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SUMMARY

We propose a methodology for conducting phase II clinical trials in settings where the disease is cate-
gorized into multiple subtypes. A hierarchical Bayesian model is assumed for treatment e�ects within
the subtypes. The hierarchical model, which is tailored to each particular application, allows treatment
e�ects to di�er across subtypes while assuming a priori that the e�ects are exchangeable and correlated.
Two applications are described. The �rst is a trial of imatinib for sarcoma in which treatment activity
is characterized by a binary indicator of tumour response. The second is a phase II trial of a new
preparative regimen for allogeneic bone marrow transplantation in patients with haematologic malig-
nancies, with treatment e�ect characterized by the mean time from transplant to disease progression or
death. The applications illustrate how the hierarchical Bayesian model borrows strength across subtypes.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A common problem in oncology and other medical settings is to determine whether a new
treatment is su�ciently promising to warrant further study in a large scale randomized trial.
This typically is addressed by conducting a single-arm, ‘phase II’ study with patient outcome
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characterized by a binary ‘response=no response’ variable observed relatively soon after the
start of therapy. For example, response may be de�ned as 50 per cent or greater shrinkage
of a solid tumour, resolution of infection, or reduction of post-operative pain below a given
threshold. The use of such early events to evaluate treatment activity often is motivated by
the belief that it is impractical to wait to evaluate each patient’s survival time, and it relies
on the implicit assumption that response may be predictive of improved survival. In trials
of rapidly fatal diseases, however, it may be practical to use survival time or disease-free
survival (DFS) time as the outcome, rather than a binary indicator of response.
In patient-disease subgroups where there is no treatment that provides any substantive bene-

�cial anti-disease e�ect, it usually is appropriate to conduct a phase IIA, or ‘activity’ trial of a
new agent. Statistical designs for phase IIA trials based on binary response are straightforward,
usually consisting of a method for determining maximum sample size and outcome-adaptive
rules for stopping the trial early if the observed interim response rate is not promising. Such
rules generally are based on comparison of the response probability, �, to a �xed target re-
sponse probability, �∗, with values in the range �∗=0:10 to 0.30 used most commonly. The
�rst phase IIA design was proposed by Gehan [1], who speci�ed a ‘0 out of n’ rule to control
the false negative rate in a �rst stage with n patients and, if the trial is not stopped, criteria
for specifying a second stage sample size to obtain a con�dence interval for � having given
reliability. Thall and Sung [2] proposed a Bayesian phase IIA design that begins by assuming
that � follows an uninformative beta prior and stops the trial if the posterior probability that
the response rate is at least �∗ falls below a �xed lower probability cut-o�, pL. Formally, the
Bayesian stopping rule in terms of the random � and �xed �∗ is

Pr(�¿�∗ | data)¡ pL (1)

In settings where one or more ‘standard’ treatment regimens having substantive anti-disease
e�ect are available, it is appropriate to conduct a phase IIB trial, where the question is not
whether the experimental treatment is active but whether it provides an improvement over the
standard treatments. For example, if a typical standard treatment provides on average a 20
per cent response probability, then a new treatment may be considered promising if there is a
non-negligible probability that it will increase this to at least 35 per cent. When survival time
or DFS time is the outcome, the phase IIB goal is to determine whether there is any promise
of increasing the mean or median event time by a speci�ed value, usually in the range 25 per
cent to 75 per cent. Numerous phase IIB designs have been proposed, including frequentist
group-sequential methods for binary outcomes [3–5], Bayesian methods for binary outcomes
[6–8], and designs accommodating multivariate outcomes using frequentist methods [9–11]
and Bayesian methods [2, 12, 13].
This paper is motivated by the problem of designing phase II trials in settings where the

disease has multiple subtypes, S1; : : : ; Sk . We will consider the two common cases where
patient outcome is either a binary response or a time-to-event variable. In such settings,
one possible approach is simply to assume that the parameters, �1; : : : ; �k , characterizing the
response probabilities or the event rates in the k subtypes, are mutually independent, and
conduct the trial using a separate design within each subtype. Because this approach does
not share data between subtypes, it fails to accommodate the possibility that, because the
subtypes belong to the same disease, knowledge about the agent’s e�ect in one subtype may
provide information about its e�ects in the other subtypes. The opposite approach would be to
ignore the subtypes entirely by assuming a common �. This does not allow for the possibility
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that the agent may achieve the desired activity level in some subtypes but not in others. We
will take an approach that may be considered a compromise between these two extremes.
Speci�cally, we assume that �1; : : : ; �k follow a Bayesian hierarchical model [14–16] while
applying a separate early stopping rule for each subtype. Because the �j’s are correlated under
the hierarchical model, the data from each subtype provide information about all of the �j’s.
For example, a response or a longer survival time for a patient in a given subtype on average
increases the posteriors of all the �j’s, while a subtype with no observed responses or having
shorter survival times decreases all of the posteriors.
The remainder of the paper is organized as follows. In Section 2 we brie�y describe two

motivating examples, one a trial based on a binary response outcome and the other based on
DFS time. A general formulation of the hierarchical Bayesian model is given in Section 3.
We describe application of the method to a trial of imatinib for sarcoma in Section 4, and to
a trial of a new preparative regimen for allogeneic bone marrow transplantation in Section 5.
Section 6 describes an extension of the method, in the discrete outcome case, to accommodate
both response and toxicity. We close with a discussion on Section 7.

2. MOTIVATING APPLICATIONS

2.1. Imatinib for Sarcoma

Our �rst example is a trial of imatinib in sarcoma. Although soft tissue and bone sarcomas
represent less than 1 per cent of all malignancies, the morbidity is great in that the peak
incidence of many sarcomas is seen in children and young adults [17]. Sarcomas are a highly
heterogeneous group of tumours that are often classi�ed according to the normal adult tissue
that they resemble [18]. For example, �bromas and �brosarcomas resemble �brous tissue while
haemangioma and angiosarcomas resemble vascular tissues. Thus, there are many subtypes
of both soft tissue and bone sarcomas. While the primary treatment of these tumours has
improved, with limb-sparing surgery and radiation therapy resulting in improved functional
ability, the treatment of metastatic disease is still unsatisfactory and systemic chemotherapy
is of limited value [19].
Recently, the success of imatinib, also known as Gleevec or STI-571, in treating gastroin-

testinal stromal sarcoma has provided proof of principle that patients with a solid tumour
may bene�t from treatment targeting a speci�c small molecule [20]. Many sarcoma subtypes
overexpress one or more of the tyrosine kinase activated oncogenes a�ected by imatinib. Since
sarcomas are so uncommon and accrual to individual subtypes of sarcomas is often di�cult
at any single institution, a multi-centre trial was designed to determine the e�cacy of daily
imatinib for patients with locally incurable or metastatic sarcomas that have failed one or
more prior treatment regimens. The sarcoma subtypes in the trial and their anticipated accrual
rates are summarized in Table I.
For the purpose of evaluating treatment activity in the course of trial conduct, patient

outcome is de�ned as follows. All evaluations of the extent of the patient’s disease are carried
out by computerized tomography (CT) or magnetic resonance imaging (MRI). Each patient’s
disease is evaluated at baseline, at two months after the start of therapy, and possibly at four
months, according to the following scheme. At the two- and four-month evaluations, compared
to baseline, a complete response (CR) is de�ned as the complete absence of detectable disease;
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Table I. Sarcoma subtypes and anticipated accrual rates.

Sarcoma subtype Monthly accrual rate

Synovial sarcoma 3.0–6.0
Leiomyosarcoma 3.0–6.0
Malignant �brous histiocytoma 3.0–6.0
Fibrosarcoma 3.0–6.0
Liposarcoma 3.0–6.0
Ewing’s sarcoma 0.5–2.0
Osteosarcoma 0.5–2.0
Rhabdomyosarcoma 0.5–2.0
Peripheral nerve sheath sarcoma 0.5–2.0
Angiosarcoma 0.5–2.0

a partial response (PR) is a reduction in tumour volume between 50 per cent and 100 per cent;
stable disease (SD) is the condition that the extent of disease has not changed substantively;
and progressive disease (PD) occurs if the extent of disease has increased. Thus, the four
outcomes {CR;PR;SD;PD} comprise an ordinal scale. At the two-month evaluation, a CR
or PR is scored as a response and PD or death is scored as a failure. Patients with SD at
month two are re-evaluated at month four, and at this evaluation SD, PR or CR is scored as
a response and PD or death is a failure. While this de�nition is to some extent arbitrary, it
satis�es the requirement that however ‘response’ is de�ned, it should characterize anti-disease
activity. This is the case here since without treatment a patient is virtually certain to have PD
by month four. Given this de�nition of response, within each sarcoma subtype the goal is to
detect a response probability of 0.30 or larger.

2.2. A new preparative regimen for allogeneic BMT

Allogeneic bone marrow transplantation is an e�ective treatment for haematologic malignan-
cies [21]. Patients initially receive a ‘preparative regimen’ of high dose chemotherapy with two
objectives: (i) to produce immunosuppression in order to prevent rejection of the transplant;
(ii) to eradicate the malignancy. The normal bone marrow is also ablated by the preparative
regimen, and the bone marrow transplant is given to restore blood cell production and im-
munity. The preparative regimen also causes toxicity in other tissues. Consequently, there is
considerable interest in identifying less toxic, more e�ective preparative regimens to improve
disease-free survival time after bone marrow transplantation.
Our second application is a phase II trial of �udarabine+busulfan as a preparative regimen

in allogeneic (donor derived) bone marrow transplantation, hereafter ‘allotx’. The eligible
patients may be from any of three general disease subgroups: acute myelogenous leukaemia
(AML) in remission, AML in relapse, or myelodysplastic syndromes (MDS). The priors for
the historical mean DFS times summarized in Table II show that these subgroups have rather
di�erent DFS times with standard preparative regimens, such as cyclophosphamide+ busulfan.
The goal of the trial is to determine whether there is a non-negligible probability of improving
the mean DFS by 50 per cent over what is achieved with standard preparative regimens. Thus,
the goals in the three subgroups are to detect increases in the mean DFS time from 18 to 27
months for patients with AML in remission, from 5 to 7.5 months for patients with AML in
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Table II. Prior mean and 95 per cent credibility interval (CI) of the historical mean disease-free survival
times, and monthly accrual rates, in each patient-disease subgroup of the allogeneic bone marrow

transplantation trial.

Disease subgroup Priors IG parameters Patients/month

E(�j) 95% CI �j �j

AML in remission 18.1 12.1–27.0 24.0 416.3 1
AML in relapse 5.1 4.0–6.5 66.0 331.0 2
MDS 6.0 4.4–8.2 40.0 234.0 1

relapse, and from 6 to 9 months for patients with MDS. Patients will be accrued and treated
for 24 months, with an additional 12 months follow up thereafter.

3. PROBABILITY MODEL

A general formulation of the hierarchical model that includes both the binary and time-to-
event outcome cases is as follows. For the k disease subtypes, let Y=(Y1; : : : ;Yk) denote
the vector of observed data values and �=(�1; : : : ; �k) the corresponding parameters of their
distributions. Let � denote the vector of hyperparameters. We assume that the k observed
random variables are conditionally independent given �

Y | �∼f(Y | �)=
k∏
j=1
f(Yj | �j) (2)

and that the �rst level prior parameters are conditionally independent given �

� |�∼f(� |�)=
k∏
j=1
f(�j |�) (3)

For simplicity, we abuse notation by using Yj; �j and � to denote both random quantities
and the arguments of their PDFs. The hyperprior f(�) induces association among the �j’s
since, unconditionally, the prior of � is

f(�)=
∫

k∏
j=1
f(�j |�)f(�) d� (4)

This association carries through to the posterior f(� |Y), which will be the basis for decision-
making during the trial. The posterior of � |Y is given generally by

f(� |Y)=
∫
f(Y; �;�) d�∫

f(Y; �′;�) d�′ d�
(5)

where the joint distribution of the data and all the parameters is

f(Y; �;�)=f(Y | �)f(� |�)f(�)=
{

k∏
j=1
f(Yj | �j)f(�j |�)

}
f(�) (6)

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:763–780



768 P. F. THALL ET AL.

The model given by (2)–(6) has been termed a conditionally independent hierarchical model
by Kass and Ste�ey [15].

4. THE SARCOMA TRIAL

Let �j be the jth response probability and assume the logistic model �j= log{�j=(1 − �j)},
for j=1; : : : ; k. We will assume, a priori, that �j’s are i.i.d. normal with mean � and precision
(inverse variance) �, denoted

�1; : : : ; �k |�; �∼ i:i:d: N(�; �−1) (7)

so that �=(�; �). Denote the gamma distribution with mean �=� and variance �=�2 by G(�; �).
For the hyperpriors, we assume that

�∼N(−1:386; 10) and �∼G(2; 20) (8)

Thus, � has prior mean 0.10 and variance 0.005. The mean of the hyperprior of � is set equal
to the logit of 0.20 to represent the prior belief that the average response rate is between
the targeted 0.30 and the uninteresting value 0.10. The numerical hyperprior parameters were
elicited as follows. Let Xj denote the number of responders and mj the number of patients eval-
uated in Sj at any point in the trial, so that Yj=(Xj; mj). The elicited prior probabilities were
Pr(�1¿0:30)=0:45; Pr(�1¿0:30 |X1=m1 = 2=6)=0:525, and Pr(�1¿0:30 |X2=m2 = 2=6)=
0:47. Thus, a priori, while observing 2=6 responses in subtype S1 would increase Pr(�1¿0:30)
from 0.45 to 0.525, observing this in another subtype, S2; would raise this probability from
0.45 to 0.47, that is, about 27 per cent as much.
To compute the posterior (5), we begin with the joint distribution of the data and parameters,

f(Y; �;�)=

{
k∏
j=1

(
mj
Xj

)
e�j Xj

(1 + e�j)mj
e−(�j−�)

2�=2 �1=2

(2�)1=2

}
e−(�+1:386)

2=20

(20�)1=2
400 � e−20� (9)

To see how the hyperprior induces correlation among the �j’s, �rst denote the k-vector of
1’s by 1k and the k × k identity matrix by Ik , the k × k matrix with all entries 1 by Jk , and
for convenience denote the mean and variance of the hyperprior of � by �̃ and �̃2. Since
�∼N(�̃; �̃2) and � |�; �2 is k-variate normal with mean vector �1k and variance-covariance
matrix �2Ik , which we write � |�; �2∼MN(�1k ; �2Ik), it follows that � |�2∼MN(�̃1; �2Ik +
�̃2Jk). In particular, this implies that

�1 | �2; �2∼N
(
�2�̃+ �̃2�2
�2 + �̃2

;
�4 + 2�2�̃2

�2 + �̃2

)
(10)

Thus, a priori, the e�ect of the association between �1 and �2 on the early stopping criterion
in S1 is quanti�ed by

Pr(�1¿�∗ | �2)=
∫ ∞

0

{
1−�

(
�∗ − (�2�̃+ �̃2�2)=(�2 + �̃2)
{(�4 + 2�2�̃2)=(�2 + �̃2)}1=2

)}
e−20=�

2
400

�6
d�2 (11)
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Figure 1. Prior early stopping probability for �1 as a function of �2 under
the hierarchical model for the sarcoma trial.

Figure 1 illustrates how Pr(�1¿0:30 |�2) varies as a function of �2 a priori, as an illustration
of the correlation among the �j’s under the hierarchical model. The values in the �gure
may be compared to the marginal probability Pr(�1¿0:30)=Pr(�1¿ log(0:30=0:70))=0:47.
As a basis for comparison, we will also consider the more conventional Bayesian model
that assumes the �j’s are independent with identical beta(0:20; 0:80) priors. Under this model,
Pr(�1¿0:30)=0:26. The posteriors are independent conjugate betas

�j |Xj ∼ beta(0:20 + Xj; 0:80 +mj − Xj); j=1; : : : ; k (12)

Within subtype Sj, a maximum of 30 patients are treated with accrual terminated if

Pr(�j¿0:30 | data)¡0:005 (13)

This rule is �rst applied after a minimum of eight patients in Sj have been evaluated. An
essential point is that the ‘data’ to the right of the conditioning bar in (13) include the data
from all ten subtypes, since all of this information a�ects the posterior of each �j under the
hierarchical model. To avoid treating an unacceptably large number of patients in a subtype
having a relatively high accrual rate but a poor response rate, the following rule is applied:
during the �rst three months of the trial, if Sj has accrued 15 patients but not all 15 have
been evaluated, then accrual will be suspended temporarily in Sj unless (13) would not be met
even if all patients not yet evaluated were to fail. For example, suppose nine subtypes have
0=8 responses, while the tenth has 1=8 responses with an additional seven patients treated but
not yet evaluated. In this case, accrual would be suspended temporarily in the tenth subtype
since Pr(�j¿0:30 | data)¡0:005, where here ‘data’ is the future outcome that nine subtypes
have 0=8 responses and the tenth has 1=15. In contrast, if the tenth subtype has 3=8 responses
with seven patients treated but not yet evaluated, then accrual would not be suspended in
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Table III. Comparison of some early termination decisions under the conventional and hierarchical
Bayesian models in the sarcoma trial.

Case Outcomes Decision

Conventional model Hierarchical model

1 5 subtypes with 0/8 Stop Stop
5 subtypes with 1/8 Continue Continue

2 3 subtypes with 0/8 Stop Continue
2 subtypes with 1/8 Continue Continue
5 subtypes with 2/8 Continue Continue

3 2 subtypes with 1/17 Stop Continue
3 subtypes with 5/17 Continue Continue
5 subtypes with 7/23 Continue Continue

4 3 subtypes with 0/8 Stop Stop
2 subtypes with 1/8 Continue Stop
5 subtypes with 2/23 Stop Stop

5 3 subtypes with 1/8 Continue Continue
2 subtypes with 2/22 Continue Stop
5 subtypes with 3/30 Stop Stop

the tenth subtype. This is because Pr(�j ¿ 0:30 | data)=0:09¿0:005, where now ‘data’ is the
future outcome that nine subtypes have 0=8 responses and the tenth has 3=15.
Under this hierarchical model, the joint posterior distribution is not readily available in

closed form and, due to the high dimension of the posterior, numerical integration is not
practical. Thus, we used Markov chain Monte Carlo (MCMC) to compute the posteriors [22].
Straightforward but tedious computations show that the full conditional distributions of some
model parameters can be obtained in closed form, and sampling from these is straightforward
in the MCMC. For the conditionals not available in closed form, since these full conditionals
are log-concave we used adaptive rejection sampling (ARS) [23]. To evaluate the algorithm’s
performance we generated many data sets, ran parallel chains for each with di�erent starting
points, and evaluated the convergence of the chains using the software CODA [24]. It was
determined that a short burn-in and a chain of length 1000 met reasonable convergence
criterion. However, since the stopping probability criterion in (13) must be compared to the
small cut-o� value 0.005, a burn-in of 1000 with a chain of length 5000 was used when
simulating the trial. In addition, if the probability in (13) was determined to be less than 0.20
with a chain of length 5000, then an additional 5000 samples were drawn to obtain a more
precise estimate of the criterion probability.
The manner in which the data in the di�erent subtypes a�ect the early stopping decisions

through the hyperprior is illustrated by the examples in Table III, which also includes the
corresponding decisions based on the conventional independent beta priors. Comparison of
case 2 to case 1 shows that an apparently small improvement in �ve of the ten subtypes
leads to the decision to continue the subtypes having 0=8 responses, rather than terminating
them. Case 3 illustrates a similar e�ect later in the trial, where the conventional model would
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Table IV. Operating characteristics of the sarcoma trial design. Subtypes 1–5 accrue patients quickly
(3 to 6 per month), subtypes 6–10 accrue patients slowly (0.5 to 2 per month). Tabled values are the

mean per subtype. Standard deviations are given in parentheses.

Scenario 1 Sarcoma subtype

1–5 6–10

True Pr(response) 0.10 0.10
Number of patients 23.2 (5.7) 12.6 (2.5)
Number of months 5.4 (1.5) 10.5 (1.9)
Per cent stopped early 77 47

Scenario 2 1 2–5 6–10

True Pr(response) 0.30 0.10 0.10
Number of patients 29.2 (2.9) 23.2 (5.6) 12.8 (2.3)
Number of months 7.1 (1.0) 5.4 (1.5) 10.7 (1.7)
Per cent stopped early 9.5 76 45

Scenario 3 1–2 3–5 6–10

True Pr(response) 0.30 0.10 0.10
Number of patients 29.3 (2.7) 23.9 (5.5) 13.1 (2.1)
Number of months 7.1 (0.9) 5.6 (1.5) 10.9 (1.5)
Per cent stopped early 8.0 73 42

Scenario 4 1–5 6 7–10

True Pr(response) 0.10 0.30 0.10
Number of patients 23.4 (5.6) 14.2 (1.8) 12.9 (2.3)
Number of months 5.5 (1.4) 11.8 (0.9) 10.7 (1.7)
Per cent stopped early 75 7 45

Scenario 5 1–5 6–7 8–10

True Pr(response) 0.10 0.30 0.10
Number of patients 23.2 (5.6) 14.3 (1.8) 13.0 (2.2)
Number of months 5.5 (1.4) 11.8 (0.8) 10.8 (1.6)
Per cent stopped early 75 6.0 44

