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Linear Mixed Models: 
General Linear Model

•Suppose we have N
 

data points yi

 

, i=1, …, N
 

that we would like 
to explain by a set of p

 
explanatory variables xij

 

; i=1, …, N; j=1, 
…, p.  The xij

 

may be continuous variables, or discrete (dummy) 
variables.  A General Linear Model

 
is given by:

• In many applications, we assume the errors are 
independent and identically distributed, so 
ei

 

~N(0,σe
2)
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Linear Mixed Models: 
General Linear Model

• This form is very general, with different 
specifications of xij corresponding to various 
classical statistical methods
– Continuous: Linear regression
– Dummy variables

 
(2 groups): t-test

– Dummy variables
 

(>2 groups): ANOVA
– Combination

 
of continuous and dummy 

variables: Analysis of Covariance
• Note:

 
bj are partial effects; i.e. describe the 

effect of predictor xij after adjusting for all 
other effects in the model
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Linear Mixed Models: 
General Linear Model

• This model can be written in matrix form:

eXby +=
Where y is an N×1 response vector, X is an N×p 

design matrix, and b is a p×1 vector of fixed effects
• Typical goal:

 
estimate and perform inference on 

fixed effect vector b
• The form of the design matrix, X, indicates the type 

of modeling being done

),0(~ 2
Ne INe σ
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Linear Mixed Models: Examples

• Simple linear regression
To perform a simple linear regression of Y

 
on x, specify:
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• b0

 

=Intercept  
• b1

 

=slope
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Linear Mixed Models: Examples

• Polynomial Regression: 
To perform a polynomial regression of Y

 
on x, specify:
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• b0

 

=Intercept,   bj

 

=polynomial level j
 

coefficient
• Note: Centering x

 
reduces collinearity
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Linear Mixed Models: Examples

• Multiple linear regression
To perform multiple regression of y

 
on {x1

 

,x2

 

,…,xp

 

}:
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• b0

 

=Intercept  
• b1

 

, b2

 

, …, bp

 

=partial slopes for factors 1, …, p
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Linear Mixed Models: Examples
• T-tests: Define dummy variable (categorical factor)
• x=1

 
if group 0, -1

 
if group 1
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• b0

 

=Intercept (overall mean of y) 
• b1

 

=Main effect for group (=0 if no group effect)
Note:

 
F-test for H0

 

:b1

 

=0
 

is equivalent to t2

• What if there are >2 groups we want to compare?  1-
 way ANOVA
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Linear Mixed Models: Examples

• ANOVA (Cell Means model): (g
 

groups)
• Let xij

 

=1
 

if subject i
 

in group j, and
 

no intercept
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• bj

 

: overall mean for group j
bj

 

=bj’

 

implies groups j
 

and j’
 

share common mean
• Contrasts

 
can be used to set up comparisons of interest
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Linear Mixed Models: Examples

• A p×1
 

vector c={c1

 

, c2

 

,…,cg

 

}
 

specifies a contrast

∑∑
==

==
g

j
jjj cbc

1

g

1j
0 if                ,L 

• Specifies a linear combination of fixed effects that 
indicate a certain comparison of interest.

• E.g. Can be used with cell means model to test 
difference between groups j

 
and j’: cj

 

=1, cj’

 

=-1
• Given set of l

 
contrasts of interest, can construct l×g

 contrast matrix
 

C
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Linear Mixed Models: Examples
• Analysis of Covariance (ANOCOVA) 
• Cell Means model: (g

 
groups, p

 
covariates)

• Let xij

 

=1
 

if subject i
 

in group j, j=1, …, g
 Let xij

 

=
 

covariate
 

(j-g+1)
 

for subject
 

i, j=g+1, …
 

g+p
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• bj

 

, j=1, …, g: separate intercepts by group j
• bj

 

, j=g+1, …, g+p: partial slopes for p
 

covariates 
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Linear Mixed Models: Examples

• What if we have multiple categorical factors we would like to 
simultaneously consider?

• 2-way ANOVA: Includes main effects for factors 1 and 2, 
plus their 2-way interaction

• Interaction: The effect of factor 1 is different for different 
levels of factor 2 (and vice versa)

• Again, different parameterizations
 

can be used
– Overparameterized

 

model:

 

(messy!)
– Main effect/interaction model
– Cell means model, with contrasts

• Can also interact continuous factors with categorical factors 
e.g. growth curves with intercepts and slopes varying by group
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Linear Mixed Models: Examples

• Cell Means model: (g=g1
 

×g2
 

groups)
• Let xij

 

=1
 

if subject i
 

in group j, and no intercept
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• bj

 

: overall mean for group j
bj

 

=bj’

 

implies groups j
 

and j’
 

share common mean
• Contrasts

 
can be used to set up comparisons of interest, 

e.g. main effect and interactions
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Linear Mixed Models: Examples
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Suppose factor 1 has 2 levels, and factor 2 has 3 levels, 
with b=[b11

 

, b12

 

, b13

 

, b21
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b: Main 
effect for factor 1
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b: Main 
effect for factor 1

• L12
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b: 2-way 
interaction effect
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Linear Mixed Models: Examples

• General Linear Model:

eXby +=
• What if errors are not iid?

