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Major Areas of Statistical Input

1. Experimental Design
– Prevent systematic bias and experimental 

variation from sabotaging a study
2. Quantitative Analysis

– Data visualization (frequently a simple 
look at the data will reveal problems)

– Preprocessing (extract and normalize 
protein signal from raw data)

– Data Analysis (identify potential 
biomarkers and/or proteomic signatures 
for disease/response)
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Design makes a difference

• Selection of appropriate controls
– see your local epidemiologist (specificity?)

• Sample size
– make sure you have enough to find meaningful 

differences (or when constrained, at least find out 
how small of a difference you can detect)

• Sample collection and handling must be 
carefully controlled

• May want to Block on factors likely to impact 
data (e.g. run time)

• Randomization is needed at multiple points 
in the process
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Sample handling is critical

• All samples must be collected uniformly
– Consistent protocol
– Enforced at every collection site

• Failure to do this can (will) affect 
protein profiles

• The problem is particularly serious if 
sample handling is confounded with 
interesting variables (normal vs cancer)
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Hierarchical clustering of serum protein 
profiles of brain cancer

MALDI data from MDACC
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Clustering reflects changes in the sample 
collection protocol

Red = First 20
samples

Blue = Last 30
samples

MALDI data from MDACC
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Unsupervised methods often cluster 
samples by run date

SELDI leukemia data from MDACC

CML

ALL

ALL/CML
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A cautionary tale

• Reference: Conrads et al., Endocrine 
Related Cancer, July 2004.

• Ovarian cancer
– ~90 controls, ~160 cases

• Q-star instrument
– high resolution

• Careful QA/QC
• Claim: can distinguish healthy women 

from cancer patients
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T-statistics identify separator at 8602D 
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Heat map of raw data near 8602 Da:
Why are there two cancer groups?
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QC: Colors indicate run date
(Conrads et al, ERC, Figure 6a)
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QC: Colors indicate control/case
(Conrads et al, ERC, Figure 7)
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All controls were processed before all 
samples from cancer patients
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Design lessons
• All samples must be processed using 

the same protocol
• Randomization should be performed

– Before sample preparation steps
– Before acquiring spectra/gels

• May also want to block on important 
factors – reduce variability – there are 
ways to filter out systematic block 
effects

• Same principles should be used for 
other sensitive laboratory instruments.
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Quantitative Analysis of Proteomics Data
•Look at raw data
•Pre-process

–Calibration/Alignment
–Background Corr.
–Adjust Block Effects
–Normalization
–Peak/spot finding
–Peak/spot 

quantification
–Peak/spot matching 

across spectra/gels
•Look at processed 

data

•Clean things up
•Data Analysis

–Clustering
–T-test, ANOVA
–Correlating with 

outcomes
–Building predictive 

models

•Look at results
–Identify proteins and 

validate them

“Data is expensive, Analysis is cheap”
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Data Analysis: Beware of Multiplicities!

• When performing biomarker detection, 
important to account for multiple tests
when declaring biomarker “significant”
– If many peaks, p<0.05 gives lots of false +
– Methods available to control FDR

• When building discriminating model, 
important to properly validate model
– Independent validation samples/cross validation!!

– Internal vs. External CV: Cross-validate 
feature selection step!

– Are CV errors relevant for future data?



July 5, 2006 Clinical Proteomics in Oncology, Dijon, France

Look at the Data!!
Petricoin et al. (2002 Lancet)

• Collected SELDI proteomics data on serum 
samples from
– 100 women with ovarian cancer
– 100 normal controls
– 16 women with benign disease

• Selected 50 normal and 50 cancer 
• Trained a statistical/ computational 

algorithm to distinguish between the two 
types

• Tested the algorithm on the remaining 
samples
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Petricoin Results

• Correctly classified 50/50 of the 
ovarian cancer test cases as cancer

• Correctly classified 47/50 normal 
samples as normal, with 3/50 
classified as cancer

• Correctly classified 16/16 benign 
disease as “neither normal nor 
cancer”
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Some structure is visible in Heat Map
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Structure disappears in Data Set 2  
(same samples, different chip type)
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Technology can overwhelm biology
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Preprocessing

• We have found that preprocessing can 
be the most important step in the 
quantitative analysis process.

• It takes us from the raw data 
(spectra/gel images)  to the 
meaningful scientific features we want 
to analyze (quantified peaks/spots)

• Important to get right, since 
subsequent analyses depend on results
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Semi-Statistical Model for Spectrum
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Preprocessing

• Goal: Isolate protein signal Si(tj)
– Filter out baseline and noise, normalize
– Extract individual features from signal

• Problem: 
– Baseline removal, denoising, 

normalization, and feature extraction 
are interrelated processes.

– Where do we start?
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Denoising using Wavelets

• First step: Isolate noise using wavelets
– Wavelets: basis functions that can 

parsimoniously represent spiky functions
– Standard denoising tool in signal processing 

• Idea: Transform from time to wavelet domain, 
threshold small coefficients, transform back.
– Result: Denoised function and noise estimate
– Why does it work? Signal concentrated on few wavelet 

coefficients, white noise equally distributed.
Thresholding removes noise without affecting signal.

• Does much better than denoising tools based 
on kernels or splines, which tend to attenuate 
peaks in the signal when removing the noise.



July 5, 2006 Clinical Proteomics in Oncology, Dijon, France

Raw Spectrum
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Denoised Spectrum
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Noise
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Baseline Correction & Normalization

• Baseline: smooth artifact, largely 
attributable to detector overload.
– Estimated by monotone local minimum
– More stably estimated after denoising

• Normalization: adjust for possibly different 
amounts of material desorbing from plates
– Divide by total area under the denoised 

and baseline corrected spectrum.
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Baseline Estimate
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Denoised, Baseline Corrected Spectrum
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Denoised, Baseline Corrected, and Normalized
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Protein Signal

• Ideal Form of Protein Signal:
Convolution of peaks
– Proteins, peptides, and their alterations
– Alterations: isotopes; matrix/sodium adducts; 

neutral losses of water, ammonia, or carbon
• Limitations of instrument used means we 

may not be able to resolve all peaks.
• Advantages of peak detection:

– