Identification of Prognostic Genes, Pooling Information Across Different Studies and Oligonucleotide Arrays

Jeffrey S. Morris UT MD Anderson Cancer Center Department of Biostatistics and Applied Mathematics

Introduction: CAMDA

- "Critical Assessment of Microarray Data Analysis"
 - 4 lung cancer data sets (most NSCLC, ADC)
 - Clinical and microarray data, similar questions addressed
 - Challenge: Integrate information across studies to yield insights into cancer biology.
- The papers:
 - Harvard: (Battacharjee, et al. PNAS 2001)
 - 186 patients (139 ADC), Affymetrix arrays
 - Michigan: (Beer, et al. *Nature Med.* 2002)
 - 86 patients (all ADC), Affymetrix arrays
 - Stanford: (Garber, et al. *PNAS* 2001)
 - 62 patients (35 ADC), Glass arrays
 - Ontario: (Wigle, et al. *Cancer Res.* 2002)
 - 39 patients (19 ADC), Glass arrays

Introduction

- Our Focus: ADC patients w/ surv. data
 - Michigan 86 patients, Harvard -- 125
- GOALS:
 - Pool information across studies to identify prognostic genes in lung ADC.
 - Offer prognostic information above and beyond that offered by known clinical predictors (e.g. stage)
 - 2) Develop methodology for combining gene expression information across different oligonucleotide chip types

Outline

Details of our Analytical Methods

- Pooling Information across Studies
- Pooling Information across Chip Types
- Preprocessing
- Identifying Prognostic Genes
- Results and Interpretation
- Conclusions

Pooling Information across Studies

- Problem: Study-to-study heterogeneity
 - Study populations or conditions may not be comparable.
- Our data:
 - Nearly identical gender/age/stage/smoking
 - Similar follow-up time distributions
 - Different survival distributions, even after adjusting for available covariates

Pooling Information across Studies

Harvard patients – worse prognosis

Pooling Information across Studies

Meta-analysis approaches in literature:

- Bayesian Hierarchical Models
 - See e.g. Stangl (1996)
- Frailty Models
 - See e.g. Therneau and Grambsch(2000), Ch9
- Our approach: Include fixed offset for institution in survival models

Pooling Information across Chip Types

- Michigan: HuGeneFI Chip
 - 6,633 probe sets -- 20 probe pairs each
- Harvard: HG_U95Av2 Chip
 - 12,453 probe sets 16 probe pairs each
- Problems:
 - Different genes
 - Incomparable expression levels

Our approach:

- 1. Use only matching probes
- Regroup into new probesets based on UNIGENE clusters (build 161) : "partial probesets"
- 4,101 probe sets with at least 3 probes

Pooling Information across Chip Types

Distribution of Probeset Sizes

Probeset Size

Quantification of Expression Levels

- Gene expressions quantified by applying Li's PDNN model to our partial probesets
 - Uses probe sequence info to predict patterns of specific and nonspecific hybridization intensities
 - Allows borrowing of strength across probe sets
 - Model is not overparameterized O(N_{probesets})
- Shown to outperform dChip and MAS5.0
- See Zhang, et al. (2003) Nature Biotech for further details on method and comparison

Detecting Outliers

Log-scale plots to detect outliers Large spot detected on 4 Michigan chips

- L54 L88 L89 L90
 Other outliers: 6 from Michigan, 2 Harvard
- Other preprocessing (remove low expr./normalize)
- Matching clinical/microarray data for 200 patients (124 H, 76 M)

What do we lose by using partial probesets?

 No evidence of precision loss

 Standard deviations across samples similar when using full or partial probesets

Best probes carried forward?

Agreement in relative quantifications across samples

- Agreement in relative quantifications across samples
- Less variable genes worse

- Agreement in relative quantifications across samples
- Less variable genes worse
- Eliminate genes with *sd*<0.20 or *r*<0.90

- Agreement in relative quantifications across samples
- Less variable genes worse
- Eliminate genes with *sd*<0.20 or *r*<0.90
- 1,036 genes

Median/MAD
 expression
 levels for
 genes similar
 across
 institution

Identifying Prognostic Genes

- After preprocessing: 1036 genes, 200 samples
- Identify genes related to survival
 - After adjusting for known clinical predictors
- Fit series of multivariable Cox models:
 - Include study, age, stage, plus 1 gene
 - P-value for each gene using permutation test (Also done using LRT and bootstrap)
- Also identify genes differentially expressed by stage
 - Wilcoxon test for each gene

Identifying Prognostic Genes

- After preprocessing:
 - 1036 genes, 200 samples
- Identify genes related to survival
 - After adjusting for known clinical predictors
 - Explain variability above and beyond c.p.
- Fit series of multivariable Cox models:
 - Include study, age, stage, plus 1 gene
 - P-value for each gene using permutation test

