =0,1, . . . ,K −1 (4)

where Dn denotes the currently available data, and each decision cut-off p j is a fixed lower
probability cut-off, usually in the range of 0.01–0.10. In practice, each p j may be calibrated
to obtain a pre-specified FNR, defined as the probability of stopping the trial early for futility
in subgroup j when the fixed ‘true’ value of �E, j , denoted by �trueE, j , equals the fixed target
E{�S, j (h)}+	 j . The FNR corresponds to the type II error probability of a frequentist hypothesis-
test-based design. These rules may be applied continuously, periodically, or after successive cohorts
of patients. An important property of our proposed method is that, because we allow treatment–
subgroup interactions, accrual may be stopped within one subgroup but continue in another. Using
these rules with posterior quantities computed under regression model (1), the method borrows
strength between subgroups. Our simulations will demonstrate the advantages of this approach over
simpler methods that ignore treatment–subgroup interactions, or that do not assume a regression
model, or that ignore patient subgroups entirely.

4. SIMULATION STUDIES

Although there are many phase II clinical trial designs, in order to fairly evaluate our method while
focusing on the advantages of accounting for between-subgroup heterogeneity, we will compare
it with three simpler versions of our design. All four methods are based on Bayesian models and
use early stopping rules constructed to be as similar as possible to ensure comparability. Since
our proposed method accounts for subgroups and, moreover, treatment–subgroup interactions,
we denote it by S-TI for brevity. The first simplified method, S-NTI, assumes that there are no
treatment–subgroup interactions, with the underlying regression model simplified by assuming
�0=·· ·=�K−1, so that �t,Z (h)=�+∑K−1

k=1 � j Xk(Z)+�0 I (t=E). The second simplification, SEP,
is to simultaneously conduct K separate trials, one within each subgroup, without using a regression
model to borrow strength. The third simplification, NS, is to assume that there are no subgroup
effects and conduct one trial. Since SEP does not borrow strength between subgroups and conducts
separate trials within subgroups, we assume independent beta-binomial models within subgroups,
with �t, j (h)∼Beta(at, j ,bt, j ) for each j =0,1, . . . ,K −1 and t= S, E . For NS, we also assume
beta-binomial models, but now there are only two Beta distributions, �E ∼Beta(aE ,bE ) and �S ∼
Beta(aS,bS), as in Thall and Simon [5]. To evaluate the designs over a realistic range of cases, we
present the results of two simulation studies, one with K =2 subgroups and another with K =4.
While each design’s decision boundaries are computed based on a Bayesian model that regards
the parameters as random, we evaluated each design’s behavior over a range of fixed values of
�trueE,0, . . . ,�

true
E,K−1. Since patient outcomes are rarely observed immediately, we assumed that there

is one month from the start of treatment to the evaluation of response, with patients arriving at a
rate of 30 per year according to a Poisson process, distributed equally among the subgroups. To
ensure comparability, all four methods were implemented using a total maximum sample size of

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:2802–2815
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100 and cohorts of 10 patients, with the data currently available when patients 11, 21, etc. arrived
used to compute the stopping criteria.

To compute 
(Dn,h, j,	 j ), denoted for brevity by 
̂, in the S-TI and S-NTI designs, we sampled
the posterior and calculated �E, j (h) and �S, j (h) for each sampled h. For the MCMC sampling
procedure, we implemented four parallel chains, with an initial burn-in of 5000 samples followed
by an additional 25 000 samples that were retained for computing 
̂ for each chain. To ensure
convergence, we monitored the potential scale reduction [15], and if this value was greater than
1.15 we obtained an additional 25 000 samples for each chain. Since the sampling procedure can
be very time consuming and 
̂ must be computed repeatedly during each simulated trial, we stored
the 
̂ values using a method similar to Wathen and Christen [16]. Stored 
̂ values corresponding
to previously simulated data that matched the current data were retrieved to increase the speed
of the simulations. In particular, using stored 
̂ values greatly increases the speed of the process
of calibrating p j in (3) to obtain a pre-specified FNR. Since 
̂ must be computed and stored

for many Dn , once the values 
̂ are stored for an initial p j it becomes likely that much of the
time-consuming MCMC sampling is avoided on all subsequent runs when calibrating p j , thus
substantially increasing the speed of the simulations.

