# Wavelet-Based Preprocessing Methods for Mass Spectrometry Data

Jeffrey S. Morris
Department of Biostatistics and Applied
Mathematics

UT M.D. Anderson Cancer Center

#### Overview

- Background and Motivation
- Preprocessing Steps
  - Denoising using Wavelets
  - Baseline Correction/Normalization
  - Peak Detection/Quantification
  - Working with Average Spectrum
- Virtual Mass Spectrometer
- Simulation Study
- Conclusions

# Statistical Issues for Mass Spectrometry Experiments

#### Experimental Design

 Blocking/RANDOMIZATION – reduce possibility of systematic bias polluting the data.

#### Preprocessing

- Remove systematic artifacts/noise from data
- Extract meaningful features (protein signal) : nxp matrix

#### Data Analysis/Discovery

- Analyze n x p matrix
  - Find which features are associated with exp. cond.
  - Build/validate classifier based on sets of features
  - Cluster samples/features
- Lots of existing methods available for this

$$Y_{i}(t_{j}) = B_{i}(t_{j}) + N_{i}S_{i}(t_{j}) + e_{ij}$$

Baseline Artifact 
$$Y_i(t_j) = B_i(t_j) + N_i S_i(t_j) + e_{ij}$$

Baseline Protein Signal 
$$Y_i(t_j) = B_i(t_j) + N_i S_i(t_j) + e_{ij}$$

$$Y_i(t_j) = \overbrace{B_i(t_j)}^{\text{Baseline}} + \underbrace{N_i}_{\text{Signal}} \underbrace{S_i(t_j)}_{\text{Signal}} + e_{ij}$$

$$\underbrace{Normal}_{\text{ization}}$$
Factor

$$Y_{i}(t_{j}) = \overbrace{B_{i}(t_{j})}^{\text{Baseline}} + \underbrace{N_{i}}_{\text{Signal}} \underbrace{S_{i}(t_{j})}_{\text{Signal}} + \underbrace{e_{ij}}_{\text{additive noise factor}}$$

$$e_{ij} \sim N\{0, \sigma^2(t_j)\}$$

# Preprocessing

- Goal: Isolate protein signal  $S_i(t_j)$ 
  - Filter out baseline and noise, normalize
  - Extract individual features from signal

#### ■ Problem:

- Baseline removal, denoising, normalization, and feature extraction are interrelated processes.
- Where do we start?

# Denoising using Wavelets

- First step: Isolate noise using wavelets
  - Wavelets: basis functions that can parsimoniously represent spiky functions
  - Standard denoising tool in signal processing
- Idea: Transform from time to wavelet domain, threshold small coefficients, transform back.
  - Result: Denoised function and noise estimate
  - Why does it work? Signal concentrated on few wavelet coefficients, white noise equally distributed. Thresholding removes noise without affecting signal.
- Does *much* better than denoising tools based on kernels or splines, which tend to attenuate peaks in the signal when removing the noise.

# Raw Spectrum



# Denoised Spectrum



# Noise



#### **Baseline Correction & Normalization**

- Baseline: smooth artifact, largely attributable to detector overload.
  - Estimated by monotone local minimum
  - More stably estimated after denoising
- Normalization: adjust for possibly different amounts of material desorbing from plates
  - Divide by total area under the denoised and baseline corrected spectrum.

#### **Baseline Estimate**



#### Denoised, Baseline Corrected Spectrum



# Denoised, Baseline Corrected, and Normalized Spectrum



# Protein Signal

- Ideal Form of Protein Signal: Convolution of peaks
  - Proteins, peptides, and their alterations
  - Alterations: isotopes; matrix/sodium adducts; neutral losses of water, ammonia, or carbon
- Limitations of instrument used means we may not be able to resolve all peaks.
- Advantages of peak detection:
  - Reduces multiplicity problem
  - Focuses on units that are theoretically the scientifically interesting features of the data.