Identifying Prognostic Genes: Cox Regression Modeling

- Hazard: $\lambda(t) \sim \operatorname{Prob}(X < t + \Delta t \mid X > t)$
- Cox Model: $\lambda_i(t) = \lambda_0(t) \exp(X_i\beta)$
 - X_i = Vector of covariates for subject i
 - β = Vector of regression coefficients
- Key Assumption: Proportional Hazards
 - Hazard ratio between subjects with different covariates does not vary over time.
 - $\lambda_{i}(t)/\lambda_{k}(t) = \exp\{(X_{i}-X_{k})\beta\}$
 - $Exp(\beta)$ = Change in hazard per unit change in X

Identifying Prognostic Genes: Cox Regression Modeling

Best Clinical Model:

Factor	β	Exp(β)	Z	р
Study Michigan = 0 Harvard = 1	0.67	1.95	2.73	0.0062
Age	0.03	1.03	2.60	0.0094
Stage Early (1-2) = 0 Late (3-4) = 1	1.53	4.61	6.61	<0.00000001

Identifying Prognostic Genes: BUM Method

- No prognostic genes \rightarrow pvals Uniform
- Prognostic genes \rightarrow smaller pvals
- Fit Beta-Uniform mixture to histogram of p-values – "BUM" method
 - (Pounds and Morris, 2003 *Bioinformatics*)
- Method can be used to identify prognostic genes while controlling FDR

Results: Stage-Related Genes

- Many genes linked with stage
- 71 genes flagged using FDR<0.05 (p<0.0064)

Results: Prognostic Genes

Evidence of prognostic genes 26 flagged using FDR<0.20

Only 1 also flagged for stage 0 in top 100 genes in Michigan paper 1 cited in Harvard paper

Rank	Gene	β	р	p _{Stage}	Function
1	FCGRT	-2.07	<0.00001	0.154	Induced by IF- γ in treating SCLC
2	ENO2	1.46	0.00001	0.282	Marker of NSCLC
4	RRM1	1.81	0.00002	0.321	Linked to survival in NSCLC
8	CHKL	-1.43	0.00010	0.979	Marker of NSCLC
11	CPE	0.72	0.00031	0.088	Marker of SCLC
12	ADRBK1	-2.20	0.00044	0.484	Co-expressed with Cox-2 in PUC
16	CLU	-0.52	0.00109	0.014	Marker of SCLC
20	SEPW1	-1.29	0.00145	0.028	H202 cytotox. in NSCLC cell lines
21	FSCN1	0.66	0.00150	0.082	Marker of invasiveness in Stage 1 NSCLC

Rank	Gene	β	р	p _{Stage}	Function
1	FCGRT	-2.07	<0.00001	0.154	Induced by IF- γ in treating SCLC
2	ENO2	1.46	0.00001	0.282	Marker of NSCLC
4	RRM1	1.81	0.00002	0.321	Linked to survival in NSCLC
8	CHKL	-1.43	0.00010	0.979	Marker of NSCLC
11	CPE	0.72	0.00031	0.088	Marker of SCLC
12	ADRBK1	-2.20	0.00044	0.484	Co-expressed with Cox-2 in PUC
16	CLU	-0.52	0.00109	0.014	Marker of SCLC
20	SEPW1	-1.29	0.00145	0.028	H202 cytotox. in NSCLC cell lines
21	FSCN1	0.66	0.00150	0.082	Marker of invasiveness in Stage 1 NSCLC

Rank	Gene	β	р	p _{Stage}	Function
1	FCGRT	-2.07	<0.00001	0.154	Induced by IF- γ in treating SCLC
2	ENO2	1.46	0.00001	0.282	Marker of NSCLC
4	RRM1	1.81	0.00002	0.321	Linked to survival in NSCLC
8	CHKL	-1.43	0.00010	0.979	Marker of NSCLC
11	CPE	0.72	0.00031	0.088	Marker of SCLC
12	ADRBK1	-2.20	0.00044	0.484	Co-expressed with Cox-2 in PUC
16	CLU	-0.52	0.00109	0.014	Marker of SCLC
20	SEPW1	-1.29	0.00145	0.028	H202 cytotox. in NSCLC cell lines
21	FSCN1	0.66	0.00150	0.082	Marker of invasiveness in Stage 1 NSCLC

Rank	Gene	β	р	p _{Stage}	Function
1	FCGRT	-2.07	<0.00001	0.154	Induced by IF- γ in treating SCLC
2	ENO2	1.46	0.00001	0.282	Marker of NSCLC
4	RRM1	1.81	0.00002	0.321	Linked to survival in NSCLC
8	CHKL	-1.43	0.00010	0.979	Marker of NSCLC
11	CPE	0.72	0.00031	0.088	Marker of SCLC
12	ADRBK1	-2.20	0.00044	0.484	Co-expressed with Cox-2 in PUC
16	CLU	-0.52	0.00109	0.014	Marker of SCLC
20	SEPW1	-1.29	0.00145	0.028	H202 cytotox. in NSCLC cell lines
21	FSCN1	0.66	0.00150	0.082	Marker of invasiveness in Stage 1 NSCLC