– Subsampling
 

(multiple randomly sampled observations per 
subject)

– Longitudinal Data
 

(multiple observations per subject over time, 
so observations are ordered)

• Solutions:
– Assume parametric error structure on e~N(0,R)
– Include random effect

 
terms in the model.

),0(~ 2
Ne INe σ
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Linear Mixed Models: Examples
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• Simple Random Effects model:
 

Suppose we 
observe r

 
repeated measurements of response y

 
for 

each of n
 

subjects (total of N=rn
 

obs.)
• Let y=[y11

 

, y12

 

, …, y1r

 

, y21

 

, …, y2r

 

, …, ynr

 

]
• Let X

 
be a design matrix for the fixed effects b

• Define an N×n
 

random effects design matrix
 

Z
 

to 
have elements zij

 

=1
 

if obs
 

i
 

from subject j, 
0

 
otherwise. 

• A random effects model can be written as:
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Linear Mixed Models: Examples

• If we integrate the random effects u
 

out of the model, 
thus marginalizing over u,

),0(~
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),0(~        ** Σ+= NeeXby
Where Σ=σu

2ZZ’
 

+ σe
2IN has block compound symmetry

 
structure

• uk

 

= random effect for subject k: E(y|subject
 

k)=Xb+uk

• σu
2: describes subject-to-subject variability

• σe
2: describes variability between observations within subject
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Linear Mixed Models: Examples 
Block Compound Symmetry
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• n diagonal blocks of size r×r, each having compound symmetry
• Note:

 
σe*

2=σe
2+ σu

2

 

is the total variability
 

and
ρ= σu

2

 

/σe
2+ σu

2 is the intraclass
 

correlation
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Linear Mixed Models: Examples 
General Linear Mixed Model
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• Var(y)=Σ=ZPZ’+R

• Most common applications use independent random 
effects and residual errors, P=σu

2Im

 

and R=σe
2IN

• Other possible covariance structures can also be used 
for P

 
and R, as needed
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Linear Mixed Models: Examples 
Fitting Linear Mixed Models

• Standard software packages
 

are available for fitting linear 
mixed models 
– PROC MIXED

 

(SAS)
– lme/nlme

 

(S+/R)
• Based on EM or Newton-Raphson

 
algorithms

– MLE for fixed effect functions (GLS)
– REML for covariance parameters

• Straightforward to perform frequentist
 

inference on fixed 
effect functions, or linear combinations (contrasts) –

 
F tests

• Trickier to test whether VC=0 but recent work in this area
• Can also be fit using Bayesian hierarchical model

– If standard improper priors (uninformative) are specified for fixed 
effects b and covariance parameters, it can be shown that the posterior 
mode Bayesian estimators are equivalent to MLE frequentist

 
estimators, and the confidence/credible bands are similar
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Functional Data Analysis
• Functional Data Analysis (Ramsay&Silverman

 
1997)

– Methods for data where ideal units of observation are curves
– Sometimes distinguish between methods for sparsely sampled 

functional data (few obs/curve, longitudinal) and functions 
sampled on fine grid (many obs/curve, functional) 

– Our main concern here is on functional data on fine grid 

• Challenge of Functional Data Analysis:
 

Must 
simultaneously consider regularization

 
and replication

– Regularization:
 

take advantage of functional structure to 
borrow strength from adjacent observations within curve

– Replication:
 

combining information across sample curves to 
make inferences on population from which they came
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Functional Mixed Model (FMM)

• Idea:
 

Relate functional response
 

to set of scalar predictors 
through functional coefficients, while adjusting for 
possible correlation between functions

 
induced by design.

• Suppose we observe a sample of N curves,
Yi

 

(t),
 

i=1, …, N, on a closed interval T

{ { {

functions
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• Bj (t) summarizes partial effect of Xj on Y(t)
• Q(t1,t2 ) and S(t1,t2 ) are covariance surfaces on T

 
×T 

describing the form of the function-function deviations
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Discrete Version of FMM

• Rows of B
 

contain fixed effect functions on grid
• Q

 
and S

 
are within-curve covariance matrices (T ×

 
T) 

approximating surfaces on the grid
– For irregular functional data, Q

 
and S

 
typically contain 

many nonstationarities, yet their dimension is too high to 
leave unstructured

Suppose each observed curve is sampled on a 
common equally-spaced grid of length T.
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Growth curve example:
• Goal:

 
Assess effect of gene A on tumor growth

• N=20
 

mice, ½
 

from knockout and ½
 

from wild type groups
• Xenograft

 
model:

 
microscopic tumor implanted

• Tumor measurements at T=6
 

time points t={0,3,6,9,12,15}
• Yi

 

(t)=log(tumor
 

size) profile for animal i

FDA: Functional Mixed Models

• Cell Means
 

Model Used
– Xi1

 

=1

 

if animal i

 

from knockout group, 0

 

otherwise
– Xi2

 

=1

 

if animal i

 

from wild type group, 0

 

otherwise

• Test:
 

H0

 

:B1

 

(t)=B2

 

(t)
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FDA: Functional Mixed Models
• Growth curves are (log) linear, so we can 

represent functions with parametric form (lines)
– No intercepts (tumor size=0

 
at time=0

 
by design)

– Bj

 

(t)=bj

 

t;  Ei
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t+ei

 

; 
– ui

 

~N(0,σu
2); ei
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FDA: Functional Mixed Models
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Mixed model in matrix form:
Let y={yk

 

, k=1, …,NT}, Xk1
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if obs
 

k
 

from knockout animal, 
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=1 if obs
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FDA:  Functional Mixed Models

• What if there is no acceptable parametric 
representation for the observed functions?

• Nonparametric representations
 

for functions: 
generalizations of nonparametric regression to 
multiple function case. Much recent work in this 
area.  

• Limitations of previous work:
– Most focus on smoothing methods like kernels and splines
– Much intended for functional data on sparse, not fine, grids
– Most models not fully general FMM (arbitrary X

 
matrix, 

nested random effects, general representations for Q
 

or S)
– Many focus on estimation, not inference

• Most of this work works with models that are special 
cases of the functional mixed model.
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Applications: SELDI Organ-by-Cell-Line

• 16 mice had 1 of 2 cancer cell lines injected into 1 of 2 
organs (lung

 
or brain)

• Cell lines:
– A375P:

 
human melanoma, low metastatic potential

– PC3MM2:
 

human prostate, highly metastatic
• Blood serum extracted and placed on SELDI chip

• Run at 2 different laser intensities (low/ high)
• Total of 32 spectra (observed functions),  2 per mouse
• Observations on equally-spaced grid of 7985
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• Goal:
 

Find proteins differentially expressed by:
– Host organ site (lung/brain)
– Donor cell line (A375P/PC3MM2)
– Organ-by-cell line interaction

• Combine information across laser intensities: 
Requires us to include in modeling:
– Functional

 
laser intensity effect

– Random effect functions
 

to account for 
correlation between spectra from same mouse

Applications: SELDI Organ-by-Cell-Line
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Applications: SELDI Organ-by-Cell-Line

• MALDI-TOF Spectrum: observed function
• g(t)

 
= intensity of spectrum at m/z value t 

• Intensity at peak
 

(roughly) estimates
 

the abundance 
of some protein with molecular weight of t

 
Daltons
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FDA: Functional Mixed Model

• Xi1

 

=1
 

for lung, -1
 

brain.  Xi2

 

=1
 

for A375P, -1
 

for PC3MM2

Xi3

 

= X1

 

*  X2

 

Xi4

 

=1
 

for low laser intensity, -1
 

high.
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Let Yi

 

(t)
 

be the SELDI spectrum i

• B0

 

(t)

 

= overall mean

 

spectrum B1

 

(t)

 

= organ main effect

 

function

B2

 

(t)

 

= cell-line main effect

 

B3

 

(t)

 

= org x cell-line int

 

function

B4

 

(t)

 

= laser intensity effect

 

function

• Zik

 

=1 if spectrum i is from mouse k
 

(k=1, …, 16)

• Uk

 

(t) is
 

random effect function for mouse k.
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Functional Mixed Model (FMM)

• Idea:
 

Relate functional response
 

to set of scalar predictors 
through functional coefficients, while adjusting for 
possible correlation between functions

 
induced by design.

• Suppose we observe a sample of N curves,
Yi

 

(t),
 

i=1, …, N, on a closed interval T

{ { {

functions
error residual

functions
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functions
response
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• Bj (t) summarizes partial effect of Xj on Y(t)
• Q(t1,t2 ) and S(t1,t2 ) are covariance surfaces on T

 
×T 

describing the form of the function-function deviations
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Wavelet-Based Functional Mixed Models
• We would like to fit functional mixed models to data 

like in our motivating examples (high dim., spiky)
• Need to find way to build flexibility into Q

 
and S, yet 

be parsimonious enough to fit to large data sets.
• Need to find a way to accomplish adaptive 

regularization
 

for Bj

 

(t)
 

and Uj

 

(t)
• Need to find way to compute this model that is 

computationally efficient
 

enough to apply to 
extremely large data sets 
(100’s-1000’s of curves on grids of 10,000 or more)

• Want to be able to perform inference, not just 
estimation

• Key:
 

Use of wavelet space
 

instead of data space to do 
our modeling.
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Wavelet-Based Functional Mixed Models
• Idea: Represent functions by their wavelet expansion
• Basis function approach:  y(t)=Σdjkψjk

 

(t)
• Benefits of Using Wavelet Bases

1.
 

