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to explain by a set of p explanatory variables x;; i=], ..., N—
...s p. The x; may be continuous variables, or discrete (dummy)
variables. A General Linear Model is given by:

P

 In many applications, we assume the errors are

independent and identically distributed, so




specifications of X correspondlng to
classical statlstlcal methods

— Continuous: Linear regression
— Dummy variables (2 groups): t-test
— Dummy variables (>2 groups): ANOVA

— Combination of continuous and dummy
variables: Analysis of Covariance

* Note: bj are partial etfects; 1.e. describe the
eftect of predictor X; atter adjusting for all
other effects in the model
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V= Xhb+e e-N@Ooly)

Where yis an Nx1 response vector, X is an NXp
design matrix, and b is a px1 vector of fixed effects

* Typical goal: estimate and perform inference on
fixed effect vector b

 The form of the design matrix, X, indicates the type
of modeling being done




- Linear Mixed Models: |

* Simple linear regression

To perform a simple linear regression of Y on x, specify*

* h,=Intercept

* b,=slope




- Linear Mixed M

 Polynomial Regression: -

To perform a polynomial regression of Y on x, spe_cif:

_1 (Xl 2 Y) (X1 - X)2 o (X1 S Y) > ZO
S A S AT 1Y
_1 (XN _Y) (XN _Y)Z (XN _X)p_ b:

* by~Intercept, b=polynomial level j coefficient
* Note: Centering x reduces collinearity
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X1 Xy Xpl bo

1 X X Sl Y b

12 22 2 1

yac | -t 1 b=| .
1 XN KXoy o XpN_ _bp_

* b,=Intercept

* by, by ..., bp =partial slopes for factors 1, ..., p




"Linear I\/leed I\/Iodels

Qtests Define dummy variable
 x=Iit group 0, -7 if group 1

1 X

x=t %| b|®
- b,
1 Xy

* bh,=Intercept (overall mean of y)

* b,=Main eftect for group (=0 if no group ettect)
Note: F-test for H,:b,=0 is equivalent to t>
* What if there are >2 groups we want to compare? 1-




~ Linear Mixed Models:

o

e ANOVA (Cell Means model): (g

* Letx;=I if subjectin group j, and no intercept

X X o Xlg b1

Xyg Xy 0 X bz

X = : I e b=
B XNl XN 2 XNg | _bg 1

* b;: overall mean for group j

b=b;. implies groups j and j’ share common mean

* Contrasts can be used to set up comparisons of interest




* Specifies a linear combination of fixed effects that
indicate a certain comparison of interest.

 E.g. Can be used with cell means model to test
difference between groups j and j’: ¢=1, ¢;~1

* Given set of / contrasts of interest, can construct Ixg
contrast matrix C 170 Ui
Main Effect(ANOVA): c-= O 1 -




Analysis of Covariance (ANOCOVA

 Cell Means model: (g groups, p covariates)
* Letx;=I it subject i in group j, =1, ..., g ol

Let x;= covariate (j-g+1) for subject i, j=g+1I, ... gtp b,
X |0 Xg Xygey 0 Xygap)
ORI X2 p) - bg
X=| . |. : . : =
: . bg+1
_XN1 o Xng o Ay XN(g+p)_ .
_b9+p_

* b, j=I, ..., g: separate intercepts by group j
* b, j=gtl, ..., gtp: partial slopes for p covariates
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Linear Mixed Models:

s

What if we have multiple categorical factors we w
simultaneously consider?

e 2-way ANOVA: Includes main effects for factors 1 and 2,
plus their 2-way interaction

e Interaction: The effect of factor 1 is different for different
levels of factor 2 (and vice versa)

* Again, different parameterizations can be used
— Overparameterized model: (messy!)
— Main effect/interaction model
— Cell means model, with contrasts

e Can also interact continuous factors with categorical factors
e.g. growth curves with intercepts and slopes varying by group

| -




: | Linear Mixed Models:

X Xp o o Xlg b1

X Xy, cer X b

21 22 2 2

X = : 7 o . b=]| .
B XNl XN2 XNg ] _bg 1

* b;: overall mean for group j

b=b;. implies groups j and j’ share common mean

e Contrasts can be used to set up comparisons of interest,
__e.g. main effect and interactions




Suppose factor 1 has 2 levels, and factor 2 has 3 le
wWith b=1b;;, byy b3 by by b3l

C,=[1 1 1 S]] ° LG

_ . eftect for factor 1
C= 10 -110 -1 e L,=C,b: Main
101 -1 0 1 -1 effect for factor 1

o interaction effect

0 A0 -1 1
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' Linear Mixed Mode

 General Linear Model:

y=Xb+e e~N(0,0°1,)

e What if errors are not iid?

— Subsampling (multiple randomly sampled observations per
subject)

— Longitudinal Data (multiple observations per subject over time,
so observations are ordered)

e Solutions:
— Assume parametric error structure on e~N(0O,R)




....|_|near Mixed Models

Slmple Random Effects model: Sttpp-o |
observe r repeated measurements of response T L) -
each of n subjects (total of N=rn obs.) S

* Lety=Iyip Viz oo Vip Vo oo Yoy ooos Vil
 Let X be a design matrix for the fixed effects b

* Define an Nxn random effects design matrix Z to
have elements z,=1 if obs i from subject j,
0 otherwise.

* A random effects model can bT\IW(BtteQ Ias

y=Xb+Zu+e
e~N(,c’l,)

.‘16
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Linear Mixed Mode

u~N(0,0°1,
e~ N(0,5°1,)
* u, =random etfect for subject k: E(y|subject k)=Xb+u,
* g,°: describes subject-to-subject variability

y=Xb+2Zu +e

* ©,°: describes variability between observations within subject

e If we integrate the random etftects # out of the model,
thus marginalizing over u,

*

y=Xb+e e ~N(0,X)

Where 3=06,°ZZ’ + oI has block compound symmetry structure




e
2 n blocks

e*

2 " 2 2
o. po. po.
2 2 2

0 0 PG O e

e
2 2 2
T

J

r x r blocks

* n diagonal blocks of size rxr, each having compound symmetry
* Note: 0,/=0,+ ¢,/ is the total variability and

p= o0, /o+ o, ?is the intraclass correlation

‘8
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© Var(y)=2=ZPZ’+R
b=(X'ZT'X)™" X'y =generalized least squares estimator

U=PZ'>"(y- XB) = best linear unbiased predictor (BLUP)

* Most common applications use independent random
effects and residual errors, P=g I and R=c /I,

e Other possible covariance structures can also be used
for P and R, as needed
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. Linear Mixed Models:

Ing Linear Mixe

KCU
e Standard software packages are available for fitting
mixed models

— PROC MIXED (SAS)
— Ime/nlme (5+/R)
* Based on EM or Newton-Raphson algorithms

— MLE for fixed effect functions (GLS)
— REML for covariance parameters

e Straightforward to perform frequentist inference on fixed
effect functions, or linear combinations (contrasts) — F tests

 Trickier to test whether VC=0 but recent work in this area

e Can also be it using Bayesian hierarchical model

— If standard improper priors (uninformative) are specified for fixed
effects b and covariance parameters, it can be shown that the posterior
mode Bayesian estimators are equivalent to MLE frequentist

estimators, and the confidence/credible bands are similar
E 3




— Sometimes distinguish between methods for sparsely sm "
functional data (few obs/curve, longitudinal) and functions
sampled on fine grid (many obs/curve, functional)

— Our main concern here is on functional data on fine grid
Challenge of Functional Data Analysis: Must
simultaneously consider regularization and replication

— Regularization: take advantage of functional structure to
borrow strength from adjacent observations within curve

—  Replication: combining information across sample curves to

make inferences on population from which they came

-1




= Lﬂ ‘_;E
“Functional Mixe

Idea: Relate functional response to set of scalar predi
through functional coefficients, while adjusting for
possible correlation between functions induced by design.

 Suppose we observe a sample of NV curves,
Y(1), =1, ..., N, on a closed interval T

U, (t) ~ GP(0,Q)
Yi(t) _Zx B, (t) Jrizik U, (t) + E(tE(t) GP(0,3S)

reSponse fixed effect random effect resndual error
functions function functions functions

* B,;(t) summarizes partial effect of X;on Y(7)

e Q(t,t)) and S(t,,t,) are covariance surfaces on T xXT
describing the form of the function-function deviations

3/11/2008
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Discrete Versmn‘(_)f FI\/II\/I

SUppose each observed curve Is o d or
common equally-spaced grid of length 7.

U, ~ MVN (0, Q)

NP Nxm  |E. ~MVN(O,S)
Y = X B+ Z2Z U + E
—~ —~ —~ —~
N xT pxT mxT N xT

* Rows of B contain fixed effect functions on grid

0 and S are within-curve covariance matrices (7 x 7)
approximating surfaces on the grid

— For irregular functional data, Q and § typically contain

mani ninitatiinaritiii‘ iit thiir iiminiiin is toi hiih ti



srowth curve example:

* Goal: Assess effect of gene A on tumor growtk
 N=20 mice, 2 from knockout and 2 from wild type groups

 Xenograft model: microscopic tumor implanted
 Tumor measurements at 7=6 time points ={0,3,6,9,12,15}
* Y.(¢t)=log(tumor size) profile for animal i

Y.(t) = ZZZXU-BJ-(t) + E(t) E(t)~ N{O’S(tvtz)}

e Cell Means Viodel Used

— X;;=I if animal i from knockout group, § otherwise
— X,,=1 if animal i from wild type group, 0 otherwise

 Test: H,:B,(1)=B,(1)

3/11/2008 htto://biostatistics. mdanderson.orq/Morris.‘ 24



- B](v =bjt,'
T ul~N (0) O.uz) )

-S=ttec,+o /I,

0
1.9
1.8

2.7
3.6
4.5

S

O o0 0 o
1.8 2.7 3.6 4.5
4.6 5.4

E(t)=utte;

c,°=0.1, 6,°=I:

| 0.61 0.65 0.67 0.67
0.61 1 0.83 0.86 0.87
0.65 083 1 0.91 0.92
0.67 086 091 1 0.95
0.7 0.7 0.2 0.95 1 !




X;,=1 it obs k from wild type and Z, =1 if obs k from animal I

y= Xb+Zu+e u~N(O,c7uZIN) e~N(O,a§|NT)

Xib X b bl Ul
X 21t2 X 22t2 —
X — 5 . _b2 3 u _ u 2
_XNTltNT XNTZtNT_




What if there is no acceptable parametri
representation for the observed functions?

