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Intensity at peak (roughly) estimates the abundance of
some protein with molecular weight of t Daltons




— To study MALDI- TOF and compare methods for
"arTaIyzmg'them we gave developed a simulation
engine to produce realistic spectra (Coombes, et

al. 2005)

— Based on the physics of a linear MALDI-TOE withion
focus delay

— Flexible incorporation of different neise models and
gqﬁerent baseline models
ncludes iseiopeiaist

— Also very instructive in how MALDI-TOF works, and why
the data look the way they do.
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= Parameters ‘= Equations

aom D, = distance from sample
plate to first grid (8 mm)
V/; = voltage for focusing

(2000 V)
D, = distance between grids

(17 mm)

V, = voltage for
acceleration(20000 V)

= length of tube (1 m

= it
elocity after focusing

o= delay time

A\~ 4
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= 256 bloed serum samples — 141 pancreatic cancer,
115 normal controls

= 1 spectrum per sample. -
= Samples (all fractions) run in 4 blocks on 4 different dates




0anz

cl0] =

E human melanoma, low metastatic potential
human prostate, highly metastatic -

= Blood Serum extracted from each ' moeuse — placed
on 2 SELDI chips

- _ -
@Bles iun different |-1s: sities (low/ high)
mj SCtra (obsernved functions), 2 per

IMOUSE




— L ) e : = . :
-_Find proteins differentially expressed by:
— Host organ site (lung/brain)

— Donor cell line (A375P/PC3MM?2)

— Organ-by-cell line interaction

e R a o -
B e

E

ustadjust fer systematic laserintensity, W
moak SpectieMiom Ssame mouse.

e




1 Vlgiglgel iggsiggzifziigle LETRSHI QJJ]JUJQ:IJ Jgnmole orl_,e(l o)

~isoelectric point (pH)and molecular't —— ==
= Used to identify proteins differentially expressed between
- freat tment groups.
= Steps:

1. pPH gradient applied to gel, electric
potential applied, causing proteins to migrate across polyacrylamide,.
gel based on their pH

2. denatures proteins and attaches negatively
charged SDS molecules, with the amount proportional to protein’s

length (mass) ~
| again, butinperpendicular.directio —
igrate.. Friction Gif@el acts as sieve, (

: which binds to preteins.
5. into computer for quantitative analysis
6. After analysis, for identification by MS

2-D Ge| Electrognoresis
0)fC)




2-D) Gel Electropheresis\




= Firstdeveloped in 1975 by Patrick O'Farrell, PAD
- =H{siconsidered the “workhorse” of proteomics,

yet Its contribution to biomedical science has

been limited by several factors

— There exist a number of commerciali 2d gel image

mcessmgpackages
PGk , untiltrecently, and present
approaches that work better.

el
mmercia|*_

ome. alternative




Mzlor Aress of Statstceal] [nour

= *__I:_ - Experimental Design

~ — Prevent systematic bias andexperlrrrenta —
- variation from sabotaging a study

2.

— Data visualization (frequently a simple look at
the data will reveal problems)

— Preprocessing (extract and normalize protein

|gnal.from raw data) -
' j | -bm

dlsease/response)



5JJIJ (1z183 2 diffarercs

f approf |ate controls

— make sure you have enough to find meaningful
differences (or when constrained, at least find out how
small of a difference you can detect) -

L and handling must lbe carefully

controlled |
ely to,impact,data,

want'to on factersili
IS needed at multiple points in the

.

Process



safrnole nzncdling Is critcel

= All'samples must be collected uniformly
i — 5
— Consistent protocol
— Enforced at every collection site
= Failure to do this can (will) affect proetein
profiles

the problemiis particularly, serious_ij‘gém
memeresting -

rrables (normal vs cancer)

L




Hierarchical clustering of serum

I)wxe,m proflles of Orall cancss
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Clustering reflects changes in the

ed = First 20 samples
samples |




Unsupervised methods often
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Case Stud

MECHANISMS OF DISEASE

Mechanisms of disease

G Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Petricoin Ill, Al M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills,
Charles Simone, David A Fishman, Elise C Kohn, Lance A Liotta

= Collected proteomics data on serum samples from
— 100 women with ovarian cancer
— 100 normal controls
e 16 women with benign disease ——

= Selected SOMmemaliand S0icancer

S irained' a statlstlcallcomputatlonal algenthm to
distinguish between the two types

= Tested the algorithm on the remaining samples




rle. ll][

- orrectly classifit 1@%@7 of the ovarian cancertesticasesias:

S .

- e

cancer e —

:.— Correctly.classified 47/50 normal samples as normal, with
3/50i classified as cancer

— Correctly classified 16/16 benign disease as “neither normal
nor cancer”

= Remarkable!! Can we identify ovanian.cancer: *
with a simple blood test? If so, then we: can
pretty much eliminate that disease, since it IS

ly. treated when detected early.
ﬁyf\@/acheckﬂvI . jic, Quest Diagnostics, La

[@n'cancer blood test




Some. structure isyisiple in lHeat Map

Al Spectra from the Initial Data Set
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r\ rollovv—uo SiLcly

= They ran
another
study: Again,
remarkable
results

= Near perfect
classifications
of cancers
and normals
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1 Pron Sflie "' |
from 2"9 data set
does not work for 1.5t
data set

= Similarly, algorithm
from 15t data set
does not work on 2n°
= Pattern not
_reproduciblel! ..
=S Hmmm. Not
encouraging

—

a
T T




Twro-sample t-statistics, Cancer vs Narmal, D3 3

T—statistic

g Blejt o)f iasiieli]
S“eparatmg'cases and
controls In data set 2

MANY regions of
spectrum separate
cases/controls

Including very low mass

regions
Can perfectly separate
cases/controls with just

two peaks, e.g. (2.79Db;
245.2D) -

There Is something
filnky with this data set!




put PNAS paper found “regroduciole sigre

Tstatistics: First Dataset Solid, Second Dataset Dashed

Control Cancer TStatistics

10 12 14 16 18
Peak Index (in M/Z Order)
Fig. 1. Summary of ¢ statistics at 18 published peaks. Peaks have m/z values as indicated in the text. The
¢ statistics represent the difference in spectral intensity between cancer and unaffected spectra for the 18
reported m/z values. Solid line = ¢ statistic values from the first dataset; dashed line = ¢ statistic values
from the second dataset. The magnitude and sign of the ¢ statistics correspond to the relative protein
expression of cancer and normal spectra for the two datasets; a change in sign indicates that the average

spectral intensity at that s/z value was greater in cancer spectra for one dataset and for control spectra in
the other.

~ Zhu, et-al, (2003

PNAS 100:14666-
71)

Reported that use of
classification rule

derived from 15t data
set could accurately
classify 2"d data set.

Computed 2-sample
t-statistics for 18
peaks contained In
their sampling rule

Hoew then didithey:.
achieve such geod
classification on 2nd
data set?

= From Baggerly, Morris, Edmondson, and Coombes (2005 ) JNCI 97(4): 307-309




and built cIaSS|f|cat|on rule
using data set 1, and then
assessed Its predictive
accuracy on data set 2

We obtained as good or
better classification as Zhu,
et al.’s model

— 6% using whole spectrum
Fig. 2. Classification acouracies observed in simulations. Box plots show the median ﬂn(ri“quﬂrti}e acoura- — 148% USiﬂg m/ Z <6OOOD
T i e e e — 56.2% using m/z <1000D

second dataset according to the published method using the 18 ues listed in the text. The arrow indi-

cates the median lu , also the mst @1d thij'ld. quartiles, which coi with the obSEJ"v:'Fd accuracy v\hen'ill S u g g e Sts Syste m atl C b l aS

samples are classified Method 2) randomly chosen from the first dat;

to generate new sets o alues, and these value used to classify the second dataset according to the b / I
published method ¢3). The arrow points to the median line, also the first quartile, which coincides with etwee n Cases CO ntro S

Fraction of 8-7-02 Data Correctly Identified
+4 44+ +

Simulation Method

the observed accuracy when all samples are classified as “control.” Method 3) The second dataset was

clﬂssiﬁ?dlb_v u:.e ofth“e_lﬂck-knifaf appr 7 ';,,I-Si alues were 1 __.,. ..‘,.:. Pt the ¢ “ Cases and Controls run In

d by use ofth

oty shoe o oo s o SO batches? Batch effect that

6000. Meth

y chosen n from values ofleas ﬂnn IUUU Of the onc'm'ilh reported 'z 1es-1 10 of the 18 values | OO kS | I ke CaS e/CO ntro | effe Ct?

were less than 1000.

= From Baggerly, Morris, Edmondson, and Coombes (2005 ) JNCI 97(4): 307-309



tecririology wotllel 2]

'@-='G‘:c' adS eval, =Ene Qe -

.___ Related Cancer, July 2004.

_:_—_'—-

= Ovarian cancer
— ~90 controls, ~160 cases

= Q-star instrument
— high resolution

= Claim: c:

. el
uish healtny Wormen s

datients




|-statistics jdentiiy.separatio) at 86020

Two-sample +ests, Cancer-Mormal
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IHeat map, of raw. data near 8602
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All controls were processed before ali
selinples from caricss SEHENILS

4

w 1|:|5 Record Counts of First 95 Samples (Cantrals) from Figure 7, Superimnposed

Fecord Count

““““““““““ vof Last 121 Samples {Cancers) from Figure 7, Superimposed
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OvaCheck: breakthrough or also ran?

The test or ovarian canc
3&‘30?; attern testing. fi
good in é ancef two y e?rs a%? he
resuits remain unveplicate

BY EMILY ANDREW:

100
Sarnple Nurmber
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internet journal of emerging medical technologies

Monday, August 8, 2005
OvaCheck Reality Check
5/ Filed under: QOncology

This weekend, there was a good overview in the Philadelphia inquirer
on OvaCheck, the controversial ovarian cancer detector that may or

] 1/04: C may not be nearing FDA approval:

= 2/18/04

" [/1.2/04

"SEurrent
see If It

Now, scribbling on his napkin, Levine suggested looking not for a single
protein, but for changes in the overall pattern of blood proteins. Even if

the identities of the proteins were unknown, the pattem itself would be the
biomarker: "Rather than looking for the needle in the haystack of data... look
at the configuration of the haystack.”

After that brunch, Levine enlisted another friend, biochemist and computer
expert Ben Hitt, to come up with protein-pattern-recognition software.

Levine, Hitt, Petricoin and Liotta tried the software to see whether it could
find clusters of proteins that distinguished blood samples of ovarian-cancer
patients from samples of healthy women. To their joy, it worked.

But from those humble beginnings emerged a six-year saga of overoptimistic
predictions, statistical errors, and ethics violatiens. The prognosis for OvaCheck is
far from certain.

oets

er EDA

2d



Desigr J 253015

= All'samples must be processed't
- same.protocol
- should be performed
— Before sample preparation steps

— Before acquiring spectra/gels
= May also want to onimportant factors —

educe varability — there.are Waysjo_u,[;g.r_
#ﬁw-@lﬂeﬁw
ame principles should' be Used for other

sensitive laboratory instruments.
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— Calibration/Alignment

— Background Corr. — Clustering

— Adjust Block Effects — T-test, ANOVA -
— Normalization — Correlating with

— Peak/spot finding outcomes

— Building pr@%“

Spot matching

across spectra/gels — Identify proteins and
validate them




Data AnalysiS' Beware of
J\jJ

[~

: ‘Wmoﬁa?mt fe— :  tests when
- ‘"‘Olecla'rlTTg*blomarker “significant”

— If many peaks, p<0.05 gives lots of false +

— Methods available to control FDR

= When building discriminating model,

ﬂportant (0] pI’O :)erly il
. L
Indepen [0 sivalidation!!

ernal’'vs. External CV: Cross-validate feature
selection step!

— Are CV errors relevant for future data?




EXtraction /Approeach

rlllgﬂ cletizl, EIOVE folse,

[ ——— -
7 / G G N\ (* = ~ -
A G ——

s===ixitractrelevant features from the data, I.e.
detect all peaks and spots, and guantify each
feature for each spectrum or gel.

— Results in N x p matrix Y (p features, N spectra)
= Survey N x p matrix Y to find differentially

ﬂﬁressegﬁﬁﬁks s -OMparisol MGG
), While

approprlately accounting for multiplicities.

R
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stailsiical Mocdel for Soecirurr

e ——
Artifact
<\

Yi(t;) :Bi (tjj-l- NS (t;)+6€;

i

E




e Baseline Protein
Artifact Slgnal

A\ \

Yi(t;) = B(t)+|\| .(,)=




e ——— .-_.,.—- . -
— Baseline Protein

Artifact Signal
Y,(t) =B (t)+ N, S(t)4e;
NormaL

1zatl




all Mocdel for Soecirurm

— Baseline Protein
Artifact Signal
r ahe A\ ' st \
Yi(tj)_Bi(tj)+ N, Si(tj)+ ST—
—
Normak additive

Ization noise d
Factor . (detector)

ey ~ N{0,0°(t))} -




— Filter out baseline and noise, normalize
— Extract individual features from signal -

— Baseline removal, denmsmg normalization,
extraction ar Telated

— Where do we start? -
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— .1, Isolate noise using wavelets

basis functions that can parsimoniously.
represent spiky functions

— Standard denoising tool in signal processing

m Transform from time to wavelet domain,
threshold small coefficients, transform back.
— Result: Denoised function and noise estimate

-
‘— Why does, it work? Signal cone d on few Wwaveleti s
coeffici : m

uted. Thresholding
remoeves noise without affecting signal.
= Does much better than denoising tools based on
kernels or splines, which tend to attenuate peaks in
the signal when removing the noise.




intensity




intensity




intensity




e ——

1 Baseline: sl artifact, largely attributable to
detector overload.

— Estimated by monotone local minimum
— More stably estimated after denoising

adjust for possibly different

ﬁ'rﬁounts of material desorj om-plate_

e denoised and
baselme corrected spectrum.
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— Proteins, peptides, and their alterations
— Alterations: isotopes; matrix/sodium adducts; -
neutral losses of water, ammonia, 0 carbon

= [ imitations of instrument used. means we may
elbeable to resolve all peaks.

Reduces multiplicity problem

— Focuses on units that are theoretically the scientifically
Interesting features of the data.




:;J_Easy@ﬂoatér other preprocessing

= Any local maximum after denoising, baseline

correction, and normalization IS assumed to
correspond to a “peak”. .

= May want to require S/N>o to reduce number of
Spurious peaks.

‘_'We can estimate the noise Process a(t)-byémw
= i [Se'from the wavelet

— Signhal-to-noise estimate Is ratio of
preprocessed spectrum and noise.
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Find the left and right endpoints of
the peak, compute the AUC in this interval.

Take intensity at the local maximum: .

(may want to take log or cube root)
= Theoretically, AUP quantifies amount of given 1
‘Wastanceﬁesorbed from the.chip. -l

WMomts of peaks




= The maximum intensity is a practical alternative

— No need for endpoints, should be correlated with AUP

— Physics of mass spectrometry shows that, for a given ion with m/z
value x, there is a between the
of that type desorbed from plate and the -
at x.

= Problem with both methods:  Overlapping peaks
at are_not deconvolvable -
- _ i weighted average off s

peaks have mass at location t.

— short of formal deconvolution, have
not seen simple solution to this problem.




""‘—“h‘ pe'ak'dmectlon performed on individual
Spectra, peaks must be matched across
samples to get n x p matrix.

— Difficult and arbitrary process
— What to do about “missing peaks?”

Identrfy peaks.eon mea e
NOE | Xp), then quan!r@—!

Peaks on mdrvrdual spectra by Intensities at
these locations.



— Avoids peak-matching problem

— Generally more sensitive and specific
= Noise level reduced by sqgrt(n)

= Borrows strength across spectra in determining
whether there Is a peak or not (signals reinforced

over spectra) e

— Tends to be less sensitive when prevalence of peak
< 1/sqgrt(n).
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Noise level

Noise level

oal
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MNoise in the mean of 24 spectra
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Moise in one spectrum
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Intensity

Found by both

Found by
MUDWT only
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Not found
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\)Jmll|cl£JOfJ StUC cly

- 1. Generated based on
MDACC MALDI study on pancreatic cancer.

2. For each virtual population, generated
, Obtained

3. Applied preprocessing and peak detection method
based on individual and average Sspectra -

‘§umm5ﬁz‘ed performance ba (1511118 A(proportion.
of proteinsidetecied)anas = ») = tion of peaks -

— s

corresponding to real proteins). —
— Tricky to do — see paper for detalls.



sensitivity | FDR pv*
0.75 0.09 | 0.03

(indiv. spectra)
W 0.83} .06 | 0.97

*pv=the proportion of simulations with higher sensitivity




(16%) (30%)
sensitivity [0.43 0.74 0.81 0.82
senS|t|V|ty 0.38 0.74 0.93 0.97

el

1.00




-

=) IPICITETIOf
By Agugiclagics (rregarl log intensity)

D NC

F

———

:-_,—;;Jo,g.(u): <9.0 [9.0-9.5 [9.5-10 [>10
(31%) |(27%) (23%) (19%)
sensitivity |0.68 0.75 0.78 082
sensitivity 0.78 0.84 0.85 0.88
g 0.97 0.89 0.84 0.78




2-D) Gel Electropheresis\




Wriy s Gel /—\f]cl]/S SIS

:=i-—r—'—__._.__

—= Usual Appr _ —

_:_—_-...:
— Noermalize individual gels

— Detect spots and draw spot boundaries on
iIndividual gels

— Match spots on each gel with spots on a chosen

‘reference” gel -

iy




2eniemsAViinge

AQQLOZICT)

B

= Complicated, error-prone algorithms

— Spot detection errors (miss/split/merge)

— Spot matching errors -
— Errors in spot boundary determination

= Errors tend to increase with number of gels

°n hand editing required I —
0 UCES ORECUVITY ar W}‘ analysis

Viissing spots negatively impact statistical analysis




\What li\WWe Could Eliminate the
Cormples Algorinms?

e —

. —Emnat—trre:ﬁed forst matcthg

~ = Sum data across gels to objectively detect
spots (create an “average” gel)

— Detection power increases with morneigels
= Eliminate need to draw spot boundaries

ﬁzatethe problem of missing s,p_o;g__

r—siill

editing




—=—1‘“Allgn‘ge1‘m1ages

B Compute average gel

B Denoise average gel using wavelets -
O

O

Detect spots on average gel using
Background correct and normallze individual gels

untl

of pinnacle




ngl.ge RngSE Gl

e —— L e

J Allgn all ges (6] chosen reference gel so

‘,_-——

Spoets are aligned across gels

« Easier and more accurate than matching
detected spots, since algorithm, can.bosniew,
strength from nearby regions of the gel when

aligning spots
onli na

- Weus
Jother image alignment

programs are available

r—siill




S— Why use average gel for spot detection?

—  Avoids spot-matching problem (missing spots)
—  More sensitive and specific in identifying spots

= “Real” spots will be present in multiple gels, so will be
reinforced,

= Artifacts will not, so tend to be averaged out.
—  The noise level reduced by VN

orisy.etial. (Bioinformatics, 21:1764-1775, 2005)
emonstra principle for pea

ﬂf:ures that gel images are aligned




Dlririzicla  vairioe

S\WeNdentiiy spets hasedrontthel

corresponding: -
= [Location I,] on the gel is pinnacle if it Is a
peak (local maximum) in both the hoerizontal

and vertical directions, AND *
Z;>= : Must have certainminimum; intensity

(default is 75" percentile on gel) |
Iso, combine together any pinnacles....._
(default g=2) "

[thl wvalu













Benefits of usin

e— | =R =
A — ——

e

====

~ 1. Unambiguous definition
2. Not affected by overlapping spots
3. No need to find spot boundaries

4. Excellent Sensitivity and Specificity

S

E -
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Spet Ouantification

xelNtensity Withinra eI 00

Correspoending pinnacle
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e se _Pinnacledntens
= Ql_lg_nru Cell lon7 —

e S —

T —

e = —

_,_._Plnnacle mtehsﬂy highly correlated with volume

=  No need to detect spot boundaries
— Reduces complexity/error
— Reduces CV of quantification

= No missing values
2innacle intensity for each spot in every gel

aNeliable and pmec




NerppletllZzttfeplfeeleelfetirle

Correcion

S — ——
subtract minimum value on gel
subtract minimum value within window
around pinnacle (e.g. +/- 100 pixels) -

D|V|de each

On-ﬂi‘%!@@!—

Divide each
innacle 0)Y the sum of aII pinnacles on the gel




\/gr_JJrIcl_r.Jom QJII rum Jeer

— ‘2’0702) conducted a dilution Seres ™
~ experiment to validate PDQuest and

Progenesis PG240 software

= 4 replicate gels for each of 7 protein loads

0.5ug, 7.5pg, 10pg, 15ug, sSOug;40pg;, S0 g
= \We evaluated all spots in all'gels

g Initial st valuated 20 ted spdts-—ﬁ—l
- Inhacle tor PDQuest, PG240,

and recently SameSpots



PrElrariarars =vealtleirac = 1

- Number of Spots Detected R
i-—‘ﬂ-'ﬁmn'a'clﬁnﬁﬂm — all identifed pinnacles

-~ = PD@ and-Progenesis - unmatched spots and
Spots not present in at least 3 out of 4 replicates In
one treatment group excluded

— Aligned group — to determine the effect of -
alignment alone

— Determined # of spots present in all gels




—+-Reliak a?sTss_s“é'dJoyT:omputmg R2 from
regressmn of spot guantification on protein load
— Linearity of quantification over different protein loads

- assessed by computing CV.fer 30 g
load




Pinnacle | 1380 1380 1380 100
PDQuest | 2692 1376 377 60
PG240 1986 875 271 84 ,
a e, | — ——
: 6 887 312 80
SameSpots | 688 688 688 100




Reliability: and; Precision

Y- ~ e - H QrAant e H O ~¥-1a - ‘N lean
JULD ncal

Pinnacle 1403 1203 10.924| 983 20.0

PDQuest 1376 847 |0.835| 498 54.7

PG240 875 666 |0.883| 304 40.3
69 41 g
887 /713 10.894 | 144 47.4
SameSpots | 688 646 |0.956| 464 20.2

el

0-a







Precision - N, and C

Dlstrlbutlon of CV across Spots (30ug)
200

p=1013 p=1485 p=906 p=1187 p=1083

+

o
\ I :
\ § \ :
| | ;
\ \ :
\ \




SIMETIGIND)

flss)

= — -

— = Extract of SH-SY5Y neuroblastoma cell line
= 3 replicate gels for each of 6 protein loads
— 5 ug, 10 ug, 25 ug, 50 ug, 100 ug, 200 pg
= Evaluated all spots in all gels




Spoet Detection and Matehing

___._....___.__:—:;;:::'___ — ots  _ Match
Pinnacle 1013 1013 1013 100
PDQuest 2461616) 1297 40 45 =
PG240 | 1891 979 51 30 |

1103 ~ *’—@m!#
J-a 1730 1092 143 43
SamesSpots 1037 1037 1037 100




Reliability: and; Precision

MK

Pinnacle 1013 663 0.889 859 26.6

PDQuest | 1297 406 0.735 2611 64.4

RG240 9/9 295 0.662 188 53.2 #

21(2 58.8

PG240-a | 1092 384 0.698 182 59.9

SamesSpots | 1037 o501 0.804 10]0 29.9




Distribution of R? across Spots
\ \ \ \ \
p=979

—_—

f




Precision.-.Hemeagrewn

Distribution of CV across Spots (50ug)

\ \ \ \ \
p=1380 p=1326 p=821 p=1309 p=852

200

B
|
|
|
|
|
|




Effect of Increasing Gel Numbers

— e r

Experiment.= " PDQuest logenesis.
3.gelsi SV 9%
9 gels 70% 9%
271 gels A2% 2L
. -
dIIgNEETYElS &2t GOV -
S allORECEEIS 125% (A0
27 alignec gels 52% 29%




o 2 pid — =1 minute_f?)r;6f)'geTs"

= — use of average gel borrows strength
across gels, allowing one to find fainter spots, thus increasing realized
dynamic range of gel

= — use of average gel minimizes artifacts

. — guantifications for each spot on every gel

- — use of the average gel and pinnacles
ctAtk

— significant Issue with other automatic

methods



ProteomiCS' Feature Extractio pproach

_""‘"'P‘erftff anystatlstlcal test on columns of Y — obtain test
— _statistics or p-values(like microarrays)

— e control for multiple testing, use FDR (false discovery
rate) based method to find appropriate threshold for
determining significance.

= Global FDR control: control expected proportion, of; false _
discoveries

= | ocal FDR estimation: For each feature, estimate probability of
being false discovery if called significant

assiprediction can also be.donge, but IMﬂ(
oteo W@ be use

= Be sure to properly validate your classifier (with external;
not internal CV) for accurate estimates of predlctlon error




Rroteomicsa EealledExiaction /AppLioach

1 Advaniages of feailre exiraciorn aoproacr:
—Veanngiul dimension redUCon: redUCESIgRE===

“dimensional functions/images to S|mple matrix.

— — Computatienally efficient: computing time and memory.

— Flexibility: can apply any statistical method to N x p
matrix

— |f effective, should capture biologically meaningful
iInformation in the data.

= Disadvantages: —
ﬁtential dISCOVENESIMISS 2aliEsH m
ffictltteimocel’ systematic functional effects of nuisance factors.
L model entire spectrum/image as

function



Pretecomics; EunciicnallVvie

1*EPI E&@L | ra/images

ﬂpply_gngtlonal MOodeltorSpectra/images

— Model must be flexible enough to capture
complex features in data

— Must be computationally efficient eneugh to
handle very large functions/images

‘\Navelet-based functional.mixed model il
-—-—-“
(yeste well. —

form model-based Inference e identity
significant features or perform classification.




= and are covariance surfaces describing the how
the random effect curves/residual error processes

anyracrossireplicates. —
ﬁ- ﬁr imagmn(—,-u,-aﬂdqaé functions of both

1) and molecular mass (t,)

= Model fit using Bayesian, wavelet-based method
= Yields posterior samples for all functional parameters



Model; MALDI Example
Y(D)

: |ng{Yi (t)}= Bo(t)_l_ixij Bj (t)+§zikuk(t)+ Ei (t) l.

. =1 for lung, -1 brain. =1 for A375P, -1 for PC3MM2
=X * X, =1 for low laserintensity; =1 gi:

= overall mean spectrum = organ.main effect function

Llinedmain effect = org x cell-line int function

%‘s‘er Inte
/1s from mouse k (k=1, ..., 16)

e U, (1)is random effect function for mouse k.




Posterior Mean for Overall Mean Spectrum with Peaks, Organ by Cell Line Example

N
o

Normalized Intensity
o

10

8
m/z (kDaltons)




ACIElD

1 oA 3 y
s rr.:*'r:r._xc S C

U (t) are also from Gaussian' prior;
smce each wavelet coefficient has its own random effect &
residual variance

e Able to preserve
spikes in random
effect functions,
as well

e Important for
estimation of
random effect
functions AND for
valid inference on
fixed effect
functions.

,..u.\ﬁm ot A MR 0 bbb oat A/ NV N 0 Lttt AT N S
4000 6000 8000 10000 12000 4000 6000 8000 10000 12000 4000 6000 8000 10000 12000
m/z m/z m/z




Resultis; MAILDJ Example

Raw Spectrum Pre| S m Model-G Spectrum
= x10*  Normaar  Normal Normal
2 60 60
50 50
5
= 40 40
£ = =
7] 7]
.E‘ 1 § 30 g 30
s = =
= 20 20
0.5
10 L 10 k
o o l L | l\ o N
1 2 3 1 2 3 1 2 3
m/z (Daltons) x 10% m/z (Daltons) x 10% m/z (Daltons)
Raw Spectrum, Preprocessed Spectrum, Model-Generated Spectrum,
x 10* Pancreatic Cancer Pancreatic Cancer Pancreatic Cancer
2
_— 1 '5
= 40
= z z
= 1 g 30 £ 30
= = =
[
E 20 20
0.5
% 10 L 10
o o Lihhid A o o i Akl | K
1 2 3 1 2 3 1 3
m/z (Daltons) x 10% m/z (Daltons)

m/z (Daltons) x 10

s Draws ofispectra from posteriorpredictive

R

distribution yield data that looks like real MALDI data

(3"d column), indicating reasonable model fit.




Mogdeling Blocki Effects

(a) Laser Effect, Peaks 3412.6 and 3496.6 (c) Laser Effect, Peak 11721.0
5 1.5
= = 17
(72} (2]}
= f =
K] 2
= =
= -
& &
£ £
(=) o
= =
-5 - : : - - -1.5 : : : : :
3300 3350 3400 3450 3500 3550 3600 1.15 1.16 1.17 1.18 1.19 1.2 1.21
m/z m/z x 10%
(b) Group Mean Curves, Peak 3886.3 (d) Group Mean Curves, Peak 11721.0
15 10
Overall Mean Overall Mean
= Low Laser Intensity = Low Laser Intensity
D High Laser Intensity "D 8 High Laser Intensity| ]
= =
L 10 2
= =
=4 =4
D D
N N
[a~] L ©
g ° £
o o
= =
Q o)
3300 3350 3400 3450 3500 3550 3600 1.15 1.16 1.17 1.18 1.19 1.2 1.21

m/z m/z x 10*

Inclusion ofinonparametricifunctional laser intensity
efrect I1s able to

between laser intensity scans




Bavesian Inference:
Class Comparison

\'_'j\\ 0) L ol 'oo""e Sdl eej-jbgsxej;_ijjgel — —
~ functions B, (t), which measures the effect of factorion
~ —each location t of the spectra.

Flag regions of t with |B;(t)| large as potential
biomarkers
Given desired effect size > 6, compute pointwise

posterior probabilities of effect size for factor | being at
least o :

»These quantities are Bayesian local FDR estimates at
e —

differen scovery rate
. Cross regions of curves, not genes).

Can find cut point on local FDR to control Bayesian
estimate of global FDR at level a.

_—



Resulisi MALLDILExample

Cell Line Main Effect Organ-by-Cell Line Interaction Effect
10 10
© o
-_— 5 - —_— 5 L
8 S
v (2]
N o~
[=2] [=2]
3 o = o
= =
w [723
2 5
£ 5 E 57
-10

N
o

11 14 2 5 8 11 14

N
m L
(]

m/z (kDaltons) m/z (kDaltons)
Pointwise Posterior Probabilities of 2-Fold Change, Pointwise Posterior Probabilities of 2-Fold Change,

0.999
o.99f A ﬂ
o.90} I 14

0.999
—_ _. 099 1
= = J
5 4 .ln. d o T 0.90h T [T R i E
2 w U' | (. 2
] ]
5 0.50 S 0.50
=] =
= £
. 0.10 < 0.10 B
= =2
£ £
0.01 B 0.01 B
0.001 0.001
2 5 8 11 14 2 5 8 11 14
m/z (Daltons) m/z (Daltons)

= Using 0=0.05, 6=1 (2-fold expression on log,
scale), we flag a number of spectral regions.




Results;, MALDI Example

(a) Organ Main Effect (b) Organ Main Effect
— 10 T T 4 T .
== LUNg-Injected
5 m Brain-Injected 2t
z 2 o O
[y C T RC R IERRCEE
@ @
= E -2
Lung-Injected
-4 Brain-Injected
10 6 Overall Mean Spectrum
3800 3850 3900 3950 4000 7500 7550 7600 7650 7700
m/z (Daltons) m/z (Daltons)
(c) Pointwise Posterior Probabilities, 2-fold difference (d) Pointwise Posterior Probabilities, 2-fold difference
— =0.9995 —~ >0.99951 . T T 7
b =
o o
a  099r a  099r 1
k=] k=]
e 080 2 o0so- -— .
1 1
o 0.50 o 0.50
o g e *
123 0.10+ g 0.10+ ]
§ 001 §  oo1f
= <0.0005 : : : > <0.0005 :
3800 3850 3900 3950 4000 7500 7550 7600 7650 7700
m/z (Daltons) m/z (Daltons)

3900 DI (~100=feld)X ):dilatesiblood vessels in brain

7620"Dr(~5-fold) ( ): active in synaptic modeling
in brain (Not detected as peak)




‘Proteomic data are complex, req
' a‘ily3|s procedure

‘Preprocessing important to remove artifacts
from data and get data on common scale

Feature extraction approach quick and easy, but
could miss stuff

Functional modeling does not require feature
extraction, but involves complex modeling and is
mputationally intensive.

~ Each meth its merits: simulation studies
comparisons are required to

assess the cost-benefit tradeoff between the two
methods.
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e code for performing MALDI peak detection (PrepMS and Cromwell) and for -
performing MALDI-MS simulations are also available. Spot detection and

guantification software for 2d gels (Pinnacle) will be available soon. Software

for fitting the WFMM is also available on the web, and will be updated to make it

more user friendly in the future.


http://biostatistics.mdanderson.org/Morris
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