Scenario 6 1 2–5 6 7–10

True Pr(response) 0.30 0.10 0.30 0.10
Number of patients 29.2 (2.8) 23.5 (5.6) 14.3 (1.7) 13.1 (2.1)
Number of months 7.1 (1.0) 5.5 (1.5) 11.9 (0.7) 10.9 (1.5)
Per cent stopped early 8.5 73 5.0 43

terminate the subtypes with 1=17 responses but the hierarchical model continues them based
on the positive results in the other subtypes. Cases 4 and 5 show that this e�ect also works in
the opposite direction, with subtypes that would have been continued under the conventional
model terminated under the hierarchical model.
Table IV summarizes a simulation study of the design. Under each scenario in the study,

the responses were simulated with probability �xed at either 0.10 or 0.30 within each sarcoma
subtype. A distinction is made between the quickly accruing (QA) subtypes, numbered 1–5,
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Table V. E�ect of the number of quickly accruing subtypes with response probabilities 0.30 versus
0.10 on the early stopping rates in the sarcoma trial. All �ve slowly accruing subtypes have response

probability 0.10. Each entry is the mean percentage of early stops per subtype.

Number of subtypes with (p=0:30; p=0:10)

(0, 5) (1, 4) (2, 3) (3, 2) (4, 1) (5, 0)

p=0:30 — 9.6 6.6 6.4 5.7 4.3
p=0:10 78 75 72 70 67 —

and the slowly accruing (SA) subtypes, numbered 6–10. In general, the SA subtypes have
lower early stopping probabilities because there is less information per unit time compared to
the QA subtypes. Under scenario 1, all ten subtypes have the unpromising response rate of
0.10. As a basis for comparison, if the hierarchical model were not assumed, and the �j’s were
independent but with the same prior means and variances, then the early stopping probability
would be 0.67 for each of subtypes 1–5 and 0.42 for each of subtypes 6–10. The higher
values 0.77 and 0.47 under the hierarchical model are an advantage of borrowing strength.
Scenarios 2 and 3 show that, while one QA subtype with desirable response probability 0.30
has a 9.5 per cent false negative rate, if two have response probability 0.30 then each has
false negative rate 8.0 per cent due to the fact that they borrow strength. Scenarios 4 and 5
show the analogous e�ect in the SA subtypes, and scenario 6 shows this e�ect when one QA
and one SA subtype have response probability 0.30. Table V gives a more complete picture
of how the hierarchical model causes the false negative rate of each subtype to drop as the
number of QA subtypes with true success probability 0.30 increases from 1 to 5.

5. THE ALLOGENEIC TRANSPLANTATION TRIAL

Let Xj; i denote the event time of the ith of mj patients in Sj. The time-to-event case is not
strictly analogous to the binary outcome case in that the null, historical mean event time
in a patient group cannot equal 0, but rather it must be positive real-valued. We denote the
historical mean event times in the k subgroups by �1; : : : ; �k and assume that E(Xj; i | �j)= �j e	j
for real-valued treatment e�ects 	1; : : : ; 	k , denoting �j=(�j; 	j). We assume that the event
times are exponential, formally

Xj;1; : : : ; Xj;mj | �j ∼ i:i:d: G(�j e	j ; 1); j=1; : : : ; k (14)

To accommodate the di�erent historical event rates of the patient-disease subgroups, we as-
sume that �1; : : : ; �k are independent but not identically distributed, while the treatment e�ects
are i.i.d. given the hyperparameters. Formally, we assume that

f(�; � |�)=f(�)f(� |�)=
k∏
j=1
fj(�j)f(	j |�) (15)

Denote the inverse gamma distribution by IG(�; �), where we de�ne W ∼ IG(�; �) if and only
if 1=W ∼G(�; �). The priors are given by

�j ∼ IG(�j; �j); j=1; : : : ; k and 	1; : : : ; 	k |�; �2∼ i:i:d: N(�; �2) (16)
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where now �=(�; �2). For the hyperpriors, we assume that �∼N(�̃; �̃2) and �2∼ IG(�̃; �̃).
Denote the time to the event or censoring for patient i in Sj by X 0j; i, let 
j; i be the indicator
that X 0j; i=Xj; i, so that Yj= {(X 0j; i ; 
j; i); i=1; : : : ; mj}. The total time to failure or censoring is
X 0j;+ =X

0
j;1 + · · ·+X 0j;mj , the number of events out of the mj patients is 
j;+ = 
j;1 + · · ·+ 
j;mj ,

and the likelihood of Yj | �j is

f(Xj;1; 
j;1; : : : ; Xj;mj ; 
j;mj | �j; 	j)= (�−1j e−	j)
j;+ e−�
−1
j e−	j X 0j;+ (17)

Thus, the joint distribution of all data and parameters takes the form

f(Y; �; �;�) =

{
k∏
j=1
(�−1j e−	j)
j;+e−�

−1
j e−	j X 0j;+

�−�−1j ��e−�=�j

�(�)
e−(	j−�)

2=2�2

(2�)1=2�

}

× e−(�−�̃)
2=2�̃2

(2�)1=2(�̃2)1=2
�̃
�̃
e−�̃=�

2

(�2)�̃+1�(�̃)
(18)

Table II summarizes the marginal prior distributions of the �j’s in terms of their prior
means and 95 per cent credibility intervals, along with the corresponding inverse gamma
parameters, for each disease subgroup. The hyperprior parameters re�ect the prior belief that
the new preparative regimen should provide a 25 per cent increase in the mean DFS in
each subgroup, formally E(e	j)=1:25, with 95 per cent credibility interval 0.65 to 2.20 for
e	j . To determine the prior association among the 	j’s, the hyperprior was calibrated so that
E(e	2 | e	1 = 1:50)=1:275. That is, given that there is a 50 per cent improvement in subgroup 1,
the expected improvement in subgroup 2 is increased by 1=10 of the di�erence between the
prior mean 1.25 and 1.50. This yielded the parameters of the hyperpriors f(�) and f(�2).
The early stopping rule in patient-disease subgroup Sj is

Pr(e	j¿1:50 | data)¡0:075 (19)

The improvements {e	j ; j=1; 2; 3} in average DFS time over the historical means in the
patient-disease subgroups in the allotx trial thus play a role that is analogous to that of the
ten response probabilities in the sarcoma trial. Conduct of the allotx trial di�ers from that
of the sarcoma trial in that the allotx patients are accrued, treated and their outcomes are
monitored continuously without any reference to speci�c time intervals or surrogate events.
The event time data, including the times of relapse, death or current follow-up (censoring),
are monitored and the decision criteria (19) are updated continuously over the 24 month
accrual period of the trial. Computation of the posterior early stopping criteria (19) under
the hierarchical time-to-event model was done similarly to that under the model for binary
outcomes in the sarcoma trial.
Figure 2 illustrates how Pr(e	1¿1:50 |	2) varies with 	2 a priori under the hierarchi-

cal model. The values in the �gure may be compared to the marginal prior probability
Pr(e	1¿1:50)=0:447. The e�ect of the data from patient-disease subgroups other than S1
on the decision probability Pr{e	1¿1:50 | data} is illustrated by the hypothetical examples in
Table VI, which is analogous to Table III. The ‘conventional’ method in Table VI was ob-
tained by applying the stopping rules (19) independently in the three disease subtypes based
on three independent priors. For comparability, these priors were calibrated to have the same
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Figure 2. Prior early stopping probability for exp(	1) as a function of exp(	2) under the hierarchical
model for the bone marrow transplantation trial.

Table VI. Comparison of some early termination decisions under the conventional and hierarchical
Bayesian models in the allogeneic transplantation trial. Within each subgroup, N =number of patients,

T+ = total time on test, in months, and F =number of failures.

Case AML in remission AML in relapse Myelodysplastic syndromes

1 (N; T+; F) (10, 54, 2) (20, 88, 12) (10, 54, 6)
Estimated mean DFS 27 7.3 9.0

Conventional Continue Continue Continue
Hierarchical Continue Continue Continue

2 (N; T+; F) (10, 54, 2) (20, 70, 14) (10, 54, 6)
Estimated mean DFS 27 5.0 9.0

Conventional Continue Stop Continue
Hierarchical Continue Continue Continue

3 (N; T+; F) (10, 48, 5) (20, 66, 16) (10, 40, 8)
Estimated mean DFS 9.6 4.2 5.0

Conventional Stop Stop Continue
Hierarchical Stop Stop Stop

means and variances as the corresponding marginals of �je
	
j ; j=1; 2; 3 under the hierarchical

model. In Case 1, the empirical DFS in each group is consistent with a 50 per cent increase
over the historical rate in each subgroup, and the two methods agree to continue in all three
subgroups. Case 2 di�ers from case 1 in that the empirical DFS time in the second subgroup
is much smaller. Here, the conventional method would stop accrual in the second subgroup
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Table VII. Operating characteristics of the allogeneic transplantation trial. For each scenario, the �xed
mean DFS in each patient-disease subgroup is exp(	F) times the historical subgroup mean.

Scenario Patient–disease subgroup

AML in remission AML in relapse Myelodysplastic syndromes

1 exp(	F) 1.0 1.0 1.0
Number of patients 19.9(6.2) 24.4(11.8) 16.2(7.1)
Per cent stopped early 58(1.6) 89(1.0) 71(1.4)

2 exp(	F) 1.5 1.0 1.0
Number of patients 23.1(6.1) 25.2(11.4) 17.0(7.2)
Per cent stopped early 18(1.2) 83(1.2) 62(1.5)

3 exp(	F) 1.0 1.5 1.0
Number of patients 21.0(5.9) 43.4(12.3) 18.1(6.8)
Per cent stopped early 40(1.5) 19(1.2) 42(1.6)

4 exp(	F) 1.0 1.0 1.5
Number of patients 21.2(5.9) 26.1(11.9) 22.4(6.6)
Per cent stopped early 42(1.6) 84(1.2) 18(1.2)

5 exp(	F) 1.5 1.5 1.0
Number of patients 23.6(5.2) 44.0(11.4) 18.5(6.7)
Per cent stopped early 7(0.8) 14(1.1) 51(1.6)

6 exp(	F) 1.5 1.0 1.5
Number of patients 23.3(5.3) 26.9(12.6) 22.5(6.2)
Per cent stopped early 8(0.9) 80(1.3) 13(1.1)

7 exp(	F) 1.0 1.5 1.5
Number of patients 21.9(5.8) 43.8(11.5) 23.6(5.7)
Per cent stopped early 27(1.4) 14(1.1) 7(0.8)

