A Strategy for Dose-Finding and Safety Monitoring Based on Efficacy and
Adverse Outcomes in Phase I/II Clinical Trials

Peter F. Thall; Kathy E. Russell

Biometrics, Vol. 54, No. 1 (Mar., 1998), 251-264.

Stable URL:
http://links jstor.org/sici?sici=0006-341X%28199803%2954%3A1%3C251%3AASFDAS%3E2.0.CO%3B2-J

Biometrics is currently published by International Biometric Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www .jstor.org/journals/ibs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Mon Dec 13 16:35:49 2004



BIOMETRICS 54, 251-264
March 1998

A Strategy for Dose-Finding and Safety
Monitoring Based on Efficacy and Adverse
Outcomes in Phase I/IT Clinical Trials

Peter F. Thall* and Kathy E. Russell

Department of Biomathematics, Box 237,
M. D. Anderson Cancer Center, University of Texas,
1515 Holcombe Boulevard, Houston, Texas 77030, U.S.A.

SUMMARY

We propose a design strategy for single-arm clinical trials in which the goals are to find a dose of an
experimental treatment satisfying both safety and efficacy requirements, treat a sufficiently large
number of patients to estimate the rates of these events at the selected dose with a given reliability,
and stop the trial early if it is likely that no dose is both safe and efficacious. Patient outcome is
characterized by a trinary ordinal variable accounting for both efficacy and toxicity. Like Thall,
Simon, and Estey (1995, Statistics in Medicine 14, 357-379), we use Bayesian criteria to generate
decision rules while relying on frequentist criteria obtained via simulation to determine a design
parameterization with good operating characteristics. The strategy is illustrated by application to
a bone marrow transplantation trial for hematologic malignancies and a trial of a biologic agent
for malignant melanoma.

1. Introduction

We propose a design for conducting single-arm clinical trials in which the goals are (1) to find a
dose of an experimental treatment that satisfies specific safety and efficacy requirements, (2) to
stop the trial early if it is likely that no dose is both safe and efficacious, and otherwise (3) to treat
a sufficiently large number of patients to estimate the rates of these events at the selected dose with
a given level of reliability. Patient outcome is characterized by a trinary ordinal variable accounting
for both efficacy and toxicity. The proposed design involves both dose-finding and evaluation of
safety and efficacy; hence, it may be regarded as a combination phase I/II. Virtually all existing
phase I designs (Storer, 1989; O’Quigley, Pepe, and Fisher, 1990; Faries, 1991; Korn et al., 1994;
Mgller, 1995; Goodman, Zahurak, and Piantadosi, 1995; de Moor et al., unpublished manuscript;
O’Quigley and Shen, 1996) rely only on toxicity while making the implicit assumption that higher
doses are associated with higher response rates. In contrast, we make explicit use of both efficacy
and adverse outcomes for dose-finding. Our design also is similar to the designs proposed by Gooley
et al. (1994) in that we use two dose-response curves rather than one and simulation is an intrinsic
part of the design process.

Our general approach is to first generate decision rules using Bayesian criteria and then evaluate
the operating characteristics of the design so obtained via simulation. We then calibrate the design
parameters and repeat this process until a design with good operating characteristics is obtained.
This approach has been used recently by a number of authors. These include Chevret (1993), Korn
et al. (1994), Goodman et al. (1995), O’Quigley and Shen (1996), and others in application of the
continuous reassessment method (CRM) and its modifications and Thall, Simon, and Estey (1995,
1996) for monitoring multiple outcomes in phase II trials. Other authors who examine frequentist
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properties of Bayesian decision rules include Freedman and Spiegelhalter (1989), Ho (1991), and
Rosner and Berry (1995).

We present the design strategy in the context of a bone marrow transplantation (BMT) trial,
where the goals are to induce moderate but not severe graft-versus-host disease (GVHD) in order to
induce an accompanying graft-versus-disease effect while controlling severe toxicity. Subsequently,
we use the strategy to develop a design for an apparently very different trial of the biologic agent
interleuken 12 (IL-12) in malignant melanoma to illustrate the method’s generality and potential
breadth of application.

The remainder of the paper is organized as follows. The underlying probability model is presented
in Section 2. The decision criteria and design are given in Section 3, followed by an account of
computational considerations in Section 4. In Sections 5 and 6, we apply the strategy to design
the BMT trial and the IL-12 trial, respectively. We discuss alternative models and robustness in
Section 7 and conclude with a discussion in Section 8.

2. Dose—Response Model

In a clinical trial of patients with advanced hematologic malignancies or lymphoma conducted at
the M. D. Anderson Cancer Center, the treatment strategy consisted of autologous BMT followed
by administration of an experimental immunosuppressive agent plus gamma-interferon for 1 month
post transplant, then abrupt withdrawal of treatment. This regimen is known to induce GVHD,
which, if controlled at a moderate but not severe level, is thought to increase long-term remission
duration due to a graft-versus-disease effect associated with GVHD. Nonfatal GVHD is defined to
be either moderate or severe depending on whether it can or cannot be controlled by administration
of steroids, with fatal GVHD defined as severe in any case. Thus, the three clinically relevant levels
of GVHD are none, moderate, and severe, and these are considered to be, respectively, inefficacious,
efficacious, and adverse. Patients also may suffer severe conventional toxicity, defined as grade 3 or
higher, which includes regimen-related death.

