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Accelerometers
• Accelerometers: small motion sensors that digitally 

record minute-by-minute activity levels
– Increasingly used in large surveillance studies and 

intervention trials to objectively monitor activity
– Children, older adults, Alzheimer patients
– Revolutionizing the field of physical activity 

research
• Yield complex functional data 

– Activity level profiles
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Some Accelerometer Profiles
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Analyzing Accelerometer Data
• Major challenge: How to analyze these data?
• Standard strategy: Extract simple summary 

measures from the profiles, then analyze these 
1. Average daily activity level
2. Proportion of time with activity levels corresponding to 

sedentary (<3 MET), moderately vigorous (3-6 MET), and 
vigorous (>6 MET) activities

• Benefit: simplifies data into recognized form.
• Limitations of these approaches:

– Do not make full use of information in functional data  
– Cannot effectively deal with incomplete profiles



8/4/2005 Johns Hopkins Biostatistics 
Grand Rounds

Case Study: Planet Health

• Planet Health: Boston-area school based intervention
– Subset of children in study wore accelerometer for 4-8 days
– 550 profiles from 112 children from 5 schools, 1440 

measurements/profile                (Heatmap)

• Lots of missing data
– Measurement coded as missing for time periods for which 

child was inactive for at least 30 consecutive minutes

– We focus on profiles >50% complete from 9am-8pm
• 292 profiles from 106 children
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Heatmap

Accelerometer Data



8/4/2005 Johns Hopkins Biostatistics 
Grand Rounds

Accelerometer Data

• Other measurements:
– Child-level covariates: school, race, gender, age, weight, 

height, BMI, triceps skinfolds, avg hrs of TV/day

– Day-level covariates: day of week, calendar date

• Questions of Interest:
1. How do activity levels vary throughout day, across schools, 

across different days of the week, over time from early to 
late Spring, and across various child-level covariates?

2. What proportion of variability in activity levels is from 
day-to-day and child-to-child?  How many days per child?
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Statistical Challenges
1. Data are irregular functions
2. Jointly model functional effects of multiple 

covariates
3. Account for correlation between profiles

from same child 
4. Incorporate information from incomplete 

profiles
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Functional Data Analysis

• Functional Data:
– Ideal units of observation: curves
– Observed data:  curves sampled on fine grid

• Increasingly encountered in scientific research.
• FDA Approach (Ramsay and Silverman 1997):

– Treat functions as single entities, rather than a 
collection of observations
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Functional Mixed Model 
Y(t) = set of N observed curves, stacked as rows.
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• Q and S are covariance surfaces describing the how 
the random effect curves/residual error processes vary 
across replicates.

• Variations of this model were used by Guo (2002) and 
Morris and Carroll (2004)
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Functional Mixed Model 
(Discrete version)

Y= N-by-T matrix containing the observed curves all 
sampled on a common equally-spaced grid of length T, t.
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• Bij is the effect of covariate i at location tj
• Q and S are covariance matrices (T x T) 
• Note: Some structure must be assumed on 

form of Q and S (discussed later)
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Example: Model

EZUXBY ++=

Let Y be 292×660 matrix containing 292 accelerometer 
profiles for each minute from 9am-8pm.

• X = 292 × 14 matrix of covariates
– School effects (5), gender, triceps skinfold, BMI, day-

of-week (4), daylight savings time, avg TV hrs/day
• B = 14 × 660 matrix of fixed effects functions

– Bij is effect of covariate i at time tj

• Z = 292 × 106 matrix indicating child for each profile
U = 106 × 660 matrix of random effect functions (1/child)

• E = 292 × 660 matrix of residual errors
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Functional Mixed Models
• Key feature of FMM: Does not require specification 

of parametric form for curves
• Guo (2002) fit FMM using splines 
• Morris, et al. (2003) and Morris and Carroll (2004) 

use approach involving wavelet bases
– Accommodates “spiky” functional data
– Allows more general types of covariances

• Wavelet Regression: nonparametric regression 
technique that better preserves local features 
present in the curves.
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Introduction to Wavelets
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)}

for obtaining T empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.

• Linear Representation: d = y W’
– W’ =T-by-T orthogonal projection matrix

• Inverse DWT (IDWT): y = d W
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Wavelet Regression
• Wavelet Regression – 3 step process

1. Project data into wavelet space 
2. Threshold/shrink coefficients
3. Project back to data space

• Yields adaptively regularized (plot)
nonparametric estimates of function

• Morris, et al. (2003) extended to nested 
functional model (Bayesian)

• Morris and Carroll (2004) extended to 
general functional mixed model 
framework (wavelet-based FMM)
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Adaptive Regularization

Return
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space

{

}

{

}

{ {
TTTT ××

×

×

×

×

++=
Nm

mN

p

pN

N
ZX *** EUBD

),0(~

 ),0(~
**

**

SE

QU

MVN

MVN

i

i



8/4/2005 Johns Hopkins Biostatistics 
Grand Rounds

Adaptive Regularization via 
Shrinkage Prior

Mixture prior on Bijk
*:

0
*** )1(),0( δγτγ ijkijijkijk NB −+=

)(Bernoulli*
ijijk πγ =

• Nonlinearly shrinks Bijk
* towards 0, leading to

adaptively regularized estimates of Bi.
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model
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Model Fitting
• Let Ω be a vector containing ALL covariance 

parameters (in Q* and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normals
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Wavelet-Based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.

• Apply IDWT to posterior samples of B* to get 
posterior samples of fixed effect functions Bi for 
i=1,…, p, on grid t. 