 Nonparametric representations for functions:
generalizations of nonparametric regression to
multiple function case. Much recent work in this
area.

e Limitations of previous work:
— Most focus on smoothing methods like kernels and splines

— Much intended for functional data on sparse, not fine, grids

— Most models not fully general FMM (arbitrary X matrix,
nested random effects, general representations for Q or S)

— Many focus on estimation, not inference
* Most of this work works with models that are special

cases of the functional mixed model.




plications:

16 mice had 1 of 2 cancer cell lines injected into 1%
organs (lung or brain)

e Cell lines:

— A375P: human melanoma, low metastatic potential
— PC3MM2: human prostate, highly metastatic
* Blood serum extracted and placed on SELDI chip

* Run at 2 different laser intensities (low/ high)
 Total of 32 spectra (observed functions), 2 per mouse

 Observations on equally-spaced grid of 7985




Applications:

Goal: Find proteins differentially expressec by:
— Host organ site (lung/brain)

— Donor cell line (A375P/PC3MM?2)
— Organ-by-cell line interaction

* Combine information across laser intensities:
Requires us to include in modeling:

— Functional laser intensity effect

— Random effect functions to account for
correlation between spectra from same mouse




plications:

x 10°

21
1.5H

1H

Hemaoglobin Albumin
Immunoglobulin

0.5

/-)A r
0 | nal s it il t
1.2 1.4 1.6 1

0 0.2 0.4 0.6 0.8 1 .8 2
Mass/Charge X 105

« MALDI-TOF Spectrum: observed function
* o(7) = intensity of spectrum at m/z value ¢

e Intensity at peak (roughly) estimates the abundance
of some protein with molecular weight of 7 Daltons



ived Model

Let Y, (t) be the SELDI spectruh

log, ;)= B, (1) + Z j ,(t)+ZZ,kU O+E(0).

* X, ~I for lung, -/ brain. X;,=/ for A375P, -/ for PC3MM2
Xi=X; * X5 X;,~/ tor low laser intensity. -/ high.
* B,(t) = overall mean spectrum B,(7) — organ main effect function

B,(?) = cell-line main effect  B,(?) — org x cell-line int function

B ,(?) = laser intensity effect function
o Z,=1 if spectrum i is from mouse k (k=1, ..., 16)

(1) 1s random effect function for mouse k.

3/11/2008 http://biostatistics.mdanderson.ora/Morris 31



= Lﬂ ‘_;E
“Functional Mixe

Idea: Relate functional response to set of scalar predi
through functional coefficients, while adjusting for
possible correlation between functions induced by design.

 Suppose we observe a sample of NV curves,
Y(1), =1, ..., N, on a closed interval T

U, (t) ~ GP(0,Q)
Yi(t) _Zx B, (t) Jrizik U, (t) + E(tE(t) GP(0,3S)

reSponse fixed effect random effect resndual error
functions function functions functions

* B,;(t) summarizes partial effect of X;on Y(7)

e Q(t,t)) and S(t,,t,) are covariance surfaces on T xXT
describing the form of the function-function deviations

3/11/2008
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;j avelet -Based Functla _Mlxed I\/Iodels

Need to find way to build flexibility into 0 and I
be parsimonious enough to fit to large data sets.

Need to find a way to accomplish adaptive
regularization for B,(®) and U(1)

Need to find way to compute this model that is
computationally efficient cnough to apply to
extremely large data sets

(100°’s-1000’s of curves on grids of 10,000 or more)

Want to be able to perform inference, not just
estimation

Key: Use of wavelet space instead of data space to do

‘

our modeling.



* Basis function approach: y(1)=2xd, v, (1)
 Benefits of Using Wavelet Bases

1. Compact support allows efficient representations of local
features

2. Whitening property allows parsimonious yet flexible
representations of Q and S

3. Decomposes function in both frequency and time domains

— Enables mechanism for adaptive regularization of
functions

4. Orthonormal transformation has linear representation,
and special structure allows fast calculation of coefficients.

‘




Project observed functions Y into wavelet
space.

Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

Project wavelet-space estimates (posterior
samples) back to data space.




1. Project observed functions Y into
wavelet space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates (posterior
samples) back to data space.




Project observed functions Y to wavelet space

1.

o After choice of (1) wavelet basis, (2) boundary correction
method, and (3) number of decomposition levels .J, apply
DWT to rows of Y to get wavelet coefficients corresponding to

each observed function D e Y W|

— -
N xT NxT TxT

 Projects the observed curves into the space
spanned by the Wavelet bases (rotate your

.



e matrix D that results conta
observed wavelet coefficients for our da

g

[ K coeff K, coeff K, coeff K coeff |
—— - - =
Cl,l dl,l d1,2 dl,J
D =| Gy d2,1 dz,z dZ,J
—
N xT : : .
B Cyn dN,l dN,z dN,J )

 With 7=2/, Haar wavelets, and full decomposition,
we have K; —21'1 Otherwise not quite true because of
adjustments for T ;EZJ and boundary correction from




1. Project observed functions Y into
wavelet space.
2. Fit FMM in wavelet space

(Use MCMUC to get posterior samples)