8 exp(	F) 1.5 1.5 1.5
Number of patients 23.9(5.1) 45.0(10.9) 23.3(5.5)
Per cent stopped early 4(0.6) 11(1.0) 6(0.8)

whereas the hierarchical model-based method would continue accrual in that subgroup, essen-
tially because it takes the higher observed rates in the other subgroups into account. Case 3
illustrates the opposite e�ect, in that the poor results in all three subgroups combine to cause
accrual to be terminated in subgroup 3 rather than continued.
To simulate the allotx trial, we assumed that the mean DFS time within the jth subgroup

was the �xed value �Fj exp(	
F
j ) where �

F
1 =18:1; �

F
2 =5:1, and �

F
3 =6, the historical means,

and each of the e�ects {exp(	Fj ); j=1; 2; 3} was set equal to either 1 or 1.50, depending on
the particular scenario. Patients within each subgroup were simulated to arrive according to a
Poisson process having rate equal to the anticipated accrual rates given in Table II, and their
times to failure were simulated as i.i.d. exponential random variables with the above �xed
means. The simulation results are summarized in Table VII. When interpreting these results,
it is important to bear in mind that the �xed mean DFS times in the three subgroups are
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18.1, 5.1 and 6.0 months, and that the corresponding monthly accrual rates are 1, 2 and 1
(Table II). Scenarios 2, 3 and 4 show that if the 50 per cent improvement is the case in only
one of the three subgroups then there is about an 18 per cent chance of wrongly terminating
that subgroup. Scenarios 5, 6 and 7 show that if the improvement is obtained in two of the
three subgroups then they borrow strength to greatly reduce the false negative rates. This
reduction is even greater if all three subgroups have 50 per cent improvement (scenario 8).

6. ACCOUNTING FOR TOXICITY AND RESPONSE

The model and method used for the imatinib–sarcoma trial may be extended to accommo-
date toxicity as well as response in settings where both of these events are important. To
show how this may be done, we �rst describe a phase IIA trial of intra-prostatic PS-341 for
prostate cancer patients who have relapsed after external beam radiation therapy. Response
was de�ned as a ¿50 per cent reduction in PSA or a ¿25 per cent reduction in tumour
mass as measured by trans-rectal ultrasound, or both. Toxicity was de�ned as any grade 3
or 4 non-haematologic local or systemic toxicity. Denoting the probabilities of the four pos-
sible outcomes (Response, Toxicity) = (Yes, Yes), (Yes, No), (No, Yes) and (No, No) by
�1; �2; �3, and �4 = 1−�1−�2−�3, it was assumed that �=(�1; �2; �3) followed a Dirichlet prior
with parameters a=(0:08; 0:72; 0:32; 2:88), denoted �∼Dir(a). This re�ected the prior belief
that the probabilities of response, �R = �1 + �2, and toxicity, �T = �1 + �3, would on average
equal 0.20 and 0.10, but with a high degree of uncertainty since

∑4
j=1 aj=4. Assuming that,

given �, the four-category outcome count vector X=(X1; X2; X3; X4) is multinomial in � and
X+ =

∑4
i=1 Xi, the design speci�ed that the trial be stopped early if

Pr(�R¿0:20 | data)¡0:025 or Pr(�T¿0:10 | data)¿0:925 (20)

This model and composite early stopping rule are of the family proposed by Thall et al. [12],
but using the �xed limits 0.20 and 0.10 rather than random parameters.
We now extend this design to accommodate k patient-disease subtypes, as in the previous

examples. Let �=(�1; �2; �3; �4) be independent hyperparameters corresponding to the four
response–toxicity outcomes, with �i∼G(�i; �) for i=1; 2; 3; 4; and denote �=(�1; �2; �3; �4).
Let �1; : : : ; �k be the k four-outcome probability vectors corresponding to the patient–disease
subtypes. For the �rst-level prior, assume that �1; : : : ; �k |�∼ i:i:d: Dir(�) and that, given �j,
the four-outcome count vector Xj=(Xj;1; Xj;2; Xj;3; Xj;4) observed in subtype Sj is multino-
mial with parameters �j and Xj;+ =

∑4
i=1 Xj; i. Since the four independent gamma hyperpri-

ors have the same second parameter, �, it follows that �=�+∼Dir(�), and consequently
E(�j)=E{E(�j |�)}=E{�=�+}= �=�+. Thus, to apply this model one must elicit the gamma
hyperpriors of the �i’s and � so that �=�+ equals the physician’s prior mean of �, such as
a=(0:08; 0:72; 0:32; 2:88), above, and so that the induced correlation among the �j’s appropri-
ately re�ects the physician’s prior belief regarding association among the subtypes. The two
early stopping rules (20) would then be applied for each pair (�R; j ; �T; j) within its patient-
disease subgroup Sj, for j=1; : : : ; k, with the important provision that the posterior of each
(�R; j ; �T; j) be computed based on the data from all k subtypes, so that the k pairs of rules
may borrow strength from each other via the hierarchical model. This multinomial-Dirichlet-
gamma hierarchical model may be applied in similar settings involving an arbitrary number
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of elementary events, although from our experience the great majority of applications would
have outcomes with at most �ve categories.

7. DISCUSSION

We have described a general method for constructing early stopping rules in a trial of a
new agent or treatment combination that accounts for multiple disease subtypes. Our two
applications, for trials based on a binary response and on survival time, illustrate both the
method’s generality and its range of practical application.
Conducting a multi-centre trial that requires repeated application of safety monitoring rules

in multiple disease subtypes is not logistically straightforward. We thus developed a web-based
interface for conducting the sarcoma trial. The interface provides the participating institutions
with a facility for enrolling patients and viewing current data, and it also is the basis for
e�cient safety monitoring. At this writing, the �rst two monthly evaluations in the sarcoma
trial have been carried out with no interruption of patient accrual.
A major issue in designing each trial was the amount of time required to conduct the