Let T be the binary 0/1 indicator of severe toxicity, and let G = 0, 1, or 2 indicate no, moderate,
or severe GVHD, respectively. We index the three outcomes given in the right-hand side of Figure
1 by the variable Y, defined by [Y =0 =[G=0and T =0],[Y =1] =[G =1 and T = 0], and
[Y =2] = [G =2 or T = 1. Equivalently, we define the adverse outcome [Y = 2| as severe GVHD
or severe toxicity since either of these events is highly undesirable and the desired efficacy outcome
[Y = 1] as moderate GVHD without severe toxicity. The outcome [Y" = 0] occurs if the patient has
neither severe toxicity nor any GVHD. In particular, Y is an index of the combined severity of G
and T'since [Y > 1] =[G>1orT=1D[G=2o0r T =1] = [Y = 2]. We thus reduce the six
elementary outcomes determined by the 3 x 2 cross-product of [GVHD level] x [toxicity] to these
three clinically relevant events, as illustrated by Figure 1. Denote the probabilities of these three
possible outcomes for a patient administered dose d by 6;(d) = Pr[Y =j | dose =d], j =0,1,2,

Patient Outcomes for the Induced GVHD Trial

Severe Toxicity

No Yes
None 0
Moderate
GVHD - | 1
Severe 2

2 = Adverse Outcome (Severe GVHD or Severe Toxicity)
1 = Efficacy Outcome (Moderate GVHD and No Severe Toxicity)
0 = No GVHD and No Severe Toxicity

Figure 1. Patient outcomes for the induced GVHD trial.
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with 6(d) = (61(d),02(d)). The first two goals of the trial are to find a dose d* of the agent from
among {2.5,7.5,12.5} ng/ml for which, with reasonably high posterior probability, 6;(d*) > .50
and 05(d*) < .10 and to stop the trial early if no dose among the three satisfies both criteria.
The essential clinical difficulty is that moderate GVHD is the desired efficacy outcome while severe
GVHD, in addition to severe toxicity, is an adverse outcome.

We use the following dose-response model because it is sufficiently flexible to provide a realistic
representation of the actual, unknown dose-response functions. We parameterize it parsimoniously
in order to compute reasonably informative posteriors based on very little data early in the trial
and to allow simulation of the trial within a reasonable time frame during the design stage. Denote
v;(d) = Pr[Y > j | dose = d], j = 0,1,2, so that yo(d) = 1, 71(d) = 01(d) + 62(d), and ~v2(d)
= @2(d). Since it is known that the severity of either toxicity or GVHD increases with dose of
the immunosuppressive agent, we require that 62(d) increases (1) and 6y(d) decreases (|) with d.
To obtain a dose-response model with these properties, we apply McCullagh’s (1980) proportional
odds regression model, also known as the cumulative odds model. Writing logit(p) = log {p/(1—p)},
our model is given by

logit {y1(d)} = m(d) = p+ o+ Ad,
logit {y2(d)} = n2(d) = p+ B4, (1)

with a > 0 to ensure that 6(d) is a probability distribution on {0, 1, 2} and 8 > 0 to ensure the
above monotonicity requirements. An important property of the model is that the probability of the
desired efficacy outcome, 0 (d) = v1(d) —7y2(d), may be nonmonotone in dose, which reflects clinical
experience with similar treatments. This proportional odds model may be specified equivalently by
the more usual equation Pr[Y < j] = e %+t /(14 e~ "M+), j =0,1, which is the most commonly
applied version of the general model given by Pr[Y < j] = F(—n;) for a c.d.f. F and 7; | in j.

We use a Bayesian formulation because it provides a natural framework to incorporate informa-
tion as it accumulates and make decisions in real time during the trial. As the data (d,Y’) become
available from each successive cohort of patients, we repeatedly update the posterior distribution of
the parameters (u, o, 3) and apply our decision criteria. Our approach is not fully Bayesian in the
sense of Berry (1993, 1995) and Berry and Stangl (1996) since it does not rely on formal decision
theory. Rather, we simulate the trial under each of several dose-response scenarios as a means to
calibrate design parameters to ensure that the design has desirable operating characteristics.