3. Project wavelet-space estimates (posterior
samples) back to data space.

| -



~— ~—
Y =X B+ 7Z U + E
-~ —~ —— —~

N xT pxT mxT N xT

Wavelet Representations

Y=DW
B=B*W
U=u>Ww
E=E*W




e o )
DW = X B W+ ZUW+EW
—— —_—— — —
NxT pxT mxT N xT

Wavelet Representations

Y=DW
B=B*W
U=u>Ww
E=E*W




Nxp N xm

—— ~—
DW W'=s X BWW'vZUWW'vE WW'
, , 2R \ / =
NxT pxT mxT NxT
Wavelet Representations ,
WW'=|
Y=DW
B=B*W
U=uU*w
E=E*W

L e



== 5 —~
D X B + 7

[ — —J e — ——
N xT pxT mxT N xT

Wavelet Representations

YW'=D
BW'=B*
UW'=U~*
EW'=E*




D : empirical wavelet coefficients for observed curves
Row /contains wavelet coefficients for observed curve /
Each column double-indexed by wavelet scale yand location &

I\fl-f;p ) NHme ) ) Uk* ~ MVN (O,Q*)
D= XB + 72U +E x x
o w7 ma ) [E T MVNQO,S)

e B*=BW’ & U*=UW’: Rows contain wavelet coefficients for
the fixed and random effect functions, respectively

e E*=EW’is the matrix of wavelet-space residuals




W"éaséume the between-wavelet covariancen
are diagonal (Q*=diag{q;}.S*=diag{s;}).

Wavelet coefficients within given function modeled as lndependen
Heuristically justified by whitening property of DWT
Common working assumption in wavelet regression settings

Is parsimonious in wavelet space (T parameters), yet leads to flexible class
of nonstationary covariance structures in data space

Key: We allow variances to vary by scale j and location &

Other alternatives possible (parent-sib correlation, block
thresholding), but add more computational complexity.

We have found independence to be very flexible: limits form of
covariance matrices, but enough parameters and degrees of
freedom to capture key nonstationary features of these matrices
that are typical of our data




Decorrelation of Q, j=2 Decorrelation of S, j=2

50
=" 100
50 100 150 50 100 150
I{'1 I';'I
Decorrelation of G, j=1 Decorrelation of S, j=1

100 :
=&
200
300
100 200 300 50 100 150 200 250 300

K, K



a0
100
150

100
200
300

White Noise

50 100 150
White Moise

100 200 300

AR(1) rho=0.8 noise

20 40 60 80
AR(1) rho=0.8 noise

50 :
100
150
20 100 150

AR(1) rho=0.8 noise

100 ’
200
300

100 150 200 250 300




(a) Truth

Mean Function

Variance Function
0 O © o
N AO O -

lation Matrix

ITel
o
o

o 0.2 0.4 0.6 0.8
t
E 02 \ 0.8
0.4 0.6
e

. 0.4
8
=S os 0.2
<< : ..

1

0.2 0.4 0.6 0.8 1
t

* True mean: line plus peak

 True variance: increasing in t, with extra var at peak

 True autocorrelation: Strong autocorrelation (0.9) at left,
weak autocorrelation (0.1) right, extra at peak



Mean Funcion

Variance Function

O.4
o.2
o

Autocorrelafion Mafrx

 Independence in wavelet space accommodates varying
degrees of autocorrelation in data space

* Allowing variance components to vary across scale j and
location £ accommodates nonstationarities
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(a) Truth (b) Posterior mean — s ; I (c) Posterior mean —— S
1.5 1.5 1.5
™\
s \
2 1 N 1 / !
ué e e e
=2 os 0.5 J 0.5
o e e
o D . o Y ) 5 e
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1 o 0.z 0.4 0.6 0.8 1
t

1.2 ) 1.2 I 1.2 ~
15 1 o 1 A ~—
£ os g ] o.8 MW‘UW o.sh N
i b ko gy W N W
2 oo . e ; ol M haphaphid” gl Mg
=
£ - WA
& o4 et 0.4 M\u‘ h 0.4

0.2 1 o.2 0.2

o * o * o

o 0.2 0.4 0.6 o.8
T
0.2 \ 2
0.4 i
0.6 5
o.8 ¥
1
0.2 0.4 0.6 o.8 1
t

e Most wavelet regression methods (Fan and Lin 1998, Morris, et al. 2003,
Abramovich and Angelini 2007, Antoniadis and Sapatinas 2007) only
index variances by scale j, but not location k.

