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Nonparametric Regression

> ﬂ%}\_— :

Given a response vector y={y,, ...
predictors t={t,, ..., ty}’ , a nonparametric
regression model for y on t is given by

y; = T(t)+e ei~N(O’O'eZ)

where the form of fis left unspecified.

* Goal: estimate f

e Various approaches:
— Kernel methods
— Spline-based methods
— Wavelet-based methods




Inparametric Reg

The idea behind kernel estimation is that simple
parametric estimators (mean, linear, quadratic) are <&
applied locally, with data points weighted according to a
kernel function (bounded or decays to zero)

N
Nadaraya/Watson A Z w(t, —t;h)y.
local mean estimator: T (1) = '=T\I
> w(t, —t;h)
i=1

* wis a kernel function (e.g. Gaussian pdf)

e his a bandwidth mitigating the trade-off between
bias and variance (e.g. Gaussian standard dev.)
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Nonparametric Regression:
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Nonparametric Regression:
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I e (Can estimate & from data by cross validation (or GCV) .



lonparametric Regression: |

Can improve performance by replacing ocs
with local regression fits (line/parabola)

e Fits line or parabola locally, with weights determinec
by Kkernel function

Local Linear f (t) = least squares solution to

Smoother: o 2 .
min > [y, —{by + by (t )} w(t ~t;h)
M=l

Local Quadratic f () = least squares solution to

Smoother: = 2172 .
bTb:EZ le[yi _{bo +b1(ti _t) "‘bz (ti _t) }] W(ti -t h)
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Nonparametric Regression:.
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Nonparametric Regression:
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Nonparametrlc Regressmn

problem is as penalized regression; minimize L:

| = N‘l_ZN:{yi — F )Y +af £(1)dt

e It can be shown that this function is minimized by a
cubic smoothing spline with knots at values ¢,
—Piecewise cubic polynomial between knots
—Two continuous derivatives
—Third derivative: step function with change point at knots

 Smoothing parameter: « (can be estimated from data)




onparametrlc egression.

eSS lulm JIIC

. An easier-to-fit alternative to smoothings
regression splines, which involve polynomial
regressions in intervals between chosen set of p knots

n N
K={Kpy Kp ooy Kyl minimize ) (y, — Xb)?
Cubic 1t 2 (G-x)? o (G-x,)
Regression : x —|: : : . :
Spiivg _1 G Oy o Gl o (G _Kp)i_

* where (t-K)3,=(t-x)3 it (t-K)>0, 0 otherwise
* Knots frequently chosen to be at quantiles of ¢

—Can be shown that 7-8 knots sufficient for most smooth functions

s e



* Problem: wiggly fits because no penalty &

e Solution: Penalize ijz for spline terms
P-Splines (Eilers and Marx, Ruppert Wand and Carroll)

N
minimize ) (y; — Xb)* + A°b' Db
i=1

* Where D is a diagonal matrix with 1’s corresponding
to the “spline” terms, and 0’s to the “polynomial”

 Smoothing parameter: A
* Solution is ridge regression estimator:
y=X(X'X+A°D)* X'y




onparametrlc egressmn:

=1y I —‘-"ll,"‘: o Y

. Can be represented by linear mixec

u~ N(0,1°
Y=Xb+Zu+e ( 2)
e~ N(0,0))
1 L t12 t13_ _('[1_K1)?r (tl_Kp)i_
X=t 1 | z=| i
1t ty 4] (ty—x), - [t —K)

e Spline coefficient estimators are BLUPs from LMM!

— Linearly shrunken towards zero according to relative sizes
of A?and o7 ; equivalent to mean zero Bayesian prior on u

 Smoothing parameter is variance component!
— Estimated from data using REML




Nonparametric Regressmn

' hat if we have a spatially heterogeneous

DMNA Repair Enzyme




Nonparametrlc eg_ressmn

What if we have spatially heterogeneous dat:

— Different degrees of smoothness at different parts of

* We need spatially adaptive smoothers
(regularization rather than smoothness)

* Kernels can be spatially adaptive
— Spatially varying bandwidth
* Splines can be spatially adaptive

— Vary knot locations (free knot splines)
— Spatially varying smoothing parameter

* Wavelet Regression: has been shown to adjust
optimally to varving

ing smoothness (Fan. et al. 1993'




Wavelets:

*Any function fin L?/-7, 7] can be represented by a

a, & {a. cos(jt) sin(jt)}

y(t) =—=—=+
N2rx ; N N
*Coetficients (a,b;) describe
a9 — <y 1 > _ ]ﬁ y(t) 1 dt behavior of the function at
’ Jorx S A2rm frequency j

i T cos(jt) /1/V27m, 1/vcos(jt), 1/v7 sin(jt)
= Iy(t) N dt  j=1, ..., o form a complete
i orthonormal basis for L?[-7, 7]

sin(jt)> T sin(jt) U )= Ik

b, :<y, = [ y(®) dt Sebi /= 1G=R)

| Jr —-[r Jr *This set of functions spans
L*[-7,7f

| -




Wavelets:

eries also have a co

e’ cos( jt) sm( jt)

YO = X dp,Ofory, O - Norar- iy =ol

* {¥, jJ=x ..., oo} form a complete orthonormal basis for L*f-7 7]

* Discrete Fourier Analysis: For signal defined on an equally
spaced grid of size T, a fast algorithm {FFT, O(TlogT)} is
available for computing Fourier coefficients from the observed
signal. (Transform data to frequency domain: 7->7)

e Fourier analysis useful for signal processing, but has important
limitation: all location information lost in frequency domain
— Useful for processing stationary signals, but not so much for nonstationary
— What if we had a set of basis functions that decomposed information in

both the frequency and time domain? We do! Wavelets!!




W]k (t)

d k = <y’ ij> = _[ Y(t)l//jk (tt

* Coefficient d; summarizes behavior of the function at scale
(frequency) 1ndexed by j, and location indexed by k.

=S

], ke3

‘ W(Z jt — k)

* {Wy Jyk=-, ...,00! form a complete orthonormal basis for L (%)
* The mother wavelet basis function, v, has several properties:
- Jydt=0, [y’()dt=1

— It has a corresponding father wavelet @ such that (@, W)=/ o(t) y(t)dt=0
(also called a scaling function), [)dt=1, [@’(t)dt=1

— It has comiact or Vanishini suiiort iunlike Fourier bases)



et ¥y j= o2, -1, 0, I, 2, ... be a sequence of functiofy
in L’(%). The collection of spaces {V, j €3} is called a multisS .
resolution analysis w/ scaling function @ if these conditions hol

— Orthonormal Basis: The function ¢ belongs to ¥V, and the set
{p(t-k), k €3} is an orthonormal basis for V.

— Nested: V.V,

— Density: (W =L*(%)

~ Separation: [V ={0}

— Scaling: the function f{?) belongs to V, iff the function f{2¢) belongs to V,,
Thus, {2/°@(2't-k), k €3} is an orthonormal basis for V

* Note the following properties also hold:
— W=space spanned by {2"*y(2t-k), k €3}
- Vs

- 2/25/2008




Wavelets:_‘_ 2

*The simplest and oldest wavelet is the Haar wavele

() = 1, (@) | evel 0 haar scming and waveiet funstons
(1fort €[0,0.5) .
w(t)=1-1forte[0.51)
0 otherwise .

.

* o wdi=0 [p)dt=1 [¢’(Ddt=1 [y@)dt=0 [y’ ()dt=1

* V,=space spanned by {¢(t-k), k €3} (piecewise const, jumps 1)
* W,=space spanned by {y1t-k), k €3},

o V,=space from {217 ¢p(2t-k), k €3} (piecewise const, jumps %)

NGl & BB 3



Wavelets:

(1fort <[0,0.5)

P20 (1) = 1103 (1) Veo(t) = ~1fort e[0.5)
*Consider L*{f0,1); | Ootherwise [

Level O haar scaling and wavelet functions

T T T
0.0 0.5 1.0




Wavelets:

[ 2Y2 fort [0.5,0.75)
P (t) =215, (1) wy, (t) =<-2"" fort [0.751.0)
0 otherwise

Level 1 haar scaling and wavelet functions

0.0 0.5 1.0




Wavelets:

(2 fort €[0.75,0.875)

P () = l10.75.1.00) (t) W,(t) =41 —2forte[0.8751)
0 otherwise

Level 2 haar scaling and wavelet functions

T T T
0.0 0.5 1.0




Wavelets:

Haar Example

0.0 05 1.0




Wavelets:

Level O Scale Coefficient

0.1 .
0.0
0.2 7

c00=1.5
O

0.0
0.2
0.1
03 =

T T
0.0 0.5 1.0




Wavelets:

Level 0 Wavelet Coefficients

O 6 DdUO =0.3G

T T T
0.0 05 1.0




Wavelets:

Level 1 Wavelet Coefficients

d10=

-0.99

d11=

-0.28

T
0.0

T
05

T
1.0




Wavelets:

Level 2 Wavelet Coefficients

0.4
d234

-0.4

1.0
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—-0.99
—-0.28

e Full rank

transformation from<g

space to wavelet space

 Can be written y=dW

I Do (1) Do (L5) )
W' WOO.(tl) i ‘//oo.(ts)
CW23 (t,) - Wty )_J
Orthonormal Wave?gtTransform Matrix
- WW=WW°’=

o Thus yW’=dww”



Wavelets:

- 101 Level 3 Scaling Coeffcients C,| (0.1
0.0 - c,| 0.0

0.2| - G| (09
(o8] - o=
oo -l ame e =99
0.2| - =

| |0.1

0.1] - | 03
0.3 © Level 0 Decomposition



Wavelets:

Level 2 Wavelet and Scaling Coefficients _Cz ] _O 2
0 :
0.0 = Q_1i1.6 =1 = C,| | 1.6
02 c23$0.8 G 0.4}
06 d2070.2 ’ T Tﬁ d() = C3 _ 0.8
Y= = = c2040.5 §991%% d, 0.2
0.0 1t ’
d d234-0.4 d21 -0.8
02 g d215-0.8
d,l |-0.4
0.1 - — — = = |d |-04
_0-3_ : Ot.5 Leve1f 1 Decomposition



Wavelets:

1.27
0.85
090l
-0.2§

0.2
-0.8
-0.4

B O 1 Level 1 Wavelet and Scaling Coefficients
N Cio

OO c10=1.27 Ci

0.2 -- | dho
c1140.85, d,

— 0.6 o - d11=0.28 (@)= d

y T O O 20
' N )i d21

0.2 d10=i0.99 - d,,
0.1 - . . s

_0-3_ ? Level 2 Decomposition

1 -0.4]



Wavelets:

£ Level 0 Wavelet and Scaling Coefficients
0.1 c.| [ 1.5]
o 00
0.0 4| | 03]
02| . dio| | 0.99
-- ————lr15 -0.28
0.6]. wokos o (B Oy |_
y: . d20 0.2
0.0 d,| | -08
0.2| | d,| | -0.4
0.1l | | dy;| | -0.4
0.3 ' : Level 3 (full)
R Decomposition



Wavelets:

= ¢ Consider function y(z) observed on equally spaced grid size 7=2’

@ dj; @ dy , @ @ d,

Decomposition Level:
0 1 2 J (full)




] - Wavelets:

the Wavelet coefficients, each inner produc |
only involves multiplication of a portion of the
data vector by [2-17 2-12] or [2-77? -2-172] | These
are called the Haar’s filter coefficients.

Thus, the matrix W can be generated by
convolutions of these filter coefficients within a
banded structure. These allow this pyramid-
based algorithm to run very quickly O(T).
(DWT/IDWT)




. Propertles of Haar wavelets:

~ [ YWdt=0 [pW)dt=/@(Wdt=1 [y()dt=/y*(Qdt=0, M} O
— Orthonormal transform (y=dW tor orthogonal W)

— W determined by two “filter coefficients”: [2-12, 2-12]

— Has compact support on [/0,1)

— Vanishing “zeroth” moment: /Ay t)dr=/y(t)dt=0
 Other wavelet bases:

— Suppose we want wavelet with orthonormality, compact
support, but also want vanishing 15t moment /#yq?)dt=0

— Is there a wavelet/scaling function pair with these properties?

. 35

ay e
£ f
) 1l ,,'
f 0

- 2/25/2008



Wavelets:

No closeddg
express

|

[.Eh_

1_|,r|:t]| and ¢|:t]|

e Compact
support on [0,3)




- Wavelets:

 Daubechies family of wavelets (Iﬁlb 198

* Indexed by number of vanishing moments “
— All Daub wavelets have the properties:

* Jo) y)di=0

+ [ode=[@dr=1

* [yde= /[y’ ()dt=0

e Multiresolution Analysis (MRA)

e Orthonormal transform (y=dW for orthogonal W)

— Determined by L=2N filter coetficients
— Has compact support on [0,2N-1)
— N vanishing moments: /¢y t)dt=0 for a=0, 1, 2,..., N-1

- 2/25/2008



Wavelets:

Daubechies 2 Daubechies 4

W(x) and §(x)

X X
Daubechies 7 Daubechies 10
1.5 . ; 15 ) .
1 1t
x 05 1 05¢ W
g A
°
§ O 0 \a
2 |
> =05 =051




What if we also require L vanishing moments for
function @?

