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The purpose of this paper is to describe and illustrate an outcome-adaptive Bayesian
procedure, proposed by Thall and Cook (2004), for assigning doses of an experimental
treatment to successive cohorts of patients. The method uses elicited (efficacy, toxicity)
probability pairs to construct a family of trade-off contours that are used to quantify
the desirability of each dose. This provides a basis for determining a best dose for each
cohort. The method combines the goals of conventional Phase I and Phase II trials,
and thus may be called a “Phase I-II” design. We first give a general review of the
probability model and dose-finding algorithm. We next describe an application to a trial
of a biologic agent for treatment of acute myelogenous leukemia, including a computer
simulation study to assess the design’s average behavior. To illustrate how the method
may work in practice, we present a cohort-by-cohort example of a particular trial. We
close with a discussion of some practical issues that may arise during implementation.
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clinical trial.

1. INTRODUCTION

The purpose of this paper is to review and illustrate by example an outcome-
adaptive procedure, proposed by Thall and Cook (2004), that uses both efficacy (E)
and toxicity (7) to choose doses of an experimental agent for successive cohorts of
patients in an early-phase clinical trial. The method has three basic components.
The first is a Bayesian model for the joint probabilities of efficacy (also referred to
as “response”) and toxicity as functions of dose. The second component consists of
criteria for deciding which doses have both acceptably high efficacy and acceptably
low toxicity. The third component is based on several elicited (efficacy, toxicity)
probability pairs that are considered by the physician to be equally desirable targets.
These targets are used to construct a family of efficacy-toxicity trade-off contours
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that provide a basis for quantifying the desirability of each dose. Based on the
posterior computed from the current data, each cohort is treated with the most
desirable dose from the set of acceptable doses. The method may be called a “Phase
I-II” design because it combines the goals of conventional Phase I and Phase II
trials, including evaluating toxicity, evaluating efficacy, and finding an acceptable
dose.

We begin in Section 2 with a general review of the probability models, a
least-squares method for determining the prior’s hyperparameters from elicited
information, and the dose-finding algorithm. In Section 3, we illustrate the method
by an application to a trial of an experimental biologic agent used in combination
with conventional chemotherapy for treatment of acute myelogenous leukemia
(AML), including computer simulations to describe the design’s average behavior.
Section 4 provides a cohort-by-cohort illustration of how the method may work in
a particular trial. Finally, in Section 5 we discuss some practical and ethical issues
that should be considered when implementing the method.

2. REVIEW OF THE MODEL AND METHOD
2.1. Defining the Outcomes

In practice, the definitions of efficacy and toxicity will vary widely depending
on the particular clinical setting. Likewise, the probabilities of events that are
considered acceptable in each category will also depend on the particular disease
being treated, the trial’s entry criteria, and the rates of efficacy and toxicity that may
be expected with whatever standard therapies may be available.

For example, one may contrast leukemias, such as AML, with solid tumors,
such as lung or breast cancer. Because AML originates in the bone marrow
whereas solid tumors do not, and because chemotherapy is only marginally more
toxic for cancer cells than for the analogous normal cells, if chemotherapy used
to treat AML is to be effective then it must be more toxic for normal bone
marrow cells than chemotherapy used to treat solid tumors. Consequently, rates of
marrow toxicity, such as infection due to low white blood cell counts, considered
unremarkable in AML patients would be considered unacceptable in solid tumor
patients. On the other hand, nausea and vomiting are much more likely to limit
dose escalation of drugs used for therapy of solid tumors. In general, there often is a
positive association between toxicity and efficacy, and this phenomenon provides the
rationale for conventionally using toxicity alone to identify a “maximally tolerated
dose.” In AML, efficacy is defined as induction of disease remission, because it is a
precondition for survival. Thus, in cases where standard therapy is very unlikely to
be effective for AML, it is reasonable to accept considerably higher probabilities of
toxicity with an experimental therapy than in cases where there is a greater chance
of success with standard therapy and hence less need for success with experimental
therapy. We will refer to this example in Section 3. These examples underscore the
point that both E and T are complex events, highly dependent on the particular
medical setting. Because the method described here is based on the probabilities of
E and T, as well as bounds on these probabilities, it is essential that each outcome
be defined collaboratively by the physician and statistician in a manner that is
appropriate to the particular trial at hand.
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2.2. Probability Model

Let Y, and Y, be the respective indicators of E and T, x the standardized
dose, and 0 the vector of model parameters, and denote the marginal probabilities
of these events for a patient given dose x by m(x,0) = Pr(Y; =1]|x,0) and
np(x, 0) = Pr(Y; = 1| x, 0). In practice, if d,, ..., dy are the raw doses, then one
may use x; =log(d;), cd;, or some other transformation, possibly centered at
the mean, to stabilize numerical computations. For simplicity, we will consider
only the bivariate binary case where the outcome Y = (Y}, ¥;) takes on four
possible values: (1,1) if both £ and T occur, (1,0) if E occurs without T,
and so on. We will ignore the trinary outcome case, which may arise in
several ways. For example, in the above setting this may be appropriate if
E and T are disjoint events and thus Y = (1,1) cannot occur, or if Y=
(1,1) and (0,1) are combined into the single event “toxicity.” In treatment
of solid tumors, the five-level ordinal outcome (Complete Response, Partial
Response, Stable Disease, Progressive Disease, Death) may be reduced to the three
events E = {Complete or Partial Response}, T = {Progressive Disease or Death},
and N = {Stable Disease}. For details pertaining to the trinary outcome case
see Thall and Cook (2004). Denote =, ,(x,0) = Pr(Y; =a, Y, =b|x,0) for
a, b € {0, 1}, with marginal probabilities n;(x, 0) = Pr(Y; = 1|x,0) = n;(x, 0) +
7 0(x,0) and 7m,(x,0) = Pr(Y, =1|x,0) =m (x,0) + my,(x,0). The model for
7,,(x, 0) is determined by the two marginals

logit{my(x, 0)} = Bro + Prix + Ppax’

and

logit{n,(x, 0)} = Bro + Br.1x

and an association parameter, i, via the equation (suppressing x and 6)

Tap = {”E}a{nr}b{l - 7TE}]?a{l - ”T}lib

+ {_l}a+bnEnT{1 —np {1l - ”T}{ew - 1}/{611/ + 1}

This model is discussed by Murtaugh and Fisher (1990) and Prentice (1988).
Denoting the dose of the ith patient in the trial by x;, the likelihood based on the
data D, = {(xqy, Y1), ..., {(x(y, Y,)} from the first n patients is the usual product
overi=1,...,n, of my;(x, 0).

We will assume that all elements of the six-dimensional parameter vector
0 = (Bros Pe1> Peos Pros Prys ) are real-valued, and that they follow independent
normal priors. Although the model parameters are independent a priori, they are
not independent a posteriori. We could easily assume a multivariate normal prior
including nonzero correlations, but for convenience we have not done that. The
prior in this application thus is characterized by a vector ¢ of 12 hyperparameters,
consisting of the 6 means and 6 variances of these normal distributions. We obtain
these by applying the least method given in Thall and Cook (2004), as follows.
First, we elicit the mean values of nE(xj, 0) and nT(xj, 0) for each j=1,...,K,
which produces 2K pieces of information. We next specify the prior variances by
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matching the first two moments of the distribution of each =, (x;, 0) with those
of a beta distribution. Since the variance of a beta random variable with mean u
is bounded above by u(l — u), we equate the prior variance of each = (x;, 0) to
wE{r,(x;, 0)}(1 — E{n,(x;, 0)}) with w=1/2, i.e., half the maximum variance of
the beta with the same first two moments as m,(x;, 0). One could experiment with
other values of w. This yields an additional 2K pieces of information. We then treat
the 4K elicited values like data, and the theoretical means and variances under the
model as nonlinear functions of the 12-dimensional hyperparameter vector &, and
use penalized nonlinear least squares to solve for &. Formally, if m, ;(£) denotes the
prior mean of T, (x i 0), m’; i denotes the corresponding elicited value, sy, j(.’,‘) denotes
the prior standard deviation of ny(x I 0), and s;/. the corresponding elicited value,
we solve for the vector £ that minimizes the objective function

W@ = 32 3 [my; () —m} )" + (s,;(8) = 5} )’ 1+ ¢ 3 (0, — ;)

y=E,T j=1,...K J#k

where oy, ..., 0s are the six normal standard deviations in &, and the second sum
is a penalty term to stabilize the computations by keeping the prior standard
deviations on the same domain, usually using constant ¢ = .10 to .20. Additional
details are given in Thall and Cook (2004). Of course, one may develop priors in
another manner. In any case, the priors must be sufficiently uninformative to give
a design for which the data dominates the prior, rather than conversely, and that
has good operating characteristics. On the other hand, the prior must be sufficiently
informative to result in reasonable behavior early in the trial. In this regard, priors
for which var(f;,) are very large and thus the priors of . (x;, 0) and n;(x;, 0) have
most of their mass very close to 0 and 1 are very likely to lead to a design with
pathological behavior, and should be avoided.

2.3. Acceptability Criteria

Let ; be a fixed lower limit on 7z (x, 0) and 7, a fixed upper limit on n,(x, 0),
both elicited from the physician. Given the current data, D,, a dose is considered
acceptable if

Pr{ng(x,0) > n.|D,} > pg
and
Pr{n;(x,0) < 7| D,} > pr,

where p and p; are fixed design parameters, usually in the range .05 to .20, that are
calibrated to obtain a design with good operating characteristics. As p; is increased,
the method is more likely to exclude a dose for lack of efficacy. As p; is increased,
the method is more likely to exclude a dose for excessive toxicity. One may think of
these two criteria as gatekeepers, one for E and one for T, with a dose entering the
current set of acceptable doses, A(D, ), only if it is able to pass through both gates.
As noted earlier, the definitions of E and T and the corresponding fixed limits 7,
and 7, play critical roles in the method, since only acceptable doses may be used to
treat patients in the trial.
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2.4. Dose Desirability and Efficacy-Toxicity Trade-Offs

Because the pair (nz(x, 0), ny(x, 0)) is two-dimensional, if these probabilities
are to be used as criteria for selecting a best dose from A(D,), then some form
of dimension reduction is needed. We address this problem by carrying out the
following geometric construction. Denoting = = (7, ), we begin by eliciting three
target probability pairs, {n},n;, n}}, that the physician considers to be equally
desirable targets in the two-dimensional probability domain [0, 1]*. These are
represented by the triangular points in Fig. 1. Each of these elicited targets embodies
a trade-off between the chance of obtaining a response and the risk of toxicity.
In practice, n} is elicited first and is located in the interior of [0, 1]*. The second
point, n5 = (755, 0), corresponds to a hypothetical case in which n, =0, and the
third point, n§ = (1, n};), corresponds to a hypothetical case in which n; = 1. That
is, if toxicity is impossible, then 7}, is the lowest value of 7n;(x, 0), and 7}, is the
highest value of 7, (x, 0) if response is certain, that make each of the target points =}
and 7} as desirable as zj. The efficacy-toxicity trade-off contour, C, is a curve that
passes through these three points. Once C has been established, a family of trade-off
contours partitioning [0,1] is then generated from C, and a desirability, o is assigned
to each contour in such a way that contours closer to the ideal point # = (1, 0) have

1.0
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0.0 w \ \ ‘
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Figure 1 The targeted trade-off contour, C, is represented by the solid curve, and is generated from
the three equally desirable elicited target points (.60, .40), (.20, 0), and (1, .40), which are represented
by triangular points. The points p;, q;, and p, represent three probability pairs, and are given along
with their corresponding trade-off contours.
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higher desirability, and contours farther away from (1, 0) have a lower desirability.
Figure 1 illustrates how each point’s desirability is computed. For p,, first note that
q, is the point where the straight line from p, to (1, 0) intersects C. The desirability
of p, is then defined as the distance from q; to (1, 0) divided by the distance from p,
to (1, 0) minus 1, formally 6(p,) = |lq; — (1, 0)||/|lp; — (1, 0)|| — 1, where “|la — b||”
denotes the Euclidean distance from a to b. For a given desirability ¢, the contour
C; is defined as all points in [0, 1]* having that desirability, so that, in particular,
C = C,. We set the desirability of the target contour equal to 0 so that all contours
closer to (1,0) than C have 6 > 0 and all contours farther away from (1, 0) than
C have 0 < 0. Additional details of this construction are given in Thall and Cook
(2004). The idea of efficacy-toxicity trade-off contours given here is similar to the
construction of Thall et al. (2002) used for subgroup-specific treatment selection in
the context of a two-stage dynamic treatment regime. An alternative terminology is
to call each C; an indifference set in [0, 1]%.

The software, named EffTox, that implements this methodology (Section 3.3)
includes a graphical user interface for plotting the target points and the resulting
target contour C during the elicitation process, so that the physician may modify
the targets interactively. In practice, one should elicit the targets {=}, n}, n}} at the
same time that one elicits the anticipated mean probabilities used to construct the
prior. When doing this, it is essential to bear in mind that the targets represent what
the physician would like to achieve, similar to specifying an alternative parameter
value when constructing hypotheses to test, whereas in contrast the elicited prior
means represent what the physician anticipates will actually happen. To utilize this
construction during the trial, for each acceptable dose x; we first compute the
pair E{n(x;, 0)|D,} = (E{nz(x;, 0) | D,}, E{ns(x;, 0) | D,}) of posterior means, then
compute the desirability J; of x;, and choose the acceptable dose with the highest
desirability.

2.5. Trial Design and Conduct

To construct a trial design, the above structure is applied as follows. First,
one must establish the disecase and trial entry criteria, the treatment and doses, the
definitions of E and T, and a tentative maximum sample size, N, and cohort size, c.
Next, one elicits the upper and lower bounds n; and 77, the prior means of 7. (x;, 0)
and 7, (x;, 0) foreach j =1, ..., K, and the three targets {n}, n3, 3}, and constructs
the target contour C and resulting family of trade-off contours. The EffTox software
is essential both to compute the prior’s hyperparameters and the trade-off contours.
Next, one uses the EffTox software to specify a set of hypothetical dose-outcome
scenarios under which the trial will be simulated. A scenario consists of fixed values
{m, ..., g} corresponding to the outcome probabilities for the K doses, and in
practice it is very useful to plot the dose-toxicity and dose-efficacy curves for each
scenario, bearing in mind the numerical values of the elicited bounds n, and 7;
and the specified targets {n}, 73, n}}. The trial is then simulated under each scenario
in order to establish its operating characteristics (OCs), which include the selection
probabilities and sample sizes at each dose and the probabilities of stopping the
trial early. These values are analogous to the usual size and power figures of a
conventional test of hypothesis. Due to the complexity of the design, in practice
it is necessary to obtain the OCs by computer simulation. The simulation results
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may be used to study the design and if necessary adjust the design parameters,

including N, ¢, pg, and p;. Additionally, the physician may wish to modify the

elicited prior means of n(x;, 0) and 7, (x;, 0), the bounds r, and 7;, or the targets

{n}, n3, m3} based on preliminary simulation results. The EffTox software supports

such simulations. As an additional check, it is also useful to see whether the design

behaves reasonably at the start for specified data from the first one or two cohorts.
Formally, the rules for trial conduct are as follows:

1. Treat the first cohort at the starting dose specified by the physician.

2. For each cohort after the first, no untried dose may be skipped, either when
escalating or de-escalating.

3. At any interim point in the trial,

a. if there are no acceptable doses then terminate the trial and do not select any
dose;

b. if there is at least one acceptable dose then treat the next cohort with the dose
having maximum desirability.

5. If the trial is not stopped early and there is still at least one acceptable dose at
the end then select the acceptable dose having maximum desirability.

3. ILLUSTRATIVE TRIAL

3.1. A Biological Agent to Increase Sensitivity
of Anti-AML Chemotherapy

Standard therapy for patients with untreated AML consists of fixed doses of
idarubicin and cytosine arabinoside (IA). Although most patients achieve remission
with TA, most remissions are short-lived, averaging about 9 months. The probability
of response to IA in patients whose AML has relapsed is positively associated with
the duration of the preceding remission. This probability is about .10 if this duration
was less than 1 year or if the patient never achieved remission with the first course
of IA, and median survival in these circumstances is 6 to 9 months.

A protein known as IAP (inhibitor of apoptosis protein) has been found to
protect AML cells from the death (apoptosis) induced by IA. An experimental drug,
which we will call X, that prevents synthesis of IAP may restore the effectiveness
of TA in patients with relapsed AML. Since there has been little clinical experience
with X combined with IA, a Phase I-1I trial was designed in which X would be given
together with a fixed dose and schedule of IA to patients with AML in relapse after
a remission of less than 12 months duration, or that had not responded to the first
course of IA. For the purpose of illustrating the method, we present a simplified
version of the design actually used. For dose-finding, patients are evaluated 35 days
after beginning treatment. E is defined as achievement of complete remission (CR)
within these 35 days, in order to feasibly assess the effect of X. Toxicity is defined as
death or development of life-threatening (grade 4) symptomatic toxicity by day 35.
Typically, grade 4 toxicity is considered dose-limiting regardless of its association
with symptoms. However, we have found that non-symptomatic grade 4 toxicity
is very inconstantly associated with subsequent clinical sequelae. Thus, given the
prognosis of the eligible patients, we feel it appropriate to use a less restrictive
definition of toxicity.
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3.2. Trial Design

The general methodology may be applied to the AML trial as follows. Four
dose levels will be studied. A maximum of 36 patients will be treated in cohorts of
size 3, with the first cohort given dose level 2, and not skipping any untried dose
level when escalating. The starting dose must be chosen by the physician, and this is
not necessarily the lowest dose being considered. In applying this method, we have
found that a physician may initially specify a set of doses with the lowest as the
starting dose, but when asked what he or she would do if the lowest dose were found
to be unacceptably toxic, the physician often responds by saying that he or she
would then add one or more lower doses and restart the trial. In such settings, we
routinely ask the physician to specify such lower doses so that we may include them
in the design from the start, but beginning the trial at the same initial dose originally
specified, which is now no longer the lowest. Phase I designs using toxicity as the
only criterion for dose-finding often start at the lowest dose for fear of excessive
toxicity. However, one may argue that dose-finding trials based on efficacy should
start at the highest dose for fear of administering an ineffective dose. Indeed, some
trials using efficacy do start at the highest dose for this reason. When monitoring
both efficacy and toxicity, the best starting dose depends on one’s relative fear of
over-treating and under-treating patients.

In the current application, the acceptability limits are n, = .20 and 7, = .50,
and the two acceptability criteria were applied with pp = p; = .10. Thus, in this trial
x is acceptable if Pr{n.(x, 0) > .20|data} > .10 and Pr{n,(x, 8) < .50|data} > .10.
Although it may seem, intuitively, that the numerical cutoffs p, = p; = .10 are too
small to ensure that doses deemed acceptable are both safe and efficacious, and
that large numerical values such as .90 or .95 should be used instead, in practice
such large values produce a design that quickly declares no dose acceptable in
virtually all cases. Another way to think of the acceptability criteria is in terms
of the complementary events, which in this application would be that a dose is
unacceptable if either Pr{n,(x,0) < .20|data} > .90 or Pr{n,(x,0) > .50|data} >
.90. That is, x is unacceptable if it is likely that n,(x, 0) is below the fixed minimal
efficacy level .20 or it is likely that 7m,(x, #) is above the fixed maximal toxicity
level .50. These criteria may be thought of as two gatekeepers, one for safety and
the other for efficacy, that together determine whether a dose will be allowed to
enter the pool of acceptable doses, from which the most desirable dose will then be
chosen. An important point is that several values p, and p; should be considered
when using simulation to determine design parameters, it is not necessary that
pr = pr.» and a general guideline is to explore values in the range .05 to .20. The
same rationale that motivated our definitions of E and T led to our selection
of the relatively high upper limit 7; = .50. The lower limit x, = .20 reflects the
belief that at least a doubling of the very low historical CR rate (0.10) is required.
Although it could be argued that .20 is too low, experience suggests that greater
degrees of improvement are very rarely seen and thus would be likely to shut down
investigation of therapies that are improvements over standard.

The target trade-off contour is based on the three targeted trade-off
probability pairs 7 = (.60, .40), =5 = (.20, 0), and =% = (1.0, .50). In Fig. 1, these
elicited targets are given as triangles, and the resulting target efficacy-toxicity trade-
off contour is illustrated by the solid curve. The points labeled p,, q,, and p,
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are included, along with their respective trade-off contours, to illustrate how the
family of trade-off contours distinguishes between points in [0, 1]. For example, if
p, = E{n(x,,0)|D,} and p, = E{n(x,, 0)|D,}, then Fig. 1 shows that x, is more
desirable than x,. It is important to note that a dose with 6 < 0 is not necessarily
“undesirable,” just less desirable than any dose with E{m(x, 0)|D,} falling on C,
where 0 = 0.

3.3. Computer Simulations

The OCs of the trial under each of four hypothetical dose-outcome scenarios
are summarized in Table 1, and the results are also presented graphically in Fig. 2.
For each scenario, the trial was simulated 1000 times. We also conducted additional
preliminary simulations to examine the effects of different values of p, and p,, as
well as other maximum sample sizes and cohort sizes. Although we do not show
these additional simulations here because they would greatly increase the length of
this article, we recommend that this testing should be done routinely to assess the
effects of varying the design parameters and, in collaboration with the physician,
this should be used as a basis for choosing a design. In Fig. 2, the true value of =
for each dose is represented by its location in the unit square [0, 1]?, the desirability
contour for each dose is represented by a dashed line, and the size of the circular
dot at each location is the selection percentage for that dose. In addition, the limits
n, = .20 and 7, = .50 are given as solid straight lines in each plot.