computer simulations. For each simulated trial under each scenario, the appropriate subgroup
stopping rule must be checked before each patient is enrolled. Evaluation of the stopping
rules is expensive in terms of computing time, since it involves MCMC. For example, based
on initial runs, simulating the transplantation trial under each of the eight scenarios that we
considered would have required well over six weeks of continuous processing on one dual
Pentium (r) 41:8GHz computer. However, by making a few small modi�cations to the original
simulation program we were able to use a distributed processing system that utilizes all of the
idle computers in our environment, including 25 PCs of varying speeds. For each of the two
applications, this allowed us to complete the simulations in less than two days. In general,
we have found that simulation studies that would be impractically long on a single computer
can be completed in our environment with distributed processing in at most a few days. The
total run time of a given simulation study carried out using distributed processing varies with
the statistical model and method, the number and nature of the scenarios, and the type and
availability of the PCs.
The main logistical problem in conducting the imatinib–sarcoma trial is that it involves ten

institutions. In the initial discussions of how this trial would be conducted, it was proposed
that each institution would send the data to the second author of this paper. To facilitate
this process, a website was constructed for data collection and real time evaluation of the
stopping rules. While the latter currently is being done manually due to the simplicity of the
data structure, we are developing a version of the program that will do this automatically.
Implementating the transplantation trial design requires a user interface, however, because
time-to-event variables must be monitored. These interfaces look like patient logs that com-
municate with the user, usually a research nurse or physician, by eliciting data and showing
which subgroups have been terminated or continued. The main di�culty in writing such inter-
faces, which we have used at M.D. Anderson in recent years for various adaptive clinical trial
designs, is linking the program that does the statistical computing to the program that interacts
with the user. Appendices A and B contain WinBUGS programs for computing the stopping
probability criteria used to conduct each of the two types of trials. Computer programs for
simulating each type of trial are available from the second author on request.
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APPENDIX A: WinBUGS CODE FOR TRIAL CONDUCT WITH BINARY
OUTCOMES

model
{
for (i in 1:numGroups)
{

# numGroups is k, the number of di�erent probabilities
x[i] ∼ dbin(p[i],n[i]);

# In each group, x is the number of responses and n is the number of patients
logit(p[i]) ¡ − rho[i];
rho[i] ∼ dnorm(mu,tau)
pg[i] ¡ − step(p[i] - targetResp)

# Probability that the response rate for each group is ¿ than targetResp,
which is �xed response probability �∗

}

#Priors
mu ∼ dnorm(mean.Mu, perc.Mu)
tau ∼ dgamma(tau.alpha, tau.beta)

}

# Example data
list(x= c(0,0,1,3,5,0,1,2,0,0), n= c(0,2,1,7,5,0,2,3,1,0), numGroups= 10,
targetResp=0.30,
mean.Mu= -1.3863, perc.Mu= .10, tau.alpha=2, tau.beta= 20)

# Example of initial values
list(mu=1, tau= .10)

APPENDIX B: WinBUGS CODE FOR TRIAL CONDUCT WITH TIME-TO-EVENT
OUTCOMES

model
{
#Loop over groups
for (j in 1:numGroups)
{
lamdainv[j] ∼ dgamma(alpha[j],beta[j])
lamda[j] ¡- 1/lamdainv[j]
rho[j] ∼ dnorm(mu,tau)
erho[j] ¡- exp(rho[j])
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invtheta[j] ¡- 1/theta[j]
theta[j] ¡- exp(rho[j] / lamdainv[j])
erhoGr[j]¡-step(erho[j]- target)
# mean(erhoGr[i]) contains Pr(e	¿target | data)
}

# Loop for data
for(i in 1:numPats)
{
x[i] ∼ dexp(invtheta[group[i]])I(censvec[i],)

}
mu ∼ dnorm(mu.mean, mu.pre)
tau ∼ dgamma(tau.alpha, tau.beta)

}

# Example data

list(numPats= 30, numGroups= 3, target= 1.5
x= c(NA, 15.1, 16.2, NA, 18, 12, 18.8, 18, 5.8, 7.8, 7, 9, 3, 10, NA, NA,
15, 8.6, 3.2, NA, NA, 8.8, 9.1, 5, 3, 4.6, 9, 4, 3, NA),
censvec= c(14.2, 0, 0, 13.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, NA, 0, 0, 0,
11.1, 13.2, 0, 0, 0, 0, 0, 0, 0, 0, 12),
group= c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3),
alpha= c(24, 66, 40), beta= c(416.3, 331, 234), mu=1, tau= .1,
mu.mean= .1856, mu.pre= .5, tau.alpha=3, tau.beta= 3)

# Example initial values

list(lamdainv= c(18, 6, 5), rho= c(1, 1, 1)))

# Parameter Explanation

In this WinBUGS code, x is the array of observed event times for all patients. The length of
this array equals the total number of patients (numPats) who have currently been observed. If
an event has not been observed for the jth patient (that is, that patient is censored) then enter
an NA in the jth position of x. The array of censored times is denoted by censvec. If the
jth patient is censored then place the censoring time in the jth position of censvec, otherwise
place a 0 in that position. The group array indicates the group to which a given patient
belongs. To illustrate this data structure, we consider the �rst two patients in our example
data. The �rst patient was censored at time 14.2 and belongs to group 1, thus the �rst position
in the x array is NA, the �rst position in the censvec array is 14.2 and the �rst position in
the group array is 1. The second patient had an event at time 15.1 and also belongs to group
1, thus the x array has a 15.1 in the second position, the censvec has 0 in the second position
and the group array has a 1 in the second position. The connection between arguments in the
above code and the model parameters in Section 5 is as follows: (mu, tau, mu.mean, mu.pre,
alpha, beta, alpha[j], beta[j]) correspond to (�; 1=�2; �̃; 1=�̃2; �̃; �̃; �j; �j), respectively.
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