Compact support
 

allows efficient representations of local 
features

2.
 

Whitening property
 

allows parsimonious yet flexible 
representations of Q

 
and S

3.
 

Decomposes function in both frequency
 

and time
 

domains
– Enables mechanism for adaptive regularization

 
of 

functions
4.

 
Orthonormal

 
transformation has linear representation, 

and special structure allows fast calculation
 

of coefficients.
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WFMM: General Approach

1.
 

Project
 

observed functions Y into wavelet  
space.

2.
 

Fit FMM
 

in wavelet space.
(Use MCMC to get posterior samples)

3.
 

Project
 

wavelet-space estimates (posterior 
samples) back to data space.
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WFMM: General Approach

2.
 

Fit FMM
 

in wavelet space
(Use MCMC to get posterior samples)

3.
 

Project
 

wavelet-space estimates (posterior 
samples) back to data space.

1.
 

Project
 

observed functions Y into 
wavelet  space.
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WFMM: Projecting to Wavelet Space

1.
 

Project observed functions Y to wavelet space

{ { {
TTTNTN

WYD
×××

= ' 

• Projects the observed curves into the space 
spanned by the wavelet bases (rotate your 
coordinate axes according to wavelet bases).

• After choice of (1) wavelet basis, (2) boundary correction 
method, and (3) number of decomposition levels J, apply 
DWT to rows of Y to get wavelet coefficients corresponding to 
each observed function
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WFMM: Projecting to Wavelet Space

{

} } } }
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K
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dddc

dddc
dddc

D

J

L

MOMMM

L

L

• With T=2J, Haar
 

wavelets, and full decomposition, 
we have Kj

 

=2j-1.  Otherwise not quite true because of 
adjustments for T≠2J

 
and boundary correction from 

other wavelet bases with wider support

• The matrix D
 

that results contains the 
observed wavelet coefficients for our data set
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WFMM: General Approach

2.
 

Fit FMM
 

in wavelet space
(Use MCMC to get posterior samples)

1.
 

Project
 

observed functions Y into 
wavelet  space.

3.
 

Project
 

wavelet-space estimates (posterior 
samples) back to data space.
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WFMM: Wavelet Space Model

{

}

{

}

{ {
TTTT ××

×

×

×

×

++=
Nm

mN

p

pN

N
EUZBXY

Wavelet Representations

Y=DW

B=B*W

U=U*W

E=E*W
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WFMM: Wavelet Space Model

{

}

{

}

321321
T

*

T

*

T

*

T ××

×

×

×

×

++=
Nm

mN

p

pN

N

WEWUZWBXDW

Wavelet Representations

Y=DW

B=B*W

U=U*W

E=E*W
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WFMM: Wavelet Space Model

{

}

{

}
''''
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*

T

*

T

*

T

WWEWWUZWWBXWDW
Nm

mN

p

pN

N
321321
××

×

×

×

×

++=

Wavelet Representations

Y=DW

B=B*W

U=U*W

E=E*W

WW’=I
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WFMM: Wavelet Space Model

{

}

{

}

{ {
T

*

T

*

T

*

T ××

×

×

×

×

++=
Nm

mN

p

pN

N
EUZBXD

Wavelet Representations

YW’=D

BW’=B*

UW’=U*

EW’=E*

WW’=I
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Wavelet Space FMM

• B*
 

=BW’
 

& U*
 

=UW’: Rows contain wavelet coefficients for 
the fixed and random effect functions, respectively

• E*
 

=EW’
 

is the matrix of wavelet-space residuals

{

}

{

}

{ {
T

*

T

*

T

*

T ××

×

×

×

×

++=
Nm

mN

p

pN

N
EUZBXD ),0(~

 ),0(~
**

**

SMVNE

QMVNU

i

k

D : empirical wavelet coefficients for observed curves
Row i contains wavelet coefficients for observed curve i
Each column double-indexed by wavelet scale j and location k
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WFMM: Covariance Assumptions
• We assume the between-wavelet covariance matrices Q*

 
and S*

 are diagonal (Q*=diag{qjk

 

},S*=diag{sjk

 

}).  
– Wavelet coefficients within given function modeled as independent
– Heuristically justified by whitening property of DWT
– Common working assumption in wavelet regression settings
– Is parsimonious in wavelet space (T

 

parameters),

 

yet leads to flexible class 
of nonstationary covariance structures in data space

– Key: We allow variances to vary by scale j

 

and location k
• Other alternatives possible (parent-sib correlation, block 

thresholding), but add more computational complexity.  
• We have found independence to be very flexible: limits form of 

covariance matrices, but enough parameters and degrees of 
freedom to capture key nonstationary

 
features of these matrices 

that are typical of our data
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WFMM: Covariance Assumptions
• Whitening: autocorrelation of wavelet coefficients tends to die away rapidly 

across k; djk

 

approximately uncorrelated (Johnstone

 

and Silverman 1997) 
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WFMM: Covariance Assumptions
• Whitening: autocorrelation of wavelet coefficients tends to die away rapidly 

across k; djk

 

approximately uncorrelated (Johnstone

 

and Silverman 1997) 
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WFMM: Covariance Assumptions

• True mean: line plus peak
• True variance: increasing in t, with extra var

 
at peak

• True autocorrelation: Strong autocorrelation (0.9) at left, 
weak autocorrelation (0.1) right, extra at peak
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WFMM: Covariance Assumptions

• Independence in wavelet space
 

accommodates varying 
degrees of autocorrelation in data space

• Allowing variance components to vary across scale j
 

and 
location k

 
accommodates nonstationarities
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WFMM: Covariance Assumptions

• Most wavelet regression methods (Fan and Lin 1998, Morris, et al. 2003, 
Abramovich

 

and Angelini

 

2007, Antoniadis and Sapatinas

 

2007) only 
index variances by scale j, but not location k.

• Not flexible enough

 

to capture nonstatioinary

 

covariance features
• Unnecessary restriction in multiple function case, since replicate functions 

allow estimation of separate VC for each (j,k)
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WFMM: Wavelet-Space Model
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• Key benefit of independence assumption: With Q,S

 

diagonal, the columns 
of the WFMM are now unlinked, and can be modeled separately.

• A set of T

 

regular linear mixed model instead of one HUGE functional 
mixed model.

• Key to computational feasibility

 

(run time AND memory management)
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WFMM: Prior Assumptions
• Another benefit of wavelet-space modeling is that it 

provides us a natural mechanism for inducing 
adaptive regularization for our estimates of the Ba

 

(t)
• To induce nonlinear shrinkage, we assume a spike-

 slab prior on Bajk
*:

0
*2** )1(),0( δγτγ ajkajajkajk NB −+=

• Nonlinearly shrinks Bajk
* towards 0, leading to 

adaptively regularized
 

estimates of Ba (t).
• τaj

2

 
& πaj

 

are regularization parameters

)(Bernoulli*
ajajk πγ =
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WFMM: Prior Assumptions

• How to choose smoothing parameters?  Not intuitive.
– Antoniadis, Sapatinas, and Silverman (1998)

 
suggest a 

parameterization in which πj

 

decrease exponentially  in j, 
and relate them theoretically to the underlying Besov

 
space

– Clyde and George (2000)
 

estimated these from data using 
local MLE, in empirical Bayes

 
fashion. We follow.

• Involves iterative (EM) algorithm to estimate the 
proportion of “large”

 
wavelet coefficients at each 

level j
 

(πij

 

), and their associated variances (τij

 

), with 
lower bound on τij

 

to avoid excessive linear shrinkage
• Similar in principal to idea of estimating smoothing 

parameters from data in nonparametric regression
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WFMM: Prior Assumptions

• To complete the specification of the Bayesian model, 
we need priors on the variance components.

• When P=R=I, we only need to worry about qjk

 

and sjk
– We use diffuse

 
conjugate Inverse Gamma priors

– Center on starting value estimates (MLE’s), and set scale 
parameter such that prior has 1/1000 information of data

– These empirical Bayes
 

priors are by default automatically 
calculated by the code, which is important since it would 
not be feasible to set these by hand since there are (H+1)T

 variance components.
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WFMM: Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integ. out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. P,R,Q*,S*).
MCMC Steps

1.
 

Sample from
 

f(B*|D,Ω):
 Mixture of Normals

 
and point masses at 0 for each i,j,k.

2.
 

Sample from
 

f(Ω|D,B*):
 Metropolis-Hastings steps for each j,k

3.
 

If desired, sample from f(U*|D,B*,Ω):
 Multivariate Normals
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WFMM: Model Fitting
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• Updating fixed effects, B*:
 

Gibbs step (conjugate spike-slab 
mixture) for each a=1, …, p, j=1, …, J, k=1, …, Kj
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WFMM: Model Fitting
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Wavelets: Wavelet Regression

σ2=1, τ2=10, π=0.20
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Wavelets: Wavelet Regression

σ2=1, τ2=5, π=0.20
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Wavelets: Wavelet Regression

σ2=1, τ2=2, π=0.20
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WFMM: Model Fitting

• Updating of variance components Ω:
• Could use Gibbs step for qjk

 

and sjk

 

: f(Ω|D,B*,U*)
– Problem:

 

As qjk 0, U*
jk 0, get stuck in local mode (“black hole 

phenomenon”)

• Solution: Marginalize
 

model by integrating out U*,
 

then 
update f(Ω|D,B*), then

 
f(U*|D,B*,Ω)

– Equivalent to updating (Ω,U*) simultaneously, since f(U*,Ω|D,B*)

 =f(Ω|D,B*)× f(U*|D,B*,Ω)
– Another advantage:

 

If inference on random effects not needed, then 
there is no need to update them!