We next specify prior distributions on the parameters (i, o, 8) to complete the probability model.
To do this, we first define, in terms of the two dose-response curves 61 (d) and 62(d) over the domain
of d containing the doses used in the trial, an array of clinical scenarios encompassing what may
reasonably be anticipated as the true state of nature. These are graphed in Figure 2, with the
curve of 01(d) given by the solid line, 63(d) given by the dashed line, the fixed clinical standards
67 = .50 for efficacy and 65 = .10 for toxicity given by horizontal dotted lines, and acceptable
doses indicated by arrows. In each of scenarios 14, exactly one dose is acceptable, d = 2.5, 2.5,
7.5, and 12.5, respectively. Scenarios 1 and 4 may be considered least favorable in that, at the
acceptable dose, the adverse and efficacy outcome probabilities are at their respective limits .10
and .50 and the dose-response curves are rather flat. Scenario 2 is more optimistic than scenario 1
in that the respective toxicity and efficacy probabilities are .05 and .55 at d = 2.5 and the toxicity
curve is steep. However, each of scenarios 1-4 is a difficult one in that the therapeutic window of
acceptable doses, where 61 (d) > .50 and 62(d) < .10, is rather small. In this regard, it important to
bear in mind that only the three dose levels 2.5, 7.5, and 12.5 are considered. Thus, for example,
although in theory the therapeutic window under scenario 2 is 1.84 < d < 5.52, the only relevant
value within this window is d = 2.5, where p;(2.5) = .55 and p2(2.5) = .05. In scenario 5, both
d = 2.5 and d = 7.5 are acceptable. In scenario 6, none of the three doses are acceptable, but
there exists an acceptable dose between 7.5 and 12.5. In scenarios 7, 8, and 9, no dose in the range
2.5 to 12.5 is acceptable due to uniformly insufficient efficacy (scenario 7), uniformly excessive
adverse outcome probability (scenario 8), or a complete disaster where all three doses are too
adverse and insufficiently efficacious (scenario 9). Because patients are treated only at the dose
levels d = 2.5, 7.5, or 12.5, each of these scenarios is characterized by the six numerical values
{(p1(d),p2(d)),d = 2.5,7.5,12.5}. While Figure 2 provides a graphical illustration of the sorts of
dose-response curves that may take on these values at these three doses, their behavior for doses
other than these three values is irrelvant with regard to the design and its operating characteristics.
This would not be the case, however, for an extended version of the design allowing the addition
of one or more new dose levels during the trial.
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Induced GVHD Trial
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Figure 2. Dose-response scenarios for the induced GVHD trial. The solid and dashed lines
denote 01(d) = Pr [efficacy outcome | d] and 02(d) = Pr [adverse outcome | d], respectively. The
fixed criteria 87 and 65 are denoted by horizontal dotted lines. Acceptable doses under each scenario
are marked by an arrow.

Denoting the mean of 6;(d) by p;(d), we solved for the corresponding means (u°,a°,3°) of
(1, @, B) under each scenario by equating logit{pa(d)} = p° + B°d for two values d = z,y and
solving for 3% = [logit{p2(y)} — logit{p2(2)}]/(y — =), then n° = logit{p2(y)} — B°y and a® =
log[po(z) ~! — 1] — u° — B°z. Repeating this computation for each of the nine scenarios yields the
parameters given in Table 1. Based on these numerical values and assuming that the nine scenarios
to which they correspond together represent a realistic range of what may be encountered in actual
conduct of the trial, we defined the domain of each parameter to encompass these and also some
more extreme situations that might possibly occur. This yielded the domains —6 < p < —1,
1 < a<4,and .04 < 8 < .40. We assumed independent uniform priors for the parameters
on their domains, both to reflect considerable prior uncertainty and to facilitate rapid numerical
computation of posteriors. Given that the numerical values of the dose-response curves at d = 2.5,
7.5, and 12.5 helped us determine the priors in this way, it is important to note that we initially
considered a smaller number of scenarios but subsequently expanded them to the nine given in
Figure 2 based on the physicians’ initial reactions and suggestions.

3. The Design

3.1 Bayesian Decision Criteria

The primary goal of the trial is to determine if there is a dose d* among the three doses of the
experimental agent that satisfies both the efficacy and toxicity criteria. If there is such a dose,

then an additional goal is to treat a sufficiently large number of patients at d* to estimate 6(d*)
with reasonable reliability. Safety monitoring is of paramount importance in any early phase trial,
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Table 1
Fized parameters used for simulation of
the induced GVHD trial

Scenario w’ al B°
1 —2.6027 2.6027 .1622
2 —3.8674 3.3499 .3692
3 —4.7994 2.9927 2730
4 —3.5830 2.6113 .1109
5 —3.3180 3.1451 .1494
6 —5.2817 2.6217 3116
7 —3.1673 2.1762 .0554
8 —1.5781 2.7726 .0767
9 —1.6558 1.7918 .1078

however. We thus require that the design terminate the trial early with reasonably high probability
if either the lowest dose has an unacceptably high adverse outcome rate or the highest dose is
not sufficiently efficacious. These goals together encompass the requirements of a usual phase I
trial where dose-finding is based solely on the adverse outcome as well as those of a phase 1I trial
where both efficacy and adverse outcomes are monitored, as in Bryant and Day (1995), Conaway
and Petroni (1995, 1996), and Thall et al. (1995, 1996). The design proposed here thus may be
regarded as a phase I/II hybrid since it monitors multiple outcomes and has as goals dose-finding,
safety monitoring, and estimation.

To achieve the above goals, we first define the two decision criteria formally in terms of posterior
probabilities given the accumulated data at any interim point in the trial. Let 8 = (67, 63) be
fixed standards specified by the clinician. For the induced GVHD trial, 7 = .50 and 65 = .10.
Given upper probability cutoffs m; and mg, we consider a dose d to have unacceptably low effi-
cacy if

1(d, data) = Pr[61(d) < 67 | data] > m; (2)
and unacceptably high adverse outcome rate if
w2 (d, data) = Pr[f2(d) > 05 | data] > mo. (3)

We say that a dose is acceptable if neither (2) nor (3) is the case and unacceptable if either
criterion is satisfied. To determine (71, 72), we simulate the design for several (1, 72) pairs under
each scenario and ask the clinician to choose a design parameterization based on its operating
characteristics.