4.1. Two prognostic subgroups

In the first simulation study we assumed K =2 subgroups, with j =0 for Poor (P) and j=1
for Good (G) prognosis. Since SEP conducts two separate trials in this case, for this design a
maximum of 50 patients were enrolled in each trial. We used the same targeted improvement
for both subgroups, 	0=	1=0.15. All designs were calibrated to have nominal FNR=0.10,
depending on the design’s assumptions. For the S-TI and S-NTI designs, this meant that when
�trueE, j =E{�S, j (h)}+	 j the trial should declare E inferior (reject E) at most 10 per cent of the
time within subgroup j , regardless of the true response rate in the other subgroup. For the SEP
and NS designs, each of the K designs using SEP and the single design using NS had FNR=
0.10. The priors for all four methods were calibrated to be equivalent to having observed 100
historical patients on S (NS,0=NS,1=100) and one patient on E (NE,0=NE,1=1). For the S-TI,
S-NTI, and SEP designs the prior means were E{�E,0(h)}=E{�S,0(h)}=0.25 and E{�E,1(h)}=
E{�S,1(���)}=0.45. Since NS ignores subgroups the single prior mean was assumed to be 0.35,
the average of the two subgroups, and thus for the NS method a priori �S(h)∼Beta(35,65) and
�E (h)∼Beta(0.35,0.65), with the subscript j omitted because NS ignores subgroups. For SEP, we
assumed �S,0(h)∼Beta(25,75),�E,0(h)∼Beta(0.25,0.75), �S,1(h)∼Beta(45,55) and �E,1(h)∼
Beta(0.45,0.55). Using each of the four methods, we simulated the trial 5000 times under each
of the four scenarios. The results are summarized in Table I.

In the ‘treatment–subgroup interaction’ Scenario 1, E achieves the targeted improvement in the
G subgroup but not in the P subgroup. Thus, given desired FNR=0.10, a design should reject
E at most 10 per cent of the time in the G group but terminate accrual with reasonably high
probability in the P subgroup. Both S-TI and SEP do this, although SEP has a smaller stopping
probability for the P subgroup (0.65 versus 0.73 for S-TI) due to the fact that SEP does not
borrow strength between subgroups. In sharp contrast, although S-NTI and NS both are constructed
to control FNP=0.10, due to the facts that S-NTI ignores treatment–subgroup interactions and
NS ignores subgroups entirely, both of these designs have greatly inflated FNP values in the G
subgroup, 0.47 with S-NTI and 0.42 with NS, as well as much smaller stopping probabilities

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:2802–2815
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Table I. Simulation results for a trial with two prognostic subgroups, poor (P) and good (G), Nmax=100
patients with monitoring in cohorts of size 10.

Pr(Reject E) (Mean no. of patients)

Scenario Subgroup �trueE,Z S-TI S-NTI NS SEP

Scenarios with treatment–subgroup interactions

1 G 0.60 0.10 (64) 0.47 (38) 0.42 (38) 0.10 (47)

P 0.25 0.73 (32) 0.50 (38) 0.42 (38) 0.65 (33)
2 G 0.45 0.72 (33) 0.53 (35) 0.41 (38) 0.65 (34)

P 0.40 0.10 (64) 0.51 (39) 0.41 (38) 0.10 (47)

Scenarios with no treatment–subgroup interaction

3 G 0.60 0.10 (50) 0.10 (47) 0.10 (47) 0.10 (47)

P 0.40 0.10 (50) 0.10 (47) 0.10 (47) 0.10 (47)

4 G 0.45 0.76 (38) 0.93 (21) 0.86 (24) 0.65 (34)
P 0.25 0.78 (37) 0.93 (23) 0.86 (24) 0.65 (33)

In all scenarios, E{�S,P (h)}=0.25, E{�S,G(h)}=0.45, 	P =	G =0.15 and the design is calibrated to have
an FNR=0.10. Values of �trueE,Z equal to the targeted value in subgroup Z are enclosed in boxes.

in the P subgroup, 0.50 with S-NTI and 0.42 with NS. The clear messages here are that either
ignoring patient heterogeneity or accounting for patient subgroups but not accounting for possible
treatment–subgroup interactions greatly increases the risks of missing an actual treatment advance
in a subgroup and of wrongly concluding that a treatment advance exists in a subgroup where it
does not. The same messages are given by Scenario 2, where E achieves the targeted improvement
in the P subgroup but not in the G subgroup. Another important advantage of the S-TI design is
that, because it reliably controls both the FNRs and false-positive rates within subgroups, in the
presence of treatment–subgroup interaction S-TI allocates a much larger number of patients to the
subgroup where there is an actual treatment advance. For example, in Scenario 1 on average 64
patients are treated in the G subgroup by S-TI, compared with 38 with either S-NTI or NS and 47
with SEP. Thus, S-TI not only maintains the nominal FNR within subgroups but also uses patient
resources much more effectively.