– Disadvantage: Can’t update qjk

 

and sjk

 

with simple Gibbs steps, 
since f(Ω|D,B*) is not a known distributional form

 

; instead must 
use Metropolis-Hastings step
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WFMM: Model Fitting

• Metropolis-Hastings
 

for qjk

 

, sjk
– Use random-walk proposal: Proposed value for new MCMC 

iteration qjk
(1)

 

is centered at value at previous iteration qjk
(0),

 as N(qjk
(0),propvarjk

 

)

• Key is appropriate choice of propvarjk

 

; if too big, 
sampler won’t move, if too small, will not explore 
posterior (get stuck in local modes)
– Typically found by trial-and-error; not feasible here!

• We estimate propvarjk

 

as 1.5*Var(qjk,MLE

 

),
 

which 
should be slightly more than variance of the true 
complete conditional distribution; works well
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WFMM: Model Fitting

• Updating of random effects, U*: Gibbs step, Normal 

),(),,|( **
jkjkjkjkjk VMNormalBduf =Ω

)()('ˆ *1*
, jkjkjkjkMLEjk XBdRsZu −×Ψ= −

{ } 11*1 )( −−− ×+Ψ= PqV jkjkjk

{ } 11* )(' −−×=Ψ ZRsZ jkjk

MLEjkjkjkjk uVM ,

Shrinkage
Linear

1 ˆ
321
−Ψ=

• When P=R=I, this step is very quick and trivial
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WFMM: General Approach

2.
 

Fit FMM
 

in wavelet space
(Use MCMC to get posterior samples)

1.
 

Project
 

observed functions Y into 
wavelet  space.

3.
 

Project
 

wavelet-space estimates (posterior 
samples) back to data space.
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WFMM: Back to Data Space

• Apply IDWT to posterior samples of B*
 

to 
get posterior samples of fixed effect functions 
Bj

 

(t)
 

for i=1,…, p, on grid t. 
B=B*W

• Posterior samples of Uk

 

(t), Q,
 

and
 

S
 

are also
 available, if desired.

3.
 

Project
 

wavelet-space estimates 
(posterior samples) back to data space.



3/11/2008 http://biostatistics.mdanderson.org/Morris 66

WFMM: Back to Data Space
• For each fixed effect function a=1, …, p, and 

MCMC sample g=1, …, G, construct:

[ ])*()*(
12

)*(
11

)*( g
aJK

g
a

g
a

g
a J

BBBB L=

• Then apply the pyramid-based IDWT to this vector 
to obtain a posterior sample of Ba

(g)(t)
 

on the grid t, 
since Ba

 

=Ba
*W’

• In the same way, posterior samples of U(t)
 

can be 
obtained by applying the IDWT to U*(g),

 
if desired.

• You can also compute posterior samples for any 
contrast involving the fixed effect functions, CB
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WFMM: Back to Data Space

• We can also obtain posterior samples of Q
 

or S
 

from 
the wavelet space versions Q*(g)=diag{qjk

(g)}
 

and 
S*(g)=diag{sjk

(g)}
 

using the results of Vannucci
 

and 
Corradi

 
(1999), based on the fact that

 
Q=WQ*W’

• Can be done efficiently, in O(T2),
 

by applying the 2-d 
IDWT to Q*(g)

 
and S*(g)

• This gives us estimates of the within-curve covariance 
surfaces, The diagonal of these give us estimates of 
the variance function
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WFMM: Inference
Given posterior samples of all model quantities, we can 

perform desired Bayesian inference or prediction:
1.

 
Pointwise posterior credible intervals

 
for functional 

effects or contrasts
2.

 
Posterior probabilities

 
for pointwise

 
hypotheses of 

interest
3.

 
Bayes

 
Factors

 
for functional testing

4.
 

Can account for multiple testing in identifying 
significant regions of curves by controlling the expected

 Bayesian FDR
5.