3.2 Conduct of the Trial

Given the above criteria, the trial is carried out as follows.

1. Treat patients in cohorts of size ¢, up to a maximum of N patients.

2. Treat the first cohort at the lowest dose level.

3. Never escalate by more than one dose level unless some patients have been treated at all
intermediate dose levels.

4. If the current dose is unacceptably toxic and is

(a) not the lowest dose level, then de-escalate one dose level.
(b) the lowest dose level, then terminate the trial.

5. If the current dose has acceptable toxicity and unacceptably low efficacy and

(a) the next higher dose level has acceptable toxicity, then escalate one dose level.
(b) the next higher dose level is unacceptably toxic, then terminate the trial.
(c) the current dose is the highest dose level, then terminate the trial.

6. If the current dose is acceptable, then treat the next cohort at the acceptable dose level having
largest efficacy criterion probability 1 — 11(d) = Pr[01(d) > 07 | data).

The first four requirements are similar to those used in the modified CRM for dose-finding in
a conventional phase I trial, as described by Faries (1991), Korn et al. (1994), Mgller (1995),
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and Goodman et al. (1995), where patient outcome is summarized in terms of a single binary
indicator for the adverse event toxicity. Our design is more general than the modified CRM in that
we summarize patient outcome by a trinary ordinal variable that accounts for both efficacy and
adverse outcomes, and we require that the trial be terminated early if it is likely that all of the dose
levels being considered are unacceptable. Consequently, our probability model, decision criteria, and
the decision scheme that must be followed during conduct of the trial are more complex.

3.3 Sample Size

We choose the maximum sample size N to estimate the efficacy outcome probability with a
given reliability if the trial is not stopped early. Under a scenario where the efficacy at the
selected dose d* equals the targeted minimum level, specifically p;(d*) = 67, for given interval
width 26 and for each of several values of N, we determine the posterior coverage probability
Pr(6] —6 < 6,(d*) < 0] + 6| datay]. The clinician may then choose N based on its associated
posterior coverage probability, along with the usual considerations of patient accrual rate, maximum
feasible trial duration, monetary costs, and drug availability. This is the Bayesian analog of the
common procedure of determining sample size to obtain a confidence interval of given reliability.
Since the actual data based on N patients vary substantially due to the dose-finding strategy, we
evaluate these posterior probabilities empirically by simulation.

4. Computing

The decision criteria ¥(z,data) = {¢1(z, data), ¥2(x,data)} must be evaluated for each dose z
repeatedly during the trial, with updating when the data from each successive cohort become
available. When simulating the design to obtain operating characteristics, this computation must
be done [mean number of cohorts per trial] X [number of simulated trials] X [number of scenarios]
times for each design parameterization (8%, m, N, c). Denote the ith patient’s dose by d(;) and, in
general, let I[A] = 1 if the event A occurs and 0 otherwise. The likelihood based on data (Y, d»)
={(Y, d(i)): i=1,...,n}is

n 2 »
Lo, 5,Y,d) =[] {Oj(d(i)%a’ﬁ)}nyl a1

i=15=0

(4)

Denote the prior by f(u, «, 3). Each decision function is the ratio of 2 three-dimensional integrals.
The efficacy criterion at dose z is

(.Y, ) = J 101 @ 0. ) > 05) L 0,6 Y, d) S, 0, ) dpuderdf )
n J Ly, 8;Y,d) f(u, o, ) dpdadf ’

with ¥2(z,Y,d) defined similarly. The integral in the denominator of (5) is over the three-
dimensional rectangular domain of the prior, and the integral in the numerator is evaluated over
the subdomain obtained by deriving the system of nonlinear inequalities in p, o, 3 defined by the
inequality 61 (z, i, o, ) > 07. We used the Gauss—Kronrod (GK) algorithm with 21 points (Piessens
et al., 1983) to evaluate the denominator. Although application of GK to evaluate the numerator
gives precise results, this proved too time-consuming for practical use in the simulations. We thus
evaluated the numerator using three applications of a 10-point Gaussian formula (Abramowitz and
Stegun, 1965, Section 25.4.29), which is much faster and gives results of sufficient accuracy that
this coarser approximation had no effect on the actual decisions.

All simulations were based on 1000 replications. The method of L’Ecuyer and Cote (1991) was
used to generate uniform random numbers. To save time, we used the dynamic programming
technique of storing the first computed value of ¥ (x, Yn,dn) = {¥ (z, Yn,dn),z = 2.5, 7.5, 12.5}
for each cumulative data vector {Y,,dn} and retrieving v (x, Yn,dn) from memory whenever
{Yn,dn} recurred in the course of a simulation. Each simulation of the nine scenarios took 4 to 6
hours on a DEC AlphaServer 2100 5/250 running OSF/1, depending on machine load. Computing
time is not problematic during conduct of the trial, however, since each evaluation of ¥ (x, Yr,dn)
takes at most a few seconds.