Coiflet Family (Daubechies 1992, for R Coifman) (V)
All Coiflet wavelets have the properties:

- Jo®)y)dt=0

- Jodt=/¢'@)dt=1

- JYde=/y()dr=0
— Multiresolution Analysis (MRA)

— Orthonormal transform (y=dW for orthogonal W)
Completely determined by L=6N filter coefficients

Has compact support on [0,6N-1)
Wavelets: 2N vanishing moments: /#yt)dt=0 for a=0, 1, 2,..., 2N-1
Scaling: 2V-1 vanishing moments: /#*@(¢)dt=0 for a=0, 1, 2,..., 2N-2




Wavelets:

Caiflet 1 Coiflet 2
25 T T T

wit) and ¢(t)
wit) and ¢it)

15 I 1 L | I | L 1 I 1 1 | | 1 | | 1 1 | I
05 1 15 2 25 3 35 L] 45 5 0 1 2 3 4 5 B 7 8 9 10 "
t t
Coiflet 3 Coiflat 4

15 T T T T T 15 T T T

1F B 1F ~
= 0ap — = 05 B
=S =
= =
c 2
= &
g, [ g, [

0af B 05 B




Y= D du (0 d j YO, (2)dt

Jke3
_nll2 j
l//jk(t)—z w(2°'t—K)
I1xT TxT 1xT T xT
Linear e —— (T _ W‘ ;
Representation: Y = (l W = 2:
IxT IxT

e Given T-vector y consisting of function sampled on equally-
spaced grid, a pyramid-based algorithm for DWT (Mallat) can
be used to obtain d, 7 —vector of wavelet coefficients for the
given family, in O(T) operations (converse also true)

* We never need to compute or think about yor ¢, since we can
apply the DWT using only the wavelet family’s filter coefficients

2/25/2008 http://biostatistics.mdanderson.ora/Morris 41



Wavelets:

= ¢ Consider function y(z) observed on equally spaced grid size 7=2’

okl oI 6. o

Decomposition Level:
0 1 2 J (full)

 DWT: Can be computed in O(T), Also IDWT
e Note: The low pass and high pass filters, s and 4, are




Wavelets:

T not power of 2?
— Adjustments to DWT possible (Percival& Walden 2 lu )
e Choice of wavelet basis :match data features

— Piecewise constant (aCGH): Haar

— Smoother functions: Daub#N with N higher

— Symmetric features?: Symmlets or Coiflets

— Tradeoff: smoothness vs. filter length
 Boundary correction issues (all but Haar)
— Periodic, Pad with zeros, Reflection

 J=Number of levels of decomposition
— Full decomposition: J=log,(7)

— Choose J: floor(K; /2)>L-1 (at least one coefficient in
middle unaffected by boundary conditions, PW2000)




- 2/25/2008

Wavelets

Very fast calculation : O(T) T |
Compact support : good for spatially heterogen .?'
data

Signal compression: concentration on few d
Orthogonality: distributes white noise across d

Whitening: autocorrelation of wavelet coetficients
tends to die away rapidly across k; d;,
approximately uncorrelated (Johnstone and
Silverman 1997)

Time/frequency decomposition: lcy to adaptive
smoothing




~ Wavelets:

*Wavelet Regression: i
—Row vector y: response on equally-spaced grid ¢ (length T) <

y=0(t)+& &~N(O,°l;)

1. Project data into wavelet space using DW'T.
d=yW’ where W’ is the orthogonal DWT matrix

Recall: d={djk, j=1, ..., J; k=1, ..., Kj}

‘



- Wavelets:

*Wavelet Regression: 2
—Row vector y: response on equally-spaced grid ¢ (length T) S

yW'=g(t)W'+eW' &~ N(0,c°1,)

1. Project data into wavelet space using DWT.
d=yW’ where W’ is the orthogonal DWT matrix

‘



*Wavelet Regression:

—Row vector y: response on equally-spaced grid ¢ (leng

d=g(EOW+eW' £~N(0,0°I;)

1. Project data into wavelet space using DWT.
d=yW’ where W’ is the orthogonal DWT matrix

-7



~ Wavelets:

*Wavelet Regression: .
—Row vector y: response on equally-spaced grid ¢ (length T) <

d=0+eW" ¢~ N(0,6°I,)

1. Project data into wavelet space using DW'T.
d=yW’ where W’ is the orthogonal DWT matrix

Note: 0={ij: j=1, ..., J; k=1, ..., Kj}
By sparsity property, we expect few |6,,|>0




*Wavelet Regression:
—Row vector y: response on equally-spaced grid ¢ (length T) 2

d=0+¢ ¢~N(0,5°l;)

1. Project data into wavelet space using DW'T.
d=yW’ where W’ is the orthogonal DWT matrix

Note: e =eW’~N(O,We’l W’)
~N(0,6°WW’)

~N(0, ¢°I ;) since WW’=I_.(orthogonalit
o, T
E;/ZE)/ZOOB'{:‘-;,}I : 49



avelets:

-Wavelet Regression:

—Row vector y: response on equally-spaced grid ¢ (leng

d=0+¢ & ~N(O1O-2|T)

1. Project data into wavelet space using DW'T.
d=y W’ where W’ is the orthogonal DWT matrix

2. Estimate 0 by hard thresholding : 0,=d; *1(|d;|>06°)

6 = ,/2log(T) is Universal threshold (DJ1994)
3. Project back to data space using [D'W'T

G(t) =W

* _Yields adaptive regularized nonparametric estimate of g().

2/25/2008 http://biostatistics.mdanderson.ora/Morris 50



Wavelets:

Regularization by Local Linear Smoothing

—— Span=0.20




Regularization by Local Linear Smoothing

= Shan=0.05
—— Span=0.20




Wavelets:

Regularization by Local Linear Smoothing Adaptive Regularization by Wavelet Shrinkage

— Span=0.04
= Span=0.20




Wavelet

OMNA Repair Enzyme
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DMNA Repair Enzyme

Spiky function:

- Wavelets:

d




DMA Repair Enzyme

50
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Donoho and Johnstone’s Universal threshold




DMA Repair Enzyme

50

40

30

20

Local Quadratic Regression: maximum /4 to preserve spike




Wavelets:

~ Hard vs. Soft Thresholdlng

— Hard thresholding: 6,=d, *I(|d;|>00°)
—  Soft thresholding: 6;=sgn(d;)x(|d;|-66°)"
— Hard: preserves peak heights better at cost of smoothness

—Nothreshold |
. —Hard threshold
——Soft threshold

stimate

e  Universal vs. Level Dependent Thresholds
—  Level dependent thresholds do7 perform even better



 Bayesian hierarchical approach : Prior dis
on &; can mimic the idea of thresholding
dj =N(04.,0%) 0, =7, N©.7°%0%) +1~7,)5,

¥ = Bernoulli(z ;)

. sz and 7; are regularization parameters

— Can be specified, or estimated from data using ML in
empirical Bayes fashion (Clyde and George 2000)

* Conjugate model (given ¢°), so closed form (8;|d;, 6°)

‘




Wavelets: W

(0 |d;,0?) =P N(d,SF;,02SF, )+ (1—P,)],

2
J

.
SF. =

J 2
J

="Linear shrinkage factor"

75 +1

P, =Pr(y; =1|d; ) ="Nonlinear shrinkage factor"

o}
Pr(yjk =1|djk):O ’:1, O, = Posterior Odds
jk

D>

T —1 d '2k SF. jk,hard_thresh — d jk I (ij > 5)
Ojk = J (1+2'?) exp : > J ~
rior N - " o 20 / gjk,soft_thresh =d jk SFJ I (ij > 5)

Posterior Odds
jk ,shrinkage — d jk ijSFj

Prior Odds Bayes Factor

D>



0 estimate

Wavelets:

—No Threshhold

—Hard Threshold
—Soft Threshold

«1—Shrinkage Estimator

c’=1, °=10, n=0.20, 6=0.50

D>

ic.hard thresh = A1 (Pye >0) |
jk,soft_thresh — d ijFj I (ij > 5)
=d, P SF,

>

D

jk,shrinkage

| | |
0 1 3

d




|0 Shrinkage

Linear Shrinkage
Linear Shrinkage
=hrinkage Estimatar

0 estimate

o°=1,

°=10, n=0.20

0

=d,P,SF,

jk,shrinkage

‘9jk,|inear — dijFj
‘9jk,non|inear =d jk ij
4 3 2 1 0 1 2 3 1




|0 Shrinkage

Linear Shrinkage
Linear Shrinkage
=hrinkage Estimatar

0 estimate

o°=1,

°=5, 1=0.20

0

=d,P,SF,

jk,shrinkage

‘9jk,|inear — dijFj
‘9jk,non|inear =d jk ij
4 3 2 1 0 1 2 3 1




|0 Shrinkage

Linear Shrinkage O'2=1, T2=2, 7=0.20

4 Linear Shrinkage
=hrinkage Estimatar
2 L
|:| L —

0 estimate

gjk,shrinkage =d jk ijSFj
2Lk . ]
‘9jk,|inear = dijFj
Ak ~ |
‘9jk,non|inear — djk ij

-5 -4 -3 -2 -1 H 1 2 3 4 5
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