– B=B*W
• Posterior samples of U,  Q, and S are also available, 

if desired.
• Can be used for any desired Bayesian inference
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Incomplete Profiles
• Lots of missing data (Missing Data)

Example of incomplete profile
• WFMM can only be applied to complete 

profiles (with no missing regions)
– 95 of the 292 profiles complete from 9am-8pm

• How do we incorporate information from 
other 197 incomplete profiles ?  
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Heatmap of Missingness
(Black=missing)

Accelerometer Data
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Approach: Incomplete Profiles
1. First fit model to complete profiles, get posterior 

distribution samples for model parameters.
2. Use these to estimate predictive distributions for the 

the incomplete profiles  (fig)
• Borrow information about what the curves in these regions look like.
• Account for child-specific and day-specific covariates.

3. Regress missing data on the observed data to obtain 
imputation distribution for missing regions (fig)

• Borrow information from nearby times in incomplete profiles.
• Makes predictions for missing regions “connected” with observed.

4. Supplement WFMM with step to stochastically 
impute values for missing data.

• Inference appropriately accounts for uncertainty in 
imputation
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Incomplete Profile

Return
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Predictive Distribution
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Imputation distribution
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Incomplete Profiles
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Missing Data in the WFMM
• Problem: Imputation distribution in data space, 

modeling done in wavelet space
• Solution: Project imputation distributions into 

wavelet space
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Model

EZUXBY ++=

Let Y be 292×660 matrix containing 292 accelerometer 
profiles for each minute from 9am-8pm.

• X = 292 × 14 matrix of covariates
– School effects (5), gender, triceps skinfold, BMI, day-

of-week (4), daylight savings time, avg TV hrs/day
• B = 14 × 660 matrix of fixed effects functions

– Bij is effect of covariate i at time tj
• Z = 292 × 106 matrix indicating child for each profile

U = 106 × 660 matrix of random effect functions (1/child)
• E = 292 × 660 matrix of residual errors     (short results)

(Bayesian Inference)
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Statistical Inference in FMM
• Prior distributions made “uninformative”

– Exception: smoothing parameters, which can be estimated 
from the data using an “empirical Bayes” approach

• We use MCMC to draw samples from posterior 
distributions of Bi(t) functions and covariances.

• For each covariate effect, we compute 90% pointwise 
credible intervals at each value of t

• We also computed 90% credible intervals, aggregating 
data within following time intervals:
1. All day (9am-8pm) 2. Morning (9am-11:30am)
3. Lunch (11:30am-12:30pm) 4. Afternoon (12:30-2:15pm)
5. Going home (2:15pm-3pm) 6. After school (3pm-5:30pm)
7. Early evening (5:30pm-7pm) 8. Late evening (7pm-8pm)
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Selected Results: School Effects
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• School schedules 
evident in effects
– Spikes every 48min  

(changing classes)
– 3 lunch periods
– School out at 2:15pm

• Not so evident in 
individual curves
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Selected Results: BMI Effect
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• BMI coded as 
continuous factor 
(mean-centered)

• BMI effect positive         
(post prob<0.0005)
– Higher BMI, more 

energy expenditure
• Not present in raw 

activity levels
– Artifact of conversion 

from acceleration to 
energy scale?
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Selected Results: DST Effect
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• DST – April 6th
• More active after DST 

(overall 8%, p=0.062)
• Especially strong:

– As school is letting out
(2:15-3:00, 25%, p=0.03)

– In early evening
(5:30-7:00, 30%, p=0.01)

• Note:  Sunset was
– 5:10-6:15 before DST
– 7:15-8:10 after DST
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Selected Results: TV hours/day
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• TVhrs coded as 
continuous factor 
(standardized)

• TVhrs effect negative     
(-1.3% per sd, p=0.03)
– More TV, less active
– 3:00-5:30, -2.6%, p=0.02
– 7:00-8:00, -3.6%, p=0.008

• Positive effect over lunch
– +2.7%, p=0.03
– More TV, on average 

more active over lunch
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Some Results
• School #5:

– Spikes every 48min  
(changing classes)

– 3 lunch periods
– School out at 2:15pm

• BMI effect positive
– More energy expenditure

• Daylight Savings Time
– More active after DST
– Especially 2-3pm, 5-7pm

• Avg hrs TV/day
– More TV=less active
– Especially 3-5pm, 7-8pm
– More active at lunch
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Results: Covariance Analysis

• Variability: 91% day-to-day, 9% child-to-child
– Important to have many days per child

• Study variability as function of t
– Child-to-child variability: school day > after school
– Day-to-day variability: after school > school day
– Relative day-to-day variability after school: 95-99%

• Less children, more days, save $$$?
– But adherence a major limitation

• Would be nice to get more schools, too.
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Results: Bouts
• Can compute 

posterior predictive 
probabilities of 
bouts for children
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Results: Bouts

• Model-based
predictive 
probabilites not far 
from empirically-
estimated
probabilities

• May want heavier 
tails

• Can compute 
posterior predictive 
probabilities of 
bouts for children
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Conclusions
• Found some interesting results in Planet Health

– School schedules, DST, Day of Week, TV hours
– Day-to-day variability large – need lots of days/child
– Raw vector magnitudes instead of estimated METs?

• Functional mixed models promising method for 
analyzing accelerometer data
– Makes use of all of the data
– Can detect effects that vary over time
– Can accommodate incomplete profiles
– After the fact, one can perform inference that averages 

within different time periods of interest
– Can still look at probabilities bouts, but as function of time
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