5. The Induced GVHD Trial

Given 0] = .50 and 05 = .10, the remaining design parameters are the maximum sample size N,
cohort size ¢, and cutoffs (71, m2). We first studied the design’s operating characteristics for N = 30
and 40, ¢ = 1,2,...,6 patients per cohort, and 14 different (71, m2) combinations. Fixing ¢ = 3 and

(m1,m2) = (.90,.90) based on these results, we then evaluated the posterior coverage probabilities
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Figure 3. Posterior probabilities Pr[.40 < 61(d) < .60 | datay] and Pr[.375 < 6:1(d) < .625 |
datay] as functions of maximum sample size N.

Pri50 —6 < 61(2.5) < .50 + 6 | datay] for 6 = .10,.125 and 21 < N < 60 under scenario 2,
where the true efficacy probability at d = 2.5 is the targeted .50. A plot of the posterior coverage
probabilities is given in Figure 3. The final design chosen by the clinicians had N = 39. Table
2 summarizes its operating characteristics, with correct decision probabilities enclosed in boxes.
The correct decision probabilities of six designs based on other (71, 72) values near (.90,.90) are
summarized in Table 3.

Table 2 reflects the complexity of the clinical setting and is motivated both by consideration of
what sort of dose-response curves may actually be the case and by the possible decisions that may
be made. In general, one would like a design that has high probabilities of picking an acceptable dose
when it exists (scenarios 1-5) and of stopping the trial when no dose is acceptable (scenarios 7-9).
The first seven lines of Table 2 together comprise the possible decisions, aside from the outcome that
the trial reaches its maximum sample size without reaching a decision. From a frequentist point of
view, one might consider the vector of probabilities of these seven decisions to be a generalization

Table 2
Operating characteristics of the induced GVHD trial design
Scenario
1 2 3 4 5 6 7 8 9
Decision
d; selected .00 .00 .00 .00 19 13
do selected 23 .07 .05 18 .00 .02 .02
ds selected .00 .00 .19 .16 .22 .16 .00 .00
dy toxic .16 .05 .00 .00 .02 .00 .00
dy not eff, do toxic .14 .08 .02 .02 .04 .01 .01 .01
d2 not eff, d3 toxic .01 .00 .15 .10 .01 .04 .00
ds not eff .00 .00 .02 .22 .01 .07 .00

Sample size

No. treated at d; 17.0 24.8 3.3 3.7 8.0 3.1 3.5 15.1 12.7
No. treated at do 13.9 11.3 17.9 6.3 20.5 11.1 4.0 3.4 6.2
No. treated at d3 1.9 0.8 14.6 22.0 9.0 15.7 13.7 0.3 1.2

Total no. patients 32.7 36.2 35.8 31.9 37.6 29.8 21.2 18.8 20.1
Toxicity 18 13 12 .09 12 13 .06 .29 31




258 Biometrics, March 1998

of the usual power and 1 — Pr [Type I error] associated with a conventional test of hypothesis. In
contrast with hypothesis testing, however, the goals here are not to obtain confirmatory results.
Rather, the objectives are to determine whether there is an acceptable dose under this treatment
strategy and, if so, to obtain reasonably reliable estimates of the patient outcome probabilities at
that dose to be used as a basis for making treatment decisions and planning future trials.

Recall that di = 2.5 is acceptable under both scenarios 1 and 2 but that the toxicity curve 65
is steeper under scenario 2. It appears that, under our design, this steepness provides a higher
probability of determining that d = 2.5 is acceptable with fewer patients treated at the toxic levels
d = 7.5 and 12.5 under scenario 2, as compared to scenario 1.

Table 3 illustrates the fact that selecting a correct dose under scenarios 1-5 and terminating the
trial early under scenarios 7-9 are conflicting desiderata. This type of conflict also exists between
scenarios 7 and 8 and is reflected by their early stopping probabilities. Increasing mo for fixed 71
has the effect of increasing the early stopping probability under scenario 7 and decreasing it under
scenario 8. Conversely, increasing 7 for fixed mp greatly reduces the early stopping probability
under scenario 7, with little effect under scenario 8. Additional simulations with smaller values of
m1 and 72 (not shown) produced designs with higher early stopping probabilities under scenarios
7-9 but lower correct dose selection probabilities under scenarios 1-5. In general, smaller values of
¢ produce higher early stopping probabilities, although the magnitude of the effect is trivial under
all but two scenarios. Under scenario 4, where the highest dose 12.5 is acceptable but both dose—
response curves are relatively flat, the correct selection probabilities for the cohort sizesc=1,...,6
were (.46, .56, .63, .65, .69, .71), respectively. Under scenario 7, where no dose is efficacious, the
corresponding early stopping probabilities were (.83, .81, .76, .73, .69, .71). These values indicate
that the cohort size ¢ = 3 provides a compromise between these two competing goals. The overall
toxicity rates showed a small monotone decline with ¢, with the largest being a drop from 34%
at ¢ = 1 to 28% at ¢ = 6 under scenario 9. In choosing cohort size, however, these results must
be weighed along with the practical consideration of maximum trial duration, which increases
substantially with ¢. While it might seem that there should be a symmetry between the designs
defined by (w1, m2) = (.90, .95) and (.95, .90), this is not the case due to the fact that (61(d),07)
and (62(d), 03) are not symmetric.

6. A Biologic Agent Trial

In this section, we briefly describe a second application to illustrate the generality of the approach.
This is a phase I/II trial of the biologic agent interleuken 12 (IL-12) for treatment of malignant
melanoma. The goal is to find an acceptable dose from among four equally spaced IL-12 dose levels,
scored {1, 2, 3,4} for simplicity. Here the set of possible patient outcomes is generated by the more
usual 2 X 2 product of a binary response variable, defined as >50% tumor shrinkage, and the same
binary severe toxicity outcome as before. Analogously to our approach in the BMT trial, we reduce
the four elementary outcomes to the three outcomes illustrated in Figure 4. The efficacy outcome is
defined to be [Y = 1] = [response and no severe toxicity], the adverse outcome is [Y = 2] = [severe
toxicity], and the third outcome is [Y = 0] = [no response and no severe toxicity]. Thus, Y is again
ordinal, with 1 =9 > 1 = Pr [response or severe toxicity] > Pr [severe toxicity] = 2. The trial
goals, probability model, and decision rules are as before, with the substantive difference that here
the fixed upper limit for the severe toxicity probability is 85 = .33 and the fixed lower limit for the
efficacy outcome probability is 7 = .20. As in the BMT application, these cutoffs were specified
by the clinician and are appropriate for the specific patient group and treatment regimen.

Table 3
Correct decision probabilities under siz parameterizations
of the induced GVHD trial design, N = 39 and ¢ = 3

Scenario
T D) 1 2 3 4 5 6 7 8 9
.90 .85 .40 72 .57 .54 71 .52 72 .87 .88
.90 .90 43 i .56 .60 73 47 .78 .78 .84
.90 .95 .39 .74 .48 .69 .65 .34 .78 .66 .78
.95 .85 .46 .76 .66 .63 .74 42 .61 .88 .86
.95 .90 .50 .80 .61 .70 75 .38 .62 .78 .80

.95 .95 42 .75 .50 7 .67 .30 .66 .66 .70
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Patient Outcomes for IL-12 Trial

Severe Toxicity
No Yes

No 0
Response -

[
n

Severe Toxicity
1 = Response and No Severe Toxicity

0 = No Response and No Severe Toxicity

Figure 4. Patient outcomes for the IL-12 trial.

Figure 5 illustrates the nine scenarios under which we evaluated the design’s operating
characteristics for the IL-12 trial, with 62(d) and 6;(d) given, respectively, by the dashed and
solid lines in each graph, as in Figure 2. The dose-response curves in Figure 4 appear very different
from those of Figure 2, essentially because here 65 > 07, while this inequality is reversed in the
previous application. In each of the first four scenarios, exactly one dose is acceptable, d = 1,
2, 3, and 4, respectively, while either d = 1 or 2 is acceptable in scenario 5. Under scenario 6,
there is an acceptable dose only between d = 2 and 3. Scenarios 7, 8, and 9 are as in the BMT
trial in that all four doses are inefficacious, too toxic, or both, respectively. Table 4 summarizes
a simulation study of the design for N = 30 and 45 and five (1, 72) combinations, analogous to
the study of the BMT trial. While the correct dose selection probabilities under scenarios 1-5 are
relatively insensitive to N, the early stopping probabilities under scenarios 7-9 increase markedly
as N is increased from 30 to 45. Based on these results along with cost and accrual considerations,
the clinician selected the design with N = 45 and (w1, 72) = (.90,.90), for which on average a
posteriori Pr[.075 < 01(2) < .325 | Y45,d45] = .82 under scenario 2.

7. Robustness

Our method is based on a very parsimonious parameterization of the proportional odds model.
For K dose levels, the 2K probabilities {(01(d;),02(d;)), 3 =1,..., K} are characterized by three
parameters. Two natural questions are how well the design performs when the proportional odds
assumption does not hold and how high a price is paid by use of such a parsimonious model. The
overriding point with regard to robustness is that our aim is not to estimate the functions 6, (d) and
02(d) over the domain of d but rather to select a dose from the set {d1,...,dx} that is both safe
and efficacious. This is similar to the goals of the CRM in phase I where only toxicity is considered
and the aim is to select a dose having mean toxicity probability closest to a given fixed standard
(O’Quigley et al., 1990). Because the data in the type of trial considered here are very expensive
in terms of human life, the algorithm for selecting the dose of each successive cohort must perform
well early in the trial when very little data are available to update the posterior. This strongly
motivates the use of a model with as few parameters as possible that, through its dose-response
functions, enables each updated parameter distribution incorporating new data from the cohort
treated at the most recent dose to provide new information about all the dose levels. Thus, the
situation is quite different from that in which a model is fit to data ex post facto. We regard the
regression model used here as a device to provide reliable real-time decision-making based on very
small amounts of very expensive data. In this regard, our situation is similar to the phase I setting
where a single binary outcome is observed on each patient. We employ our three-parameter model
here in a manner analogous to that in which O’Quigley et al. (1990) employ their one-parameter
model to implement the CRM in a phase I trial.
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Figure 5. Dose-response scenarios for the IL-12 Trial. The solid and dashed lines denote
01(d) = Pr[efficacy outcome | d] and 03(d) = Pr [adverse outcome | d], respectively. The fixed
criteria 0] and 65 are denoted by horizontal dotted lines. Acceptable doses under each scenario are
marked by an arrow.

The design’s operating characteristics depend on both the design and the fixed probabilities
{(p1(d;),p2(d;)), s = 1,..., K} that characterize each scenario. Aside from the formal requirement
that 0 < p1(d;) + p2(d;) < 1, these values need not correspond to any parametric dose-response
function, and any reasonable probabilities may be used. We generated these values using the
proportional odds model as a convenience to allow graphical illustration of the scenarios. More
importantly, the scenarios considered for each trial cover a very broad array of possibilities that
the clinicians felt encompassed what might reasonably be the true state of nature. Our simulation
studies indicate that the design behaves surprisingly well, on average, under rather difficult
circumstances. It is also worthwhile to consider its early performance based on only the first cohort
of three patients in a single trial. Table 5 presents the set of all possible cases and corresponding
decisions made by the design for the induced GVHD trial. These decisions appear very sensible,
and we have found the simple information in Table 5 to be very useful when explaining the design’s
properties to physicians.

This is not to say that other model formulations are not reasonable or that a four-parameter
model is not feasible. There are several possible alternative models, starting with those obtained
by simply replacing the link function logit(-) in expression (1) with F~1(:) for any c.d.f. F. Two
common alternatives are the standard normal c.d.f. and F(n) = 1 — exp{—exp(n)}. Rather than
changing the link function, one may obtain an alternative model by replacing the proportional
odds assumption. One possibility is the continuation ratio model, defined here by logit{c;(d)} =
n;, where ¢c; = Pr[Y > j |Y > j, d], j = 0,1. Writing 7;(d) = c;j + 8d for j = 0,1, in this case,
the efficacy and toxicity probabilities are given by 61(d) = co(d){1 —c1(d)} and 02(d) = co(d)c1(d),
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Table 4
Correct decision probabilities under 10 parameterizations of the IL-12 trial design, ¢ = 3
Scenario
™ o 1 2 3 4 5 6 7 8 9
N = 30
.85 .85 .44 .62 .46 .42 .66 .33 .65 .71 .85
.85 .90 .46 .65 .46 43 .74 .26 71 .61 .79
.90 .85 .46 .66 .49 .50 .71 .25 .59 71 .80
.90 .90 .51 .71 .50 .51 74 21 .65 .62 .76
.95 .90 .57 .76 .55 .60 .79 12 .52 .61 .69
N =45
.85 .85 .44 .67 44 .39 .64 .51 .70 .78 .93
.85 .90 48 .71 .46 .45 .70 .46 7 .70 .92
.90 .85 .48 .72 .46 .50 .69 43 .66 .80 .82
.90 .90 .53 .76 .51 .53 .75 41 .75 .74 .89
.95 .90 .57 .78 .56 .59 .81 .25 .68 .73 .81

and the model is parameterized by (a1, @2, 3). Another alternative is the stereotype model where
0;(d) = exp(a; + B;d) /Zm exp(am + fmd), with 8; possibly replaced by Bs; for fixed or estimated
scores 1, . ..,SK (Anderson, 1984). A review of regression models for ordinal outcomes is given by
Greenland (1994). Perhaps the most important generalization to study next would be to extend (1)
to allow different coefficients of d in each linear term, specifically define logit{y1(d)} = p+ a+ B1d
and logit{y2(d)} = u + B2d. Since this would impose the constraint a + (81 — B2)d > 0 for all
d, the Anderson score model might provide a slightly more tractable four-parameter model with
heterogeneous coefficients on d.

An empirical study of the design’s robustness to the proportional odds assumption could be
carried out in two ways. The first would require comparative evaluation of a given set of scenarios
under each of several alternative models. The two main features to study would be the type of model
and the number of parameters. Although such a study is beyond the scope of the present paper,
one may anticipate that designs based on models having 6;(d) and 62(d) with parameterizations
that can conform closely to the values {(p1(d;),p2(d;)), j = 1,...,K} characterizing a given
scenario will perform well under that scenario but will perform less well when this is not the case.
The second way to evaluate robustness would be to study the design as defined under the three-
parameter proportional odds model but generate scenarios using different models. This type of study
seems less useful, however, because the nine scenarios studied here already encompass a very broad
array of possible dose response scenarios. In this regard, it is interesting that the dose-response
curves (not shown) corresponding to those in Figure 2 but generated under the three-parameter
continuation ratio model appear nearly identical to those under proportional odds. It thus seems

Table 5
Decisions based on the first cohort of the induced GVHD trial
No toxicity, No toxicity, Toxicity or
no GVHD moderate GVHD  severe GVHD
(Y =0) (Y=1) (Y =2) Decision for second cohort

0 0 3 Stop the trial
0 1 2 Stop the trial
1 0 2 Stay at di
0 2 1 Stay at d;
0 3 0 Stay at dp
1 1 1 Stay at di
1 2 0 Escalate to do
2 1 0 Escalate to dg
2 0 1 Escalate to do
3 0 0 Escalate to do
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that the number of parameters may have a greater effect than model choice, although a detailed
simulation study is required to provide definitive answers.