In scenario 1, dose level 1 is associated with a true response rate of w,; = .05
and a true toxicity rate of n,; = .40, with response and toxicity probabilities of , =
(M35, Top) = (.10, .60) for dose level 2, m, = (.20, .75) for level 3, and n, = (.35, .85)
for level 4. Thus, no dose level is acceptable in this case, and the design correctly

Table 1 Operating characteristics of the trial design; these ngz, n; and ¢ are the true
values under each scenario

Dose level
Scenario 1 2 3 4 None
1 Tg, T .05, .40 .10, .60 .20, .75 .35, .85
1) -.521 —.746 —-912 —.992
% Selected 5.1 16.9 6.1 3.5 68.4
# Patients 7.7 7.8 4.7 3.6
2 Tg, T .10, .10 40, .15 .60, .25 .65, .70
0 —.185 146 .249 —.539
% Selected 8.1 36.1 52.2 3.6 00.0
# Patients 7.6 10.4 14.5 3.5
3 Tg, Ty .10, .10 .20, .15 .35,.16 .60, .17
14 —.185 —.097 .077 .358
% Selected 8.0 5.8 6.6 78.0 1.6
# Patients 7.7 4.6 4.8 18.4
4 Tg, Ty .30, .10 .55, .40 40, .55 .15,.70
o .063 —.037 —.412 —.865
% Selected 73.2 25.8 0.3 0.1 0.6

# Patients 21.3 12.3 1.7 0.5
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Figure 2 The four dose-outcome scenarios used in the simulation study. In each scenario, for each
dose the true = is represented by its location in [0, 1]?, the trade-off contour is represented by a dashed
line, and the size of the circular dot is the selection percentage of that dose. The acceptability limits
i = .20 and 7; = .50 are given as solid straight lines.

stops early with no dose selected 68% of the time. Note, however, that dose level
2 is nearly acceptable, with m; only .10 below the lower limit of n, = .20 and 7,
only .10 above the upper limit of 7, = .50. Thus, although selecting this dose is an
error, it is not a severe error. If we alter scenario 1 by adding .10 to each value of
7, so that dose levels 2, 3, and 4 become much more toxic and hence much less
desirable, then the design stops the trial early 90.8% of the time. In scenario 2, both
dose levels 2 and 3 are very desirable, and these are selected 36% and 52% of the
time, so the design picks a desirable dose 88% of the time. In scenario 3, the highest
dose level is the most desirable by a substantial margin, and it is chosen 78% of the
time. In scenario 4, dose levels 1 and 2 are most desirable, and the method picks
these 73% and 26% of the time. Figure 2 shows that scenario 4 is a difficult case
because the true n;(x) is a non-monotone function of x. In this case, the quadratic
model for logit{n.(x, #)} comes into play, and the model and algorithm together do
a good job of recognizing the non-monotonicity of n.(x) and avoiding the much
less desirable dose levels 3 and 4.

4. A COHORT-BY-COHORT ILLUSTRATION

In addition to examining the design’s average behavior by simulation, it is also
worthwhile to show how the design behaves in a particular case. This is summarized
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Table 2 Cohort-by-cohort illustration of the method

Posterior mean 7y (x;, 0), mean 7y (x;, 0), and

Outcomes o of each dose level
Cohort Dose E‘T  E‘T* ET ET® 1 2 3 4
Prior 124, 122 119, 122 146, .156 184, .194
0=-170 6=-.176 o6=-.167 oO=-.167
1 2 0 1 2 0 .056, .224 .045, .225 .069, .285 .105, .338
0=-334 6=-347 6=-375 o=-.389
2 1 1 2 0 0 .025, .0281 .033, .269 .066, .296  .101, .318
6= —.423 0=—-402 6=-.388 o0=-.361
3 3 0 0 1 2 .042, 275 233, .276 .573, .305 773, 333
0=-39 6=-.174 6 =.140 o =.237
4 4 0 0 3 0 .031, 215 267, .400 677, .561 .871, .661
0=-357 6=-292 $6=-255 O=-.366
5 3 0 1 0 2 .033, .198 .261, .308 674, 421 .871, .509
d=-.339 0=-.179 6 =.010 0= —.062
6 3 0 3 0 0 .028, .187 179, .260 .528, .340  .779, .409
6 =—.337 0=-.220 0 =.044 0 =.092
7 4 1 0 2 0 .030, .138 179, .277 .502, 438 754, .568
o= —.298 0= —.237 0= —.140 0 =-.230
8 3 0 0 1 2 .037, .134 223, .266 .580, 422 .810, .551
0=-286 O6=-.176 6=-.053 o=-.172
9 3 0 1 0 2 .039, .122 .229, .235 .591, .373 .818, 495
o=-.275 0=—.136 o =.041 0= —.057
10 3 2 0 0 1 .035, .128 .209, .255 .560, .404 798, .531
o= —.285 0=—.180 0 =—.037 0=—.137
11 3 0 0 1 2 .038, .126 235, .244 .606, .395 .829, .528
6=-.279 0=-.139 0=.014 o=-.119
12 3 0 2 0 1 .037, .115 .220, .222 .579, .361 .810, .489

0=-.273 0=—.135 0 =.052 0 =—.050

in Table 2, which gives the outcomes for each of 12 successive cohorts, along
with the posterior means of 7;(x;, 0) and n,(x;, 0) and the corresponding J; for
j=1,2,3,4. When examining this table, it is important to bear in mind that the
acceptability limits are n, = .20 and 7; = .50. The outcomes in Table 2 were chosen
purely for the sake of illustration. The design starts at dose level 2, de-escalates
to level 1, escalates to level 3 and then to level 4, de-escalates to level 3, revisits
level 4, and then settles into level 3 for the final five cohorts. One may consider this
last portion of the trial, in which the final 15 patients are all treated at the same
final dose level, to be its “Phase II” portion. However, in general there really is no
separation between “Phase I” and ‘“Phase II” with this design, and it may switch
doses at any point based on new data. Figure 3 gives the means (solid lines) and
the upper and lower 2.5 and 97.5 percentiles (dotted lines) of 7, (x, 0) in the left
column and 7;(x, 0) in the right column, first under the prior, then a posteriori
after 9 patients, and then after the final 36 patients. The purpose of this figure is
to illustrate how the Bayesian model learns about the two dose-outcome curves
as the data accumulate. The same information is summarized in Fig. 4, but in a
very different way, with the four posterior distributions of {n;(x;, 0), j =1, 2, 3, 4}
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Figure 3 The means of n;(x, 0) and ng(x, 0) as functions of x are given as solid lines in the left and
right columns, respectively, along with 95% credible intervals as functions of x given by dotted lines.
The prior curves are given in the top row, the curves based on the data from 9 patients in the middle
row, and the curves based on the data from 36 patients in the bottom row.
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Figure 4 The distributions of 77 (x;, 0) and ng(x;, 0), for doses j=1,2,3,4, a priori in the top row,
and a posteriori after 9 and 36 patients in the middle and bottom rows.

overlaid in each plot on the left and the corresponding posteriors of {nz(x;, 0), j =
1,2, 3, 4} overlaid on the right. Comparing these distributions to each other as well
as to the fixed limits n, = .20 and 7; = .50 shows clearly that, by the end of the
trial, dose level 3 is very acceptable and obviously the most desirable.

It is important to consider how differently the trade-off-based method chooses
doses compared with conventional methods that use only the toxicity data. For the
first two cohorts, at x = 2 there were 2/3 toxicities and 2/3 responses, with E and
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T perfectly associated as 2 patients had outcome (E, T) and the third had outcome
(E€, T°). After de-escalating to x = | there was 1/3 toxicity and 0/3 responses at
that dose. Any conventional algorithm based on toxicity alone would not escalate
for the next cohort, but rather would choose x = 1. In contrast, the steep increase in
observed response rate going from x = 1 to x = 2, and the high positive association
between Y, and Y;, as formalized in terms of the posterior of m, ,(x, 0) under the
Bayesian model, shows that both E{n,(x, 0)|data} and E{n;(x, 0) |data} increase
with x, that toxicity is well under control relative to the 50% upper limit, and that
the highest dose, x = 4, is most desirable. Since we have imposed the “do not skip”
rule, the next cohort is treated at x = 3. Thus, this decision is a consequence of
considering the joint distribution of (Y, ¥;) as functions of x in the context of
the Bayesian regression model, and assessing both the acceptability and desirability
of each dose based on all of the observed data. This example also illustrates the
important point that, in general,  is not a monotone function of dose. A more
general point is that with this method, as with any outcome-adaptive dose-finding
method, the decision to escalate to an untried dose necessarily must be based
on a prediction of what is expected or likely to occur at that higher dose. With
our method, this prediction essentially is based on an extrapolation of the fitted
regression model to the higher, untried dose. Note that, in this illustrative trial,
the final dose turns out to be x = 3, which would not have been the case using a
conventional method. Despite the 6/6 observed toxicities at x = 4 this is the second
most desirable dose. Intuitively this is because 5/6 responses were also observed at
this dose although, again, all of the data come into play, through the posterior under
the Bayesian regression model, when computing the desirability of each dose.