In the ‘no treatment–subgroup interaction’ Scenario 3, E achieves the targeted improvement in
both the G and P subgroups and all four methods achieve the nominal 0.10 FNR. In the worst-case
Scenario 4, where there is no improvement over S in either subgroup, all four methods have high
probabilities of stopping the trial early, with much higher values 0.93 for S-NTI and 0.86 for NS,
compared with 0.76–0.78 for S-TI and 0.65 for SEP. Given the very poor performance of S-NTI and
NS in the presence of treatment–subgroup interactions, however, the larger stopping probabilities
in Scenario 4 hardly make these methods desirable in situations where a treatment–subgroup
interaction is likely. The smaller stopping probability with S-TI compared with the simpler S-NTI
and NS methods in Scenario 4 is the price that is paid for its greatly superior performance when
treatment–subgroup interactions are present.

To compare the four designs over a wider range of �trueE,0 and �trueE,1 values, for the null response
rates 0.25 in P and 0.45 in G, we simulated cases with �trueE,1=0.60, the targeted improvement for
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Figure 1. Simulation results when E obtains the targeted improvement in the G subgroup (top row) and
P subgroup (bottom row). Vertical lines represent E{�S,0(h)} and E{�S,0(h)}+	0 in the top row and

E{�S,1(h)} and E{�S,1(h)}+	1 in the bottom row.

the G group, but varying �trueE,0 over the range 0.10–0.60. Similarly, we fixed �trueE,0=0.40 and varied
�trueE,1 over the range 0.20–0.70. The within-subgroup probability of rejecting E , as a function of
�trueE,0, is shown for the G subgroup in Figure 1(a) and for the P subgroup in Figure 1(b). These
figures may be interpreted as varying the amount of treatment–subgroup interaction, with the ‘no
interaction’ case corresponding to the values where �trueE,0=0.40. Figure 1(a) illustrates how poorly
both S-NTI and NS perform, since nominally all curves should equal 0.10 for all values of �trueE,0.
In Figure 1(b), larger (smaller) values of Pr(reject E in P subgroup) are more desirable for values
of �trueE,0<0.40 (�trueE,0>0.40), with all four methods calibrated to stop with probability 0.10 when
�trueE,0=0.40. This figure shows that S-TI and SEP are much more likely to correctly stop trial in
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the P subgroup for small values of �trueE,0 compared with S-NTI or NS, and that S-TI has the best
overall performance. Figures 1(c) and (d) display similar curves, but with the roles of the two
subgroups reversed.

4.2. Four prognostic subgroups

For a simulation study with K =4 subgroups, we assumed a maximum sample size of 200
patients so that the per-subgroup sample sizes would be comparable to those in the simulations for

Table II. Simulation results for a trial with four prognostic subgroups, Nmax=200 patients
with monitoring in cohorts of size 10.

Pr(Reject E) (Mean no. of patients)

Scenario Subgroup �trueE,Z S-TI S-NTI NS SEP

Scenarios with treatment–subgroup interactions
1 0 0.25 0.75 (35) 0.74 (30) 0.64 (30) 0.65 (33)

1 0.45 0.67 (36) 0.67 (31) 0.64 (30) 0.65 (34)

2 0.70 0.10 (64) 0.64 (34) 0.64 (30) 0.10 (47)

3 0.75 0.10 (64) 0.70 (30) 0.64 (30) 0.10 (47)

2 0 0.40 0.10 (65) 0.67 (35) 0.64 (30) 0.10 (47)

1 0.45 0.69 (35) 0.67 (31) 0.64 (30) 0.65 (34)
2 0.55 0.73 (34) 0.65 (32) 0.64 (30) 0.73 (32)