* Not flexible enough to capture nonstatioinary covariance features

 Unnecessary restriction in multiple function case, since replicate functions
allow estimation of separate VC for each (j,k)

Autocorrelation Matrix
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of the WFMM are now unlinked, and can be modeled separa ely.
A setof T regular linear mixed model instead of one HUGE functions

mixed model.
* Key to computational feasibility (run time AND memory management)

N > p N xm

~ % = ) 0
— — — — e — e —J
N x1 px1 m x1 N x1

u*k - N(O’q:k)
e*k N N(O’S?k)

| -



pr0V1des us a natural mechanism for induel i““
adaptive regularization for our estimates of the B3

e To induce nonllnear shrinkage, we assume a splke-
slab prior on B ;,

B;jk = 7/;jk N (O, T:J) +(1- 7/;jk)50
7. = Bernoulli(z,)

» Nonlinearly shrinks B “towards 0, leading to
adaptively regularized estimates of B(t).
° 1,7 & m,; are regularization parameters




* How to choose smoothing parameters? b1 T

— Antoniadis, Sapatinas, and Silverman (1998) sugges
parameterization in which z; decrease exponentially inj,
and relate them theoretically to the underlying Besov space

— Clyde and George (2000) estimated these from data using
local MLE, in empirical Bayes fashion. We follow.

e Involves iterative (EM) algorithm to estimate the
proportion of “large” wavelet coefficients at each
level j (z;), and their associated variances (z;), with
lower bound on 7; to avoid excessive linear shrinkage

e Similar in principal to idea of estimating smoothing
parameters from data in nonparametric regression




 To complete the specification of the Bayesiz
we need priors on the variance components.

* When P=R=I, we only need to worry about g, and s

— We use diffuse conjugate Inverse Gamma priors

— Center on starting value estimates (MLE’s), and set scale
parameter such that prior has 1/1000 information of data

— These empirical Bayes priors are by default automatically
calculated by the code, which is important since it would

not be feasible to set these by hand since there are (H+1)T
variance components.

| -



Let £2 be a vector containing ALL covarlanc
parameters (i.e. P,R,0%*,5%).

MCMC Steps
1. Sample from f(B*|D,()):
Mixture of Normals and point masses at 0 for each i,j,k.
2. Sample from f(2D,B*):
Metropolis-Hastings steps for each 7,k
3. If desired, sample from f(U*|D,B*,()):

Multivariate Normals
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*

B

ajk

A

o Updating fixed effects, B*: Gibbs step (conjuga o SPIRE
mixture) for each a=1, ..., p, j=1, ..., J, k=1, ..., Kj

— auk N {Bajk MLE LSaJ ’Vajk Saj }+ (1_ aijk) I 0

o

Baljk,MLE {X Z X }1X ZJk(djk ( a)B(—a)jk,MLE)
Vaik = Var(Bajk,MLE) = (X, Z:jixa)_l 2, =LPZ°q; +Rs;,

LS

' Shrinkage =

Tajg \ Ui :Fr{Vajk :1‘daij}

aj T g n 1 Nonlinear Shrinkage

J

Linear T, . T /v




T Yosr2) expl o[ T )
0., =|—33 |1+T2) expi2? 3l Il
Sl 1— 7. 2 Mo T2 0

Posterior Odds

Prior Odds Bayes Factor

%

é/ajk — Bajk,MLE / ajk




|0 Shrinkage

Linear Shrinkage
Linear Shrinkage
=hrinkage Estimatar

0 estimate

o°=1,

°=10, n=0.20

0

=d,P,SF,

jk,shrinkage

‘9jk,|inear — dijFj
‘9jk,non|inear =d jk ij
4 3 2 1 0 1 2 3 1




|0 Shrinkage

Linear Shrinkage
Linear Shrinkage
=hrinkage Estimatar

0 estimate

o°=1,

°=5, 1=0.20

0

=d,P,SF,

jk,shrinkage

‘9jk,|inear — dijFj
‘9jk,non|inear =d jk ij
4 3 2 1 0 1 2 3 1




|0 Shrinkage

Linear Shrinkage O'2=1, T2=2, 7=0.20

4 Linear Shrinkage
=hrinkage Estimatar
2 L
|:| L —

0 estimate

gjk,shrinkage =d jk ijSFj
2Lk . ]
‘9jk,|inear = dijFj
Ak ~ |
‘9jk,non|inear — djk ij

-5 -4 -3 -2 -1 H 1 2 3 4 5




Updating of variance components £:

» Could use Gibbs step for g; and s;: f(Q|D,B*U*%)
— Problem: As g;, 20, U, 20, get stuck in local mode (“black hole
phenomenon”)
» Solution: Marginalize model by integrating out U, then
update f(Q2|D,B*), then f(U*|D,B*,Q)
— Equivalent to updating (2,U") simultaneously, since f{U*,2|D,B*)
=f(Q2|D,B*) x f(U*|D,B*,Q)
— Another advantage: If inference on random effects not needed, then
there is no need to update them!
— Disadvantage: Can’t update g; and s; with simple Gibbs steps,
since f{Q2|D,B*) is not a known distributional form ; instead must
use Metropolis-Hastings step

!. e
: i
'
/!
f
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* Metropolis-Hastings for g;, s

— Use random-walk proposal: Proposed value for new M :
iteration g, is centered at value at previous iteration qjk(")

as N(qjk(”),propva )

* Key is appropriate choice of propvar,; if too big,
sampler won’t move, if too small, will not explore
posterior (get stuck in local modes)

— Typically found by trial-and-error; not feasible here!

* We estimate propvary as 1.5* Var(qjk vp)» Which
should be slightly more than variance of the true
complete conditional distribution; works well

-2




« Updating of random effects, U*: Gibbs step;
f (U |d,, B, Q) =Normal(M ,,V,)

i * 1)1 ] 1.~
ij & {\ij1 u (qjk x P) 1} M JK _\!jk\ijJujk,MLE

- B | L
Y = {Z'(Sjk x R) 12} , Srllrr]ier?lzage
= (-7 -1 4
Ujmie = P2 (S x R)(d, — XBy,)
* When P=R=I, this step is very quick and trivial

3/11/2008 http://biostatistics.mdanderson.ora/Morris 63



1. Project observed functions Y into
wavelet space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates (posterior
samples) back to data space.

| -



3. Project wavelet-space estimates
(posterior samples) back to data space.

 Apply IDWT to posterior samples of B* to
get posterior samples of fixed effect functions
Bj(z) for i=1,..., p, on grid t.

B=B*W

* Posterior samples of U, (7), O, and S are also
avallable, if desired.




. Fr éach fixed effect function a=1, ..., p
MCMC sample g=1, ..., G, construct:

*(9) _ |p*(9) *(9) *(9)
Ba — [Ball Balz - BaJK g

 Then apply the pyramid-based IDWT to this vector
to obtain a posterior sample of B ®(7) on the grid t,
since B=B_“W’

* In the same way, posterior samples of U(z?) can be
obtained by applying the IDWT to U"®, if desired.

* You can also compute posterior samples for any
contrast involving the fixed effect functions, CB




the wavelet space versions Q" ®=diag{q;®} and
S ®=diag{s;®} vsing the results of Vannucci and
Corradi (1999), based on the fact that Q=WO*W”’

* Can be done efficiently, in O(7T?), by applying the 2-d
IDWT to O"® and S™®

e This gives us estimates of the within-curve covariance
surfaces, The diagonal of these give us estimates of
the variance function




1.

28

Pointwise posterior credible intervals for functional
effects or contrasts

Posterior probabilities for pointwise hypotheses of
interest

Bayes Factors for functional testing

Can account for multiple testing in identifying
significant regions of curves by controlling the expected
Bayesian FDR

Can compute posterior predictive distributions, which
can be used for model-checking or classification.

‘



Pointwise Inference:

* Given posterior samples of B (7), can construct .
posterior mean (shrinkage) estimates for B (7), or any
contrast of fixed effect functions CB

 Can compute quantiles of posterior distribution for
B (1) for each z, which can be used for pointwise

credible intervals. Pr{Q. . »,()<B ()< Q; ;. ,(0)|D}=1-a

e Can compute probability of having a certain minimum
eftect size: p ()=Pr{|B (1)|>o|D}, e.g. log: 6=1 < 2-fold

— Takes both Statistical and Clinical significance into account

 3/11/2008



Raw Spectrum, Preprocessed Spectrum, Model-Generated Spectrum,

x 10% Normal Normal Normal
2 60 60
50 50 1
1.5
= 40 40 1
£ = =
7] 7]
.-E‘ 1 § 30 g 30 1
5 = =
= 20 20 :
0.5
10 10 i
(o] o o
1 2 3 1 2
m/z (Daltons) x 10% m/z (Dalton ) o* m/z (Daltons) x 10*
Raw Spectrum, Preprocesse d Spectrum, Model-Generated Spectrum,
x 10% Pancrea tic Cancer Pancrea tic Cancer Pancreatic Cancer
60 60
50 50
_— 1 -5
= 40 40
= 5 g
= 1 g 30 £ 30
= = =
5]
£ 20 20
0.5
A 10 L 10
o o hL A o AddkL ] }K
1 2 3 1 2
m/z (Daltons) x 10* m/z (Dalton ) x 10% m/z (Daltons) x 10%

e Draws of spectra from posterior predictive
distribution yield data that looks like real MALDI
data (3" column), indicating reasonable model fit.



WFMM:

Posterlor samples/estimates of fixed effect;

B (1) adaptively regularized as a result of shri
prior applied to wavelet coefficients. <
N | | (a) Schoo‘l E | | -i
* Able to preserve

dominant spjk—es in
mean curves, if

present

log(MET)

K pf
“ !
| | | | |
Time of Day .



Posterior Mean for Overall Mean Spectrum with Peaks, Organ by Cell Line Example

25

Normalized Intensity
o 3

—_
(=]

8
m/z (kDaltons)

11

14




Random Effect Function, Mouse 1

Intensity

4000 6000 8000 10000 12000
m/z

Mouse-specific Fitted Curve, Mouse 1
50 50

L\ ! i
0 it v

4000 6000 8000 1000012000
m/z

Random Effect Function, Mouse 2

4000 6000 8000 10000 12000
miz

Mouse-specific Fitted Curve, Mouse 2

0 et (N
4000 6000 8000 1000012000

miz

50

f random effect funetiol

* Posterior samples/estimates o
appear to be adaptively regularized

Random Effect Function, Mouse 3

0
4000 6000 8000 10000 12000

m/z

Mouse-specific Fitted Curve, Mouse 3

0 lte? AR
4000 6000 8000 10000 12000

m/z

* Able to preserve

spikes in random
effect functions
as well

Important Jlr

estimation of
random effect
functions AND for
valid inference on
fixed effect
functions.



How can the random effects be adaptively regul?
they have a Gaussian prior (with linear shrink)?

w~N,q;)

e However, note that each wavelet coefficient has its own
variance component g;, which determines the amount of
shrinkage from #”; . towards 0 (smaller g relative to s, more
shrinkage towards 0)

— Since (j,k) corresponding to strong signals in the random effect functions
will tend to be larger, ¢; will also tend to be larger, leading to less
shrinkage.

— Unimportant (j,k) will tend to have small ;> and thus lead to more
shrinkage

— Although linear for each wavelet coefficient, the shrinkage is nonlinear
when viewed for the entire set of wavelet coefficients together.

e This same dynamic allows very smooth random effect estimates

when the data supports this notion.




Random Effect

5 |

-10
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Random Effect

Fish Oil 12 hr, Rat 1
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Random Effect
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Relative Cell Position
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(o] 0.2 04 0.6 0.8 1
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Random Effect

* While adaptive to irregularity, this framewe
yield relatively smooth effect functions when the¢
supports smooth representations.

10

5f

e
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Random Effect
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Random Effect
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V ulfe testing problem is inheren
inference: T positions, T tests
* One Solution: perform functional test of H,:B (0—0

— Popular approach for some researchers (FANOVA)

— Not as interesting to me: key is for what ¢ we have B (?) differ
from zero, and by how much.

— We can do functional testing in WFMM using Bayes Factors
* Another Solution: Apply some sort of multiple testing
adjustment to the inference. Here we will look at

applying the False Discovery Rate (FDR) ideas popular
in microarrays to this pointwise functional setting.

‘




e Adjusting for Multiple testing

e Classic approach: Bonferroni
T tests, use a/T as sig. level

— Controls experiment-wise error rate H 0
Pr(at least one false positive)< a

— Too conservative for some fields Decision
(e.g. microarrays), so alternative
criterion devised H

b

e False Discovery Rate (FDR):
Benjamini and Hochberg (1995)

Controls proportion of
“discoveries” that are false to be
no more than a

- 3/11/2008




Benjamini and Liu (1999), Storey (2002), Storey (2003), Geno
Wasserman (2002), Ishwaran and Rao (2003), Pounds and Morris
(2003), Efron (2004), Newton (2004), Pounds and Cheng (2004)

e Most methods follow one of three approaches:
1. Fit mixture model on tests stats (known distn under H))
2. Fit mixture model on p-values {U(0,1) under H}
3. Fit Bayesian mixture model, with point mass prior on H,
e Methods can either set limit on global FDR (a), or
on local FDR for each statistic 1 (Storey 2003)
— g/min Pr(H, true for gene i|Gene i in RR)
— Note: p-value is Pr(Gene i in RR|H , true for statistic 7)
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Density

05

00

Global: a=C/(C+D)
Local: g(pv)=c/(c+d)
D
d| — ]
c* U
DfD PV 0.2 Diq -

0.8 1.0
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 Bayesian FDR from posterior probabili .y
— Posterior probs of effect sizes: p~=Pr{ |B,|<0|Y}, i=I, o

 If we define a “discovery” to be effect size at least o (H;:
|B;|<0), then p; is a Bayesian local FDR

*  To control the global expected Bayesian FDR

1. Sortin ascending order of p; {p,, i=1, ..., T}

2. Identity cutpoint ¢, on posterior probabilities that
controls expected Bayesian FDR to be < o

=p,., wWhere . ,
e /I:max{l*:z o Q*a}
i—1

3. Flag the set of statistics {i: p;, < @,/ as significant
(According to model, we expect only a to be false pos.)




Notes

 This approach takes both statistical and
practical significance into account when
declaring differences significant.

* Given choice of cutpoint on posterior

probabilities to flag significant regions, we can
also estimate false negative rate (FNR),
sensitivity, and specificity for declaring flagged
regions significantly different.




5" S inference

FDR for pointwise functional inference:

*  Substituting Lebesgue measure for counting measureS G
can apply FDR ideas to pointwise inference:

e From MCMC samples, we have the quantities:
p.~Pr{|B,@)|>d|Y} for I=L, ..., T

*  Using H,z|B (¥)|<06, p,, s 2 Bayesian local FDR for fixed
effect function a at position #, within the curve.

* As described above, we can find a cutpoint ¢, on the p,
that controls the global average Bayesian FDR<a

8 |t |-t flagged falsely| B, (t) |< &
|t]:t flagged as "significant”
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li catl W ISEEDI Orgar
etlY (t)be the SELDI spectrum .y

log, {Y, (t)} = Zx B (t)+ZZ,kU () +E (1)

* X.=I if lung/A375P, 0 ow X.,=I for brain/A375P, 0 ow
X;;= 1 if lung/PCMM?2 X;/~1 for brain/PCMM?2

l l

X;s= 1 if high laser intensity, -1 if low
* By(t) = overall mean spectrum for treatment group j=1,2,3,4

B ,(t) = laser intensity effect function

e Z,=I if spectrum i is from mouse k (k=I, ..., 16)

(1) is random effect function for mouse k.
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Applications:

Cell Line Main Effect Organ-by-Cell Line Interaction Effect

Intensity (Log2 scale)
Intensity (Log2 scale)

m/z (kDaltons) m/z (kDaltons)
e Posterior Probabiliti of 2-Fold Change, Pointwise Posterior Probabilities of 2-Fold Change,

0.999 0.999
0.99 | A n M . 0.99 | i /\
0.90} J s i . 0.90k (1 |

ot WWMUM .o-fwwwwww ‘W\\/

5 8 11 14 2 5 14
m/z (Daltons) m/z (D altons)

Prob(2-fold change|Data)
Q
O

Prob(2-fold change|Data)
o
o

e Using a=0.05, 5~1 (2-fold expression on log,
scale), we flag a number of spectral regions.




Applications:

Table 1: Selected flagged regions from organ by cell line example. Location of selected region (in
Daltons per coulomb) is given, along with which effect was deemed significant, estimated maximum
fold change difference within the region, and a description of the effect. These effects comprise all

those with p; > 0.9995.

Region

Effect type max FC

Comment

3866.3-3971.3
3658.3-3739.0

9902.6-10044.0

4762.2-4874.8
4748.2-4868.3
3743.4-3565.3
4952.6-5008.2
4519.9-4697.5
5051.3-5093.3
3993.4-4061.3
10912-11269

organ
organ
organ
Interaction
cell-line
organ
organ
organ
cell-line
organ
Interaction

1/93.9

1/118.5

46.1
1/13.7
1/39.7
1/35.0
1/32.8
27.5
1/23.5
21.0
1/16.4

Only in brain-injected mice
Only in brain-injected mice
Only in lung-injected mice
PC3MM2>A375P, especially brain
PC3MM2>A375P
Brain>Lung
Brain>Lung
Lung>Brain
PC3MM2>A375P
Lung>Brain (on upslope of peak)
Brain>Lung for A375P only

I N



Applications:

p(t)=Prob(2.0-Fold|Data)

(a) Organ Main Effect

mes _UING -~ INjected
Brain-Injected

Intensity

3900 3950
m/z (Daltons)
(c) Pointwise Posterior Probabilities, 2—fold difference

>0.9995 . *
0991 1
0.90+ i

3850 4000

0.50
0.10
0.017

<0.0005
3800

3900 3950
miz (Daltons)

3850 4000

Prob(2.0-Fold|Data)

p®)

Intensity

>0.9995

0991

0.90
0.50

0.10
0.01r

<0.0005

7500

(b) Organ Main Effect

s | UNG - INjected
Brain-Injected

Overall Mean Spectrum

7550 7600 7650

m/z (Daltons)
(d) Pointwise Posterior Probabilities, 2-fold difference

7700

7600 7650

m/z (Daltons)

7550 7700

3900 D (~100-fold) (CGRP-II): dilates blood vessels in brain

7620 D (~5-fold) (neurogranin): active in synaptic modeling
in brain (Not detected as peak)



Posteror Means and 85% Pointwise Posternor Credible Bounds, Laser Intensity Effect
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Supplementary Figure 7: Laser Intensitv Effect, Organ-byv-Cell-Line Example. Plot of
the posterior mean of the laser intensity effect function (blue line). along with 95%
pointwise posterior bounds (gray shaded regions). The green lines mark 2-fold
expression differences. The green/red dots indicate detected peaks that were/were not
flagged as significant for either the organ. cell-line. or interaction main etfects.




o] (a) Laser Effect, Peaks 3412.6 and 3496.6 (c) Laser Effect, Peak 11721.0
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e Inclusion of nonparametric functional laser intensity effect is
able to adjust for systematic differences in the x and y axes
between laser intensity scans
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S

Presented unified modeling approach forF A ]

— Adaptive enough to handle irregularities in both mean
structures and random effects (covariances)

Method based on mixed models; is FLEXIBLE

— Accommodates a wide range of experimental designs
— Addresses large number of research questions
Posterior samples allow Bayesian inference and prediction
— Posterior credible intervals; pointwise or joint
— Predictive distributions for future sampled curves
— Predictive probabilities for classification of new curves
— Bayesian functional inference can be done via Bayes Factors

Since a unified modeling approach is used, all sources of
variability in the model propagated throughout inference.

. 92




* Approach is Bayesian. The only informative priors to elic

regularization parameters, which can be estimated from <
using empirical Bayes.
 Developed general-use code — reasonably fast and

straightforward to use - minimum information to specify is Y,
X, Z. matrices.

e Can deal with missing data, i.e. partially observed
functions

* Method has been generalized to higher dimensional functions,
e.g. image data, space/time data

* The Gaussian/independence assumptions can be

relaxed to robustify modeling

. 3/11/2008



W(i/kipresented here is fr()m 3 papers =

“Wavelet-Based Functional Mixed Models” (2006) J efre s
Morris and Raymond J. Carroll, JRSS-B, 68(2): 179- 199\

“Using Wavelet-Based Functional Mixed Models to Characterize <
Population Heterogeneity in Accelerometer Profiles: A Case
Study” (2006) Jeffrey S. Morris, Cassandra Arroyo, Brent

Coull, Louise Ryan, Richard Herrick, and Steve Gortmaker,
JASA, 101(4): 1352-1364.

“Bayesian Analysis of Mass Spectrometry Proteomics Data using
Wavelet Based Functional Mixed Models” (2007) Jeffrey S.
Morris, Philip J. Brown, Richard Herrick, Keith A. Baggerly,

and Kevin R. Coombes, Ziomerrics, online.
Supported by NIH Grant R01 CA107304

Computer code/papers on web at
http://biostatistics.mdanderson.org/Morris/papers.html
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