Rank	Gene	β	р	p _{Stage}	Function
1	FCGRT	-2.07	<0.00001	0.154	Induced by IF- γ in treating SCLC
2	ENO2	1.46	0.00001	0.282	Marker of NSCLC
4	RRM1	1.81	0.00002	0.321	Linked to survival in NSCLC
8	CHKL	-1.43	0.00010	0.979	Marker of NSCLC
11	CPE	0.72	0.00031	0.088	Marker of SCLC
12	ADRBK1	-2.20	0.00044	0.484	Co-expressed with Cox-2 in PUC
16	CLU	-0.52	0.00109	0.014	Marker of SCLC
20	SEPW1	-1.29	0.00145	0.028	H202 cytotox. in NSCLC cell lines
21	FSCN1	0.66	0.00150	0.082	Marker of invasiveness in Stage 1 NSCLC

Rank	Gene	β	р	p _{Stage}	Function
1	FCGRT	-2.07	<0.00001	0.154	Induced by IF- γ in treating SCLC
2	ENO2	1.46	0.00001	0.282	Marker of NSCLC
4	RRM1	1.81	0.00002	0.321	Linked to survival in NSCLC
8	CHKL	-1.43	0.00010	0.979	Marker of NSCLC
11	CPE	0.72	0.00031	0.088	Marker of SCLC
12	ADRBK1	-2.20	0.00044	0.484	Co-expr with Cox-2 in lung adenocarc
16	CLU	-0.52	0.00109	0.014	Marker of SCLC
20	SEPW1	-1.29	0.00145	0.028	\downarrow H202 cytotox. in NSCLC cell lines
21	FSCN1	0.66	0.00150	0.082	Marker of invasiveness in Stage 1 NSCLC

Rank	Gene	β	р	p _{Stage}	Function
1	FCGRT	-2.07	<0.00001	0.154	Induced by IF- γ in treating SCLC
2	ENO2	1.46	0.00001	0.282	Marker of NSCLC
4	RRM1	1.81	0.00002	0.321	Linked to survival in NSCLC
8	CHKL	-1.43	0.00010	0.979	Marker of NSCLC
11	CPE	0.72	0.00031	0.088	Marker of SCLC
12	ADRBK1	-2.20	0.00044	0.484	Co-expressed with Cox-2 in PUC
16	CLU	-0.52	0.00109	0.014	Marker of SCLC
20	SEPW1	-1.29	0.00145	0.028	H202 cytotox. in NSCLC cell lines
21	FSCN1	0.66	0.00150	0.082	Marker of invasiveness in Stage 1 NSCLC

Rank	Gene	β	р	p _{Stage}	Function
3	NFRKB	-2.81	0.00001	0.058	Amplified in AML
7	ATIC	1.81	0.00009	0.771	Fusion partner of ALK which defines subtype of ALCL
13	BCL9	-1.64	0.00069	0.057	Over-expressed in ALL
15	TPS1	-0.64	0.00107	0.882	Associated with pulmonary inflammation
25	BTG2	-0.75	0.00232	0.726	Inhibits cell proliferation in primary mouse embryo fibroblasts lacking functional p53

Rank	Gene	β	р	p _{Stage}	Function
3	NFRKB	-2.81	0.00001	0.058	Amplified in AML
7	ATIC	1.81	0.00009	0.771	Fusion partner of ALK which defines subtype of ALCL
13	BCL9	-1.64	0.00069	0.057	Over-expressed in ALL
15	TPS1	-0.64	0.00107	0.882	Associated with pulmonary inflammation
25	BTG2	-0.75	0.00232	0.726	Inhibits cell proliferation in primary mouse embryo fibroblasts lacking functional p53

Rank	Gene	β	р	p _{Stage}	Function
3	NFRKB	-2.81	0.00001	0.058	Amplified in AML
7	ATIC	1.81	0.00009	0.771	Fusion partner of ALK which defines subtype of ALCL
13	BCL9	-1.64	0.00069	0.057	Over-expressed in ALL
15	TPS1	-0.64	0.00107	0.882	Associated with pulmonary inflammation
25	BTG2	-0.75	0.00232	0.726	Inhibits cell proliferation in primary mouse embryo fibroblasts lacking functional p53

Summary/Conclusions

Pooling information across studies:

- Fixed effect to model study heterogeneity
- Method using matched probes to combine information across chip types
- Identified prognostic genes
 - Predictive above and beyond clinical predictors
 - Interesting biological results
- Was pooling worth it?
 - Yes, 17/26 genes would not have been identified by this analysis without pooling studies

Collaborators/Acknowledgements

- Collaborators:
 - Li Zhang
 - Guosheng Yin
 - Keith Baggerly
 - Chunlei Wu
- Acknowledgements:
 - Kevin Coombes, David Stivers, Lianchun Xiao, and Sang-Joon Lee