3 0.75 0.10 (65) 0.66 (31) 0.64 (30) 0.10 (47)

3 0 0.25 0.74 (39) 0.94 (21) 0.90 (20) 0.65 (33)
1 0.45 0.73 (38) 0.92 (22) 0.90 (20) 0.65 (34)
2 0.55 0.74 (37) 0.91 (22) 0.90 (20) 0.73 (32)

3 0.75 0.10 (83) 0.92 (22) 0.90 (20) 0.10 (47)

Scenarios with no treatment–subgroup interactions

4 0 0.40 0.10 (50) 0.10 (47) 0.10 (46) 0.10 (47)

1 0.60 0.10 (50) 0.10 (47) 0.10 (46) 0.10 (47)

2 0.70 0.10 (50) 0.10 (47) 0.10 (46) 0.10 (47)

3 0.75 0.10 (50) 0.10 (47) 0.10 (46) 0.10 (47)

5 0 0.25 0.83 (42) 0.99 (16) 0.99 (14) 0.65 (33)
1 0.45 0.76 (46) 0.99 (16) 0.99 (14) 0.65 (34)
2 0.55 0.81 (41) 0.99 (16) 0.99 (14) 0.73 (32)
3 0.60 0.82 (41) 0.99 (16) 0.99 (14) 0.75 (31)

In all scenarios, the respective null values are 0.25, 0.35, 0.55, 0.60 in the four subgroups, all 	 j = 0.15 and
the design is calibrated to have an FNR=0.10. Values of �trueE, j equal to the targeted value in subgroup j are
enclosed in boxes.
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K =2. As before, since SEP conducts four separate trials, a maximum of 50 patients per trial were
enrolled. We assumed the same targeted improvement for all subgroups, 	0=	1=	2=	3=0.15,
and all designs were calibrated to have FNR=0.10, as in the study with K =2, and the same accrual
rate of 30 patients per year was used. For all the four methods, the priors were calibrated to have
ESS of 100 for S (NS,0=NS,1=NS,2=NS,3=100) and 1 for E (NE,0=NE,1=NE,2=NE,3=1).
Subgroup-specific null values �̂S,0=0.25, �̂S,1=0.45, �̂S,2=0.55, and �̂S,3=0.60 were assumed.
Since NS ignores subgroups its prior mean response rates were assumed to be 0.46, the average
over the four subgroups, and thus �S(h)∼Beta(46,54) and �E (h)∼Beta(0.46,0.54). For SEP,
we assumed �S,0(h)∼Beta(25,75), �E,0(h)∼Beta(0.25,0.75), �S,1(h)∼Beta(45,55),�E,1(h)∼
Beta(0.45,0.55), �S,2(h)∼Beta(55,45), �E,2(h)∼Beta(0.55,0.45),�S,3(h)∼Beta(60,40) and
�E,3(h)∼Beta(0.60,0.40). The results of this simulation study are given in Table II.

In Scenario 1, E achieves the targeted improvement in subgroups 2 and 3 but not in 0 or 1. Thus,
it is desirable to have small rejection rates for E in subgroups 2 and 3 but large rates in 0 and 1.
While both S-TI and SEP maintain the FNR=0.10 within subgroups 2 and 3, S-NTI incorrectly
rejects E 64 and 70 per cent of the time for groups 2 and 3, respectively, and NS incorrectly
rejects E 64 per cent of the time for both subgroups. It thus appears that the probability of S-NTI
and NS incorrectly stopping the trial and rejecting E in subgroups where E actually provides
an advance over S increases substantially as the number of subgroups increases. In subgroup 0,
S-TI has the largest chance of correctly rejecting E , 75 per cent compared with 74, 64 and 65
per cent for S-NTI, NS and SEP, respectively. In subgroup 1, all methods have approximately the
same chance of rejecting E . In this case, S-TI reliably detects that E has not met the targeted
improvement in subgroups 0 and 1 and terminates patient accrual to these groups, consequently
allowing more patients in subgroups 2 and 3 to be treated with an effective treatment. Thus, the
substantive conclusions are the same as those for the case K =2, but the advantages of S-TI over
the other methods are greater for K =4. In Scenario 2, E achieves the targeted improvement in
subgroups 0 and 3 but not in 1 or 2. The rest of the results are substantively similar to those of
Scenario 2.