#### Peak Detection

- Easy to do after other preprocessing
- Any local maximum after denoising, baseline correction, and normalization is assumed to correspond to a "peak".
- May want to require  $S/N>\delta$  to reduce number of spurious peaks.
  - We can estimate the noise process  $\sigma(t)$  by applying a local median to the filtered noise from the wavelet transform.
  - Signal-to-noise estimate is ratio of preprocessed spectrum and noise.

#### Peak Detection



# Peak Detection (zoomed)



# Raw Spectrum with peaks



#### Peak Quantification

- Two options:
  - Area under the peak: Find the left and right endpoints of the peak, compute the AUC in this interval.
  - Maximum intensity: Take intensity at the local maximum (may want to take log or cube root)
- Theoretically, AUP quantifies amount of given substance desorbed from the chip.
  - But it is very difficult to identify the endpoints of peaks

#### Peak Quantification

- The maximum intensity is a practical alternative
  - No need for endpoints, should be correlated with AUP
  - Physics of mass spectrometry shows that, for a given ion with m/z value x, there is a linear relationship between the number of ions of that type desorbed from plate and the expected maximum peak intensity at x.
- Problem with both methods: Overlapping peaks that are not deconvolvable
  - Local maximum at t contains weighted average of information from multiple ions whose corresponding peaks have mass at location t.
  - Major problem short of formal deconvolution, have not seen simple solution to this problem.

# Peak Matching Problem

- If peak detection performed on individual spectra, peaks must be matched across samples to get n x p matrix.
  - Difficult and arbitrary process
  - What to do about "missing peaks?"
- **Our Solution:** Identify peaks on **mean spectrum** (at locations  $x_1, ..., x_p$ ), then quantify peaks on individual spectra by intensities at these locations.

#### Advantages/Disadvantages

- Advantages
  - Avoids peak-matching problem
  - Generally more sensitive and specific
    - Noise level reduced by sqrt(n)
    - Borrows strength across spectra in determining whether there is a peak or not (signals reinforced over spectra)
  - Robust to minor calibration problems
- Disadvantage
  - Tends to be less sensitive when prevalence of peak < 1/sqrt(n).</p>

# Noise reduced in mean spectrum



## Noise reduced in mean spectrum



#### Peak detection with mean spectrum



# Sample Spectrum



# Simulated spectra

- Difficult to evaluate processing methods on real data since we don't know "truth"
- Have developed a simulation engine to produce realistic spectra
  - Based on the physics of a linear MALDI-TOF with ion focus delay
  - Flexible incorporation of different noise models and different baseline models
  - Includes isotope distributions
  - Can include matrix adducts, other modifications

#### MALDI-TOF schematic



Vestal and Juhasz. J. Am. Soc. Mass Spectrom. 1998, 9, 892.

# Modeling the physics of MALDI-TOF

#### Parameters

D<sub>1</sub> = distance from sample plate to first grid (8 mm)

 $V_1$  = voltage for focusing (2000 V)

 $D_2$  = distance between grids (17 mm)

V<sub>2</sub> = voltage for acceleration(20000 V)

L = length of tube (1 m)