5. DISCUSSION

A number of other authors have proposed methods for dose-finding using
two or more outcomes, rather than only one binary toxicity indicator. Gooley
et al. (1994) considered two dose-outcome curves, and were among the first to
propose computer simulation as a design tool. O’Quigley et al. (2001) and Braun
(2002) proposed methods that extend the continual reassessment method (CRM) for
toxicity alone proposed by O’Quigley et al. (2001). Ivanova (2003) also generalized
the CRM, using a play-the-winner type strategy (Zelen, 1969). Bekele and Thall
(2004) proposed a method based on a scheme for differentially weighting multiple
ordinal toxicities that have different degrees of clinical importance. Bekele and Shen
(2005) proposed a method based on a toxicity indicator and a quantitative biologic
outcome.

Our method is very different from all of these procedures, in terms of both the
underlying probability model and the algorithm for selecting doses. In particular,
the dose-finding methodology that we have described here is somewhat complex.
It requires substantial input from the physician and a considerable amount of
effort from the statistician to construct the design, and it requires specialized
computer software both for constructing a design and for trial conduct. However,
given the scientific and ethical advantages of the method, we feel that this extra
effort is well warranted. The necessary software is freely available for download at
http://biostatistics.mdanderson.org/SoftwareDownload//.
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A fundamental motivation for our method is that, despite the fact that most
Phase 1 designs are based on toxicity alone, patients enter a Phase I trial with the
hope of achieving a response, that is, disease remission, not simply no toxicity.
Moreover, most conventional Phase I trials do such a poor job of selecting a safe
dose that the need to make dose adjustments subsequently during what is nominally
a Phase II trial is routine. That is, Phase I is really also Phase II, and Phase II
is really also Phase I. Our inclusion of both E and T in the dose-finding method
formalizes these considerations. Although it may be claimed that a dose-finding
trial with, for example, N = 60 is excessively large, with our proposed method this
sample size accounts for both Phase I and Phase II. Moreover, because only a
dose that is both safe and efficacious may be selected in the end, our method is
intrinsically superior to conducting a conventional Phase I trial based on T alone
followed by a Phase II trial based on E alone. The dose selection decisions made
by our method often are counterintuitive to those who have been conditioned to
exclude efficacy from their thinking by years of toxicity-only dose-finding. For
example, common sense would have no objection to staying at a safe and effective
dose, whereas the first response of toxicity-based thinking would be to escalate if
toxicity is under control.

Two important aspects of our model are that we do not require that 7, (x, )
be monotone in x, and that we allow 7,(x, 6) to be either increasing or decreasing
in x. The former aspect of the model is reflected in the design’s performance in
scenario 4 of the simulation study, where the fixed probabilities of response are
gz (x)) = .30, nz(x,) = .55, np(x;) = .40, and 7n;(x,) = .15, so the quadratic term
in 7z(x, 0) comes into play. This feature of the model and method is particularly
important in dose-finding studies of biologic agents without any additional cytotoxic
agents. In such settings, a wide variety of definitions of E are possible, such as
achieving a specified minimum level of a particular chemical or biological reaction in
the patient’s blood or in a solid tumor, often as measured by a complex laboratory
procedure. The form of n.(x, @) typically is not known in such settings, so the
quadratic form serves as a flexible function to deal with a wide array of possibilities.
Certainly, many other models are possible such as, for example, the damped logistic
model

g (x, 0) = a[exp(Bgo + Br1%)/{1 + exp(Bro + Be1X)}]

where 0 < o < 1, so that « is an asymptotic upper limit on 7, (x, 6).

We allow 7;(x, 8) to possibly decrease in x, if f; < 0, because this may be the
case for a particular definition of 7. For example, we observed this phenomenon in
an allogeneic bone marrow transplantation trial where 7 included systemic infection
that cannot be quickly resolved by antibiotics. Larger doses of an experimental
agent aimed at treating steroid refractory graft-versus-host disease may have the
unexpected beneficial effect of reducing the rate of systemic infection. There are
many other examples. The point is that the conventional assumption that 7, (x, )
must increase with x arose from Phase I trials of cytotoxic agents, and this
assumption may simply be incorrect in many Phase I or Phase I-1I trials.

A final issue is determining sample size and cohort size. This is logistically
important, but technically trivial. In most applications, it is very useful to examine
by simulation the behavior of the design for each of an array of values of N and c.



638 THALL ET AL.

In the illustrative trial studied in Section 3, one might study and compare the OCs
of the nine designs arising from the combinations of N = 36, 48, 60 and ¢ = 2, 3, 4.
However, the choice of N should depend not only on the OCs of the design, but
also on the reliability of the estimates of n;(x, #) and 7n,(x, #) based on the final
posterior, as well as the logistics of trial conduct, and what is feasible in terms of
the anticipated patient accrual rate and the available resources, including time, drug
availability, laboratory facilities, and monetary costs.
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