In Scenario 3, E only achieves the targeted improvement in subgroup 3. While both S-TI and
SEP maintain FNR=0.10 in subgroup 3, S-NTI and NS incorrectly reject E in this subgroup 92
and 90 per cent of the time, respectively. Since the stopping probabilities in subgroups 0, 1 and 2
with S-TI uniformly dominate those of SEP, this scenario provides an extremely strong motivation
for accounting for subgroups and treatment–subgroup interaction.

In Scenario 4, E achieves the targeted improvement in all subgroups and thus, by design, all
four methods have a 0.10 FNR. In Scenario 5, E fails to achieve the targeted improvement in all
subgroups and thus it is desirable for a design to reject E in all subgroups with high probability.
Because S-NTI and NS do not include a treatment–subgroup interaction, both procedures combine
the information for the subgroups and thus, in this case, are nearly certain to stop early and reject E .
However, S-TI has subgroup-specific stopping probabilities ranging from 0.76 to 0.83 in this case.

5. AN APPLICATION TO A TRIAL IN RELAPSED AML

Patients with AML in relapse after an initial complete remission (CR) have second CR rates
ranging from 0 to 60 per cent when given ‘salvage’ therapy. The principal predictor of second
CR is first CR duration (CRD1). Patients with CRD1 <1 year have second CR rates of only
approximately 10 per cent when given standard chemotherapy (containing cytosine arabinoside,
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‘ara-C’), whereas patients with CRD1 �1 year have second CR rates of about 45 per cent when
treated similarly. The most effective therapy for relapsed AML appears to be an allogeneic stem
cell transplant from an HLA-matched donor (allotx). Since allotx is not feasible for many patients,
there is a need to develop new chemotherapy regimens for patients with AML in first relapse.
Gemtuzumab ozogamycin (GO) is a combination of an antibody against CD33, an antigen found
on the surface of AML cells, and a toxin. The antibody is hypothesized to direct the toxin to the
AML cells rather than their normal counterparts. Although approved by the FDA for treatment of
AML in first relapse, GO is only slightly more effective than ara-C in this circumstance. However,
decitabine, an agent that is believed to allow re-expression of genes that are silenced by AML
cells, has been found to increase sensitivity to GO in AML model systems. This finding provides
the basis for the current trial, which administers decitabine for 5 days, with GO given on day 5.

We obtained historical data on 171 AML patients in first relapse enrolled between 1994 and
2003 at M.D. Anderson Cancer Center. The empirical overall probability of response to historical
treatment was 0.21. However, upon classifying patients by CRD1 as either poor prognosis (P), if
CRD1 <52 weeks, or good prognosis (G), if CRD1 �52 weeks, the 118 (69 per cent) patients in
the P subgroups had a response rate of 0.11 and 53 (31 per cent) patients in the G subgroup had
a response rate of 0.43.

A typical phase II study would employ a Simon’s 2-stage (S2S) design [4] and would assume
patient homogeneity. However, based on the heterogeneity seen in the historical data we applied
our proposed design, using P-versus-G as a binary prognostic variable. The goal of the study is to
determine if GO can increase the response rate by 0.15 in the G subgroup, from 0.43 to 0.58 and
0.20 in the P subgroup, from 0.11 to 0.31. Using a null response probability equal to the overall

Table III. Simulation results for a trial with two prognostic subgroups, P (first CR duration �52 weeks)
and G (first CR duration >52 weeks), for 2-stage (Nmax=40) and multi-stage (Nmax=80).

2-Stage Nmax = 40 Nmax=80
Pr(Reject GO) Pr(Reject GO)

Scenario Subgroup �trueE,Z S-TI S2S S-TI

Scenarios with treatment–subgroup interactions

1 G 0.58 0.10 (21) 0.75 (10) 0.10 (37)

P 0.11 0.90 (19) 0.75 (25) 0.96 (25)
2 G 0.43 0.50 (13) 0.26 (11) 0.71 (29)

P 0.31 0.10 (27) 0.26 (30) 0.10 (39)

Scenarios with no treatment–subgroup interaction

3 G 0.58 0.10 (13) 0.11 (12) 0.10 (39)

P 0.31 0.10 (27) 0.11 (30) 0.10 (37)