8. Discussion

The decision criteria (2) and (3) are similar to those employed by Thall et al. (1995, 1996) for
early stopping in phase II trials with multiple outcomes. Like Thall et al., we monitor both efficacy
and adverse outcomes, although the outcome set and probability model here are more specialized
than their Dirichlet multinomial model. Their strategy deals with a fixed experimental treatment,
however, while the design and model given here accommodate dose-changing during the trial.
A subtle but important difference is that the standards 6] and 65 used here in the definitions
of 1 and 1o are fixed, whereas Thall et al. use random probabilities 09 of the corresponding
outcomes under a prior, elicited from the clinician or based on historical data, corresponding to
an established standard treatment. If such a prior were available in the present context, then
07 and 65 could be replaced by the corresponding random values obtained from 6°. This would
require four- rather than three-dimensional numerical integrations to compute %1 and 2, however,
and hence would increase computing time. The randomness in 0% also would affect the design’s
operating characteristics, with a decrease in the correct decision probabilities as the variability in
07 increases.

The method used to combine the ordinal variable G with the binary T for the induced GVHD
trial may be generalized in various ways. For example, two ordinal adverse outcome variables Z7, Z2
and a binary 0/1 efficacy variable R may be combined into a single ordinal variable Y as follows,
provided that [R = 1] is irrelevant if either adverse outcome occurs. If Z; = 0(1)k; and Zy =
0(1)ko, say, then first define Z* = j if ig j_1 < Za < iq,5 for a = 1,2, where the grouping indices
0 =140 < %q,1 < < la,mg, @ = 1,2, are chosen so that Z* accounts for all clinically relevant
adverse outcomes. Defining [Y = 0] = [Z* =0,R=0], (Y =1 =[Z2"=0,R=1],and [Y = j] =
[Z* = j] for j > 1, the proportional odds model logit{Pr[Y > j | d|} = p; + 8d, with p; | in j,
accounts for all three outcomes much more parsimoniously than a trivariate model for (Z1, Zs, R).

Gooley et al. (1994) proposed a design for a BMT trial where dose-finding was based on two
adverse outcomes, one T and the other | with T-cell dose. They considered three dose-response
scenarios in which the windows of acceptable doses were wide, narrow, and nonexistent, respectively,
and proposed three designs based on non-Bayesian criteria. Similarly to our approach, they used
simulation to evaluate the operating characteristics of each design under each scenario.

Our design assumes a single patient prognostic group for whom it is appropriate to do both dose-
finding and efficacy evaluation at the selected dose. This is different from phase I/II scenarios where
the phase I group has very poor prognosis while the subsequent phase II trial is conducted in patients
with higher prognostic level. An extension of our design might begin dose-finding with the poorest
prognosis patients and subsequently include better prognosis patients, as in a typical phase I/II
setting, while accounting for prognostic level with additional covariates in the linear components
of (1). The efficacy decision criterion would necessarily require a higher standard in the better
prognosis group. In particular, this extension would take advantage of the Bayesian formulation’s
ability to make use of all the information from the successive phases. Our preliminary investigations
have shown that this more general design leads to much more time-consuming simulations, however,
since the numerical integrals are of higher dimension. We thus are currently investigating other
methods for rapid computation of posterior probability criteria similar to 3 (d).

COMPUTER SOFTWARE

Computer programs to implement the methods described here are available as the compressed
file “efftox97.tar.Z” via anonymous ftp from odin.mdacc.tmc.edu in the subdirectory /pub/source.
Fetching and unpacking this tar file automatically creates the subdirectories “prog” and “sim”
on your computer. A menu-driven program for conducting the trial is in “prog,” and “sim”
contains simulation routines for computing operating charactistics and properties of posterior
probability intervals. Alternatively, these programs are available from the first author via email
at rex@odin.mdacc.tmc.edu, either as source code or a compiled version for use on PCs and
MaclIntoshes.

RESUME

Nous proposons une stratégie pour définir des plans d’essais cliniques étudiant un seul traitement
dans lesquels les buts sont, d’une part, de déterminer une dose du traitement étudié satisfaisant
a la fois des critéres de tolérance et d’efficacité, d’autre part de traiter un nombre suffisamment
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important de patients pour pouvoir estimer avec une précision donnée le taux d’événements sous
la dose retenue et, enfin, d’arréter ’essai rapidement s’il est vraisemblable qu’aucune dose efficace
et bien tolérée n’existe. La réponse du patient est caractérisée par une variale ordinale & trois
modalités prenant en compte la tolérance et lefficacité. Comme Thall, Simon, et Estey (1995,
Statistics in Medicine 44, 357-379), nous utilisons des critéres bayésiens pour générer des regles de
décision, tout en nous appuyant sur des critéres fréquentistes obtenus par simulation pour choisir
une configuration du plan expérimental ayant de bonnes propriétés. Nous illustrons ensuite cette
stratégie par un exemple d’application dans un essai de greffe de moélle pour des hémopathies
malignes et un autre exemple dans le cas de I’essai d’un agent biologique pour le mélanome malin.
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