 $v_0 = initial velocity ~ N(\mu, \sigma)$ 

v<sub>1</sub> = velocity after focusing

 $\delta$ = delay time

#### Equations

$$v_1^2 = v_0^2 + \frac{2qV_1}{mD_1}(D_1 - \delta v_0)$$

$$t_{DRIFT}^2 = L^2 / \left(\frac{2qV_2}{m} + v_1^2\right)$$

$$t_{ACCEL} = \frac{mD_2}{qV_2} \left( \frac{L}{t_{DRIFT}} - v_1 \right)$$

$$t_{FOCUS} = \frac{mD_1}{qV_1} (v_1 - v_0)$$

# Simulation of one protein, with isotope distribution



# Same protein simulated on a low resolution instrument



# Simulation of one protein with matrix adducts



### Simulated calibration spectrum with equal amounts of six proteins



# Simulated spectrum with a complex mixture of proteins



# Closeup of simulated complex spectrum



#### Real and Virtual Spectra





#### Using Virtual Mass Spectrometer

- Input: virtual sample
  - proteins and peptides desorbed from sample
  - list of molecular masses w/ # of molecules
- Output: virtual spectrum
- Simulation Studies: virtual population
  - Defines distribution of proteins in proteome from which you are sampling
  - Assume p proteins; for each specify 4 quantities
    - major peak location (m/z of dominant ion)
    - prevalence (proportion of samples with protein)
    - abundance (mean # ions desorbed from samples w/ protein)
    - variance (var # of desorbed ions across samples w/ protein)

#### Simulation Study

- Generated 100 random virtual populations based on MDACC MALDI study on pancreatic cancer.
- For each virtual population, generated 100 virtual samples, obtained 100 virtual spectra.
- 3. Applied preprocessing and peak detection method based on individual and average spectra
- 4. Summarized performance based on sensitivity (proportion of proteins detected) and FDR (proportion of peaks corresponding to real proteins).
  - Tricky to do see paper for details.

### Simulation Results Overall Results

|                  | sensitivity | FDR  | pv*  |
|------------------|-------------|------|------|
| SUDWT            | 0.75        | 0.09 | 0.03 |
| (indiv. spectra) |             |      |      |
| MUDWT            | 0.83        | 0.06 | 0.97 |
| (mean spectrum)  |             |      |      |

<sup>\*</sup>pv=the proportion of simulations with higher sensitivity

## Simulation Results By Prevalence

| π:                     | <. <b>05</b> (14%) | . <b>0520</b> (16%) | . <b>2080</b> (40%) | >. <b>80</b> (30%) |
|------------------------|--------------------|---------------------|---------------------|--------------------|
| sensitivity<br>(SUDWT) | 0.43               | 0.74                | 0.81                | 0.82               |
| sensitivity<br>(MUDWT) | 0.38               | 0.74                | 0.93                | 0.97               |
| pv<br>(MUDWT)          | 0.25               | 0.49                | 1.00                | 1.00               |

## Simulation Results By Abundance (mean log intensity)

| log(μ):                | < <b>9.0</b> (31%) | <b>9.0-9.5</b> (27%) | <b>9.5-10</b> (23%) | > <b>10</b> (19%) |
|------------------------|--------------------|----------------------|---------------------|-------------------|
| sensitivity<br>(SUDWT) | 0.68               | 0.75                 | 0.78                | 0.82              |
| sensitivity<br>(MUDWT) | 0.78               | 0.84                 | 0.85                | 0.88              |
| pv<br>(MUDWT)          | 0.97               | 0.89                 | 0.84                | 0.78              |

#### Open problems: Preprocessing

- Better calibration?
  - Internal validation
- Better baseline correction?
- Alternative methods for normalization?
- Quality control/quality assurance?
- Best approach for quantification?

### Open problems: Virtual Mass Spectrometry Instrument

- Include more alterations
  - Adducts and neutral molecule losses
  - Multiply-charged ions
- Develop more realistic model for baseline artifact
- Generalize to other instruments?

#### Acknowledgements

- Bioinformatics
  - Kevin Coombes
  - Keith Baggerly
  - Jing Wang
  - Lianchun Xiao
  - Spyros Tsavachidis
  - Thomas Liu
- Proteomics (MDACC)
  - Ryuji Kobayashi
  - David Hawke
  - John Koomen
- Ciphergen
  - Charlotte Clarke

- Biologists (MDACC)
  - Jim Abbruzzese
  - I.J. Fidler
  - Stan Hamilton
  - Nancy Shih
  - Ken Aldape
  - Henry Kuerer
  - Herb Fritsche
  - Gordon Mills
  - Lajos Pusztai
  - Jack Roth
  - Lin Ji