4 G 0.43 0.50 (20) 0.92 (9) 0.71 (29)
P 0.11 0.90 (19) 0.92 (22) 0.96 (25)

In all scenarios, E{�S,P (h)}=0.11, E{�S,G(h)}=0.43,	P =0.2, 	G =0.15 and the design is calibrated to
have a false-negative rate=0.10. Values of �trueE,Z equal to the targeted value in subgroup Z are enclosed in
boxes. Numbers in parenthesis are the average number of patients enrolled.
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historical rate of 0.21 (ignoring CRD1), both FNR and false-positive rate of 0.10, and a targeted
improvement (0.31×0.15)+(0.69×0.20)=0.1845 to ensure comparability with the S-TI design,
an S2S design would enroll 21 patients in the first stage and a maximum of 43 patients. At the
end of the first stage, if five or more of the first 22 patients respond the trial would continue to
the second stage and would reject (accept) GO at the end of the trial if 12 or fewer (13 or more)
patients responded. Again to ensure comparability, we constrained the S-TI design to look at the
data at 22 patients and at the end of the trial. Simulation results are given in Table III. In the cases
where the targeted improvement is reached only in one subgroup but not the other (Scenarios 1
and 2) S2S is very likely to reject GO and thus miss a substantive treatment advance. However, if
GO does not reach the targeted improvement in the G subgroup then S-TI is less likely to reject
GO than S2S. Since neither 2-stage design has desirable properties in this trial we constructed an
S-TI design with a maximum of 80 patients and monitoring done once each month, controlling
all FNRs to be 0.10. Simulation results are given in Table III. This design has superior properties
compared with either of the 2-stage designs.

6. DISCUSSION

We have proposed a flexible Bayesian design for monitoring single-arm phase II clinical trials
that accounts for prognostic subgroups and treatment–subgroup interactions, with the decision
of whether to stop patient accrual made separately within each subgroup. Our simulations show
that S-TI maintains the FNR, and in the presence of treatment–subgroup interactions has much
more desirable properties than the alternative designs considered. However, in studies where a
subgroup–treatment interaction is very unlikely the simpler alternative methods S-NTI or SEP
presented here may be sufficient, and more desirable because they are less complex.

Our simulation studies assumed an equal number of patients in both subgroups and this may
not be the case for all trials. Thus, we investigated cases with a subgroup imbalance. For example,
simulating the four scenarios in Table I with 70 per cent of the patients in the G subgroup and
30 per cent in the P subgroup, both S-TI and NS maintained the nominal FNR. In the treatment–
subgroup interaction Scenarios 1 and 2 the results were similar to those in Table I, but in general
the stopping probabilities were lower(higher) for the P(S) subgroup, due to smaller(larger) sample
size. In Scenario 1, where the targeted improvement was reached only in the G subgroup, S-NTI
and NS incorrectly stopped the trial in this subgroup 17–20 per cent of the time. In Scenario 2,
where the targeted improvement was reached only in the P group, S-NTI and NS incorrectly
stopped the trial in this subgroup nearly 80 per cent of the time. Thus, the pathological behaviors of
S-NTI and NS become more likely if the subgroup showing an improvement comprises a smaller
proportion of the sample.

In our development we focused on binary data. However, using the likelihood from equation (3)
similar procedures can be used in the context of TTE data under an exponential model, the historical
data for the TTE case may be summarized by the number of events observed, NS, j , the total time
on test, Y+, and the historical mean TTE, denoted by �̂S, j for each subgroup j =0, . . . ,K −1. To
accommodate TTE outcomes, the following changes are required in Section 2.3 and the algorithm
for calibrating the prior: use an Inverse Gamma(a,b) with mean b/(a−1) for a>1 instead of the
Beta(a,b); in step 1 set aS, j =NS, j and bS, j =NS, j ∗ �̂S, j ; in steps 2 and 3 replace the constraint

E{�S, j (h)}= �̂S, j by E{e�S,Zh)}= �̂S, j ; in step 4 set aE, j =NE, j and bE, j =NE, j ∗ �̂S, j ; in step 5
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replace the constraint E{�E, j (h)}= �̂S, j by E{e�E,Z (h)}= �̂S, j . In addition, the decision criterion

in equation (4) would be Pr{e�E,Z (h)>e�S,Z (h)+	 j |Dn}.
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