 
Can compute posterior predictive distributions, which 

can be used for model-checking or classification.
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• Pointwise
 

Inference:
• Given posterior samples of Ba

 

(t), can construct 
posterior mean

 
(shrinkage) estimates for Ba

 

(t), or any 
contrast of fixed effect functions CB

• Can compute quantiles
 

of posterior distribution for 
Ba

 

(t)
 

for each t, which can be used for pointwise
 credible intervals. Pr{Qj,α/2

 

(t)<Ba

 

(t)< Qj,1-α/2

 

(t)|D}=1-α
• Can compute probability of having a certain minimum 

effect size:  pa

 

(t)=Pr{ |Ba

 

(t)|>δ|D}, e.g. log:
 

δ=1 ⇔ 2-fold
– Takes both Statistical and Clinical significance into account

WFMM: Inference
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WFMM: Properties

• Draws of spectra from posterior predictive 
distribution yield data that looks like real MALDI 
data (3rd

 
column), indicating reasonable model fit.
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WFMM: Properties

• Posterior samples/estimates of fixed effect functions 
Bi

 

(t)
 

adaptively regularized
 

as a result of shrinkage 
prior applied to wavelet coefficients.

11am 1pm 3pm 5pm 7pm
0

0.5

1

1.5
(a) S c hool E

Tim e of Day

lo
g(

M
E

T)

• Able to preserve 
dominant spikes in 
mean curves, if 
present
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WFMM: Properties
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WFMM: Properties
• Posterior samples/estimates of random effect functions Uj

 

(t)
 

also
 appear to be

 
adaptively regularized

• Able to preserve 
spikes in random 
effect functions, 
as well

• Important for 
estimation of 
random effect 
functions AND for 
valid inference on 
fixed effect 
functions.
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WFMM: Properties
• How can the random effects be adaptively regularized when 

they have a Gaussian prior (with linear shrink)?
– U*

jk

 

~N(0,qjk

 

)
• However, note that each wavelet coefficient has its own 

variance component qjk

 

, which determines the amount of 
shrinkage from u*

jk,MLE

 

towards 0
 

(smaller q
 

relative to s, more 
shrinkage towards 0)
– Since (j,k)

 

corresponding to strong signals in the random effect functions 
will tend to be larger, qjk

 

will also tend to be larger, leading to less 
shrinkage.  

– Unimportant (j,k)

 

will tend to have small qjk

 

, and thus lead to more 
shrinkage

– Although linear for each wavelet coefficient, the shrinkage is nonlinear 
when viewed for the entire set of wavelet coefficients together.

• This same dynamic allows very smooth random effect estimates 
when the data supports this notion.
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WFMM: Properties

• While adaptive to irregularity, this framework can also 
yield relatively smooth effect functions

 
when the data 

supports smooth representations. 
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WFMM: Inference
• Multiple testing

 
problem is inherent in pointwise

 inference: T
 

positions, T
 

tests
• One Solution: perform functional test

 
of H0

 

:Ba

 

(t)=0
– Popular approach for some researchers (FANOVA)
– Not as interesting to me: key is for what t

 
we have Ba

 

(t)
 

differ 
from zero, and by how much.

– We can do functional testing in WFMM  using Bayes
 

Factors

• Another Solution: Apply some sort of multiple testing 
adjustment to the inference.  Here we will look at 
applying the False Discovery Rate

 
(FDR) ideas popular 

in microarrays
 

to this pointwise
 

functional setting.
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WFMM: Inference

A B

C D

Truth
H0

 

H1

H0

Decision

H1

• Adjusting for Multiple testing
• Classic approach: Bonferroni

 T
 

tests, use α/T
 

as sig. level
– Controls experiment-wise error rate

 Pr(at

 

least one false positive)<

 

α
– Too conservative for some fields 

(e.g. microarrays), so alternative 
criterion devised

• False Discovery Rate
 

(FDR): 
Benjamini

 
and Hochberg (1995)

Controls proportion of 
“discoveries”

 
that are false to be 

no more than
 

α DC
CFDR
+

=
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WFMM: Inference
• Many procedures have been developed for controlling FDR

– Benjamini

 

and Hochberg (1995), Yekutieli

 

and Benjamin (1999), 
Benjamini

 

and Liu (1999), Storey (2002), Storey (2003), Genovese and 
Wasserman (2002), Ishwaran

 

and Rao

 

(2003), Pounds and Morris 
(2003), Efron

 

(2004), Newton (2004), Pounds and Cheng (2004)

• Most methods follow one of three approaches:
1.

 
Fit mixture model on tests stats

 
(known distn

 
under H0

 

)
2.

 
Fit mixture model on p-values

 
{U(0,1)

 
under H0

 

}
3.

 
Fit Bayesian mixture model, with point mass prior on H0

• Methods can either set limit on global FDR
 

(α), or 
on local FDR

 
for each statistic i

 
(Storey 2003)

– qi

 

=min Pr(H0

 

true for gene i|Gene
 

i in RR)
– Note:

 
p-value is

 
Pr(Gene

 
i

 
in RR|H0

 

true for statistic i)
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WFMM: Inference

C

B

A

D

Global: α=C/(C+D)

d

c

Local: q(pv)=c/(c+d)

pv
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WFMM: Inference

• Bayesian FDR
 

from posterior probabilities
– Posterior probs

 
of effect sizes:

 
pi

 

=Pr{ |Bi

 

|<δ|Y}, i=1, …, T
• If we

 
define a “discovery”

 
to be effect size at least δ

 
(H0i

 

:
 |Bi

 

|<
 

δ),
 

then pi

 

is a Bayesian local FDR
• To control the global expected Bayesian FDR

1.
 

Sort in ascending order of pi {p(i)

 

, i=1, …, T}
2.

 
Identify cutpoint

 
ϕα

 

on posterior probabilities that 
controls expected Bayesian FDR to be ≤ α

ϕα

 

=p(λ)

 

,
 

where

3.
 

Flag the set of statistics
 

{i: pi

 

≤ ϕα

 

}
 

as significant 
(According to model, we expect only α to be false pos.)

⎥
⎦

⎤
⎢
⎣

⎡
≤= ∑

=

αλ *:*max
*

1

ipi
i

i
i
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WFMM: Inference

Notes
• This approach takes both statistical

 
and 

practical significance into account when 
declaring differences significant.

• Given choice of cutpoint on posterior 
probabilities to flag significant regions, we can 
also estimate false negative rate (FNR),

 sensitivity, and
 

specificity
 

for declaring flagged 
regions significantly different.
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WFMM: Inference

FDR for pointwise
 

functional inference:
• Substituting Lebesgue

 
measure for counting measures, we 

can apply FDR ideas to pointwise
 

inference: 
• From MCMC samples, we have the quantities:

 pal

 

=Pr{|Ba

 

(tl

 

)|>δ|Y}
 

for l=1, …, T
• Using

 
H0t

 

:|Ba

 

(t)|<δ, pal

 

is a Bayesian local FDR
 

for fixed 
effect function a

 
at position tl

 

within the curve.
• As described above, we can find a cutpoint

 
ϕα

 

on the pal

 
that controls the global average Bayesian FDR<α

t"significan" as flagged |:|
|)(|falsely  flagged  :||

tt
tBtt a δα <

>
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Applications: SELDI Organ-by-Cell-Line

• Xi1

 

=1
 

if lung/A375P, 0 ow
 
Xi2

 

=1
 

for brain/A375P, 0 ow
Xi3

 

= 1 if lung/PCMM2
 

Xi4

 

=1 for brain/PCMM2
Xi5

 

= 1 if high laser intensity, -1 if low

{ } )()()()(log
16

1

5

1
2 tEtUZtBXtY i

k
kik

j
jiji ++= ∑∑

==

Let Yi

 

(t)
 

be the SELDI spectrum i

• Bj

 

(t)

 

= overall mean

 

spectrum for treatment group j=1,2,3,4

B5

 

(t)

 

= laser intensity effect

 

function

• Zik

 

=1 if spectrum i is from mouse k
 

(k=1, …, 16)

• Uk

 

(t) is
 

random effect function for mouse k.
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Applications: SELDI Organ-by-Cell-Line
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Applications: SELDI Organ-by-Cell-Line
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Applications: SELDI Organ-by-Cell-Line
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Applications: SELDI Organ-by-Cell-Line

• Using α=0.05, δ=1
 

(2-fold expression on log2

 scale), we flag a number of spectral regions.
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Applications: SELDI Organ-by-Cell-Line
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Applications: SELDI Organ-by-Cell-Line

• 3900 D (~100-fold) (CGRP-II): dilates blood vessels in brain
• 7620 D (~5-fold) (neurogranin): active in synaptic modeling 

in brain (Not detected as peak)
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Applications: SELDI Organ-by-Cell-Line



3/11/2008 http://biostatistics.mdanderson.org/Morris 91

Applications: SELDI Organ-by-Cell-Line

• Inclusion of nonparametric functional laser intensity effect is 
able to adjust for systematic differences in the x

 
and y

 
axes

 between laser intensity scans
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Conclusion

• Presented unified modeling approach
 

for FDA 
– Adaptive enough to handle irregularities in both mean 

structures and random effects (covariances) 
• Method based on mixed models; is FLEXIBLE

– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions

 

for future sampled curves
– Predictive probabilities

 

for classification of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability

 
in the model propagated throughout inference.
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Conclusion

• Approach is Bayesian.  The only informative priors to elicit are 
regularization parameters, which can be estimated from data 
using empirical Bayes.

• Developed general-use code
 

–
 

reasonably fast and 
straightforward to use  minimum information to specify is Y, 
X, Z matrices.

• Can deal with missing data, i.e. partially observed 
functions 

• Method has been generalized to higher dimensional functions, 
e.g. image data, space/time data

• The Gaussian/independence assumptions can be 
relaxed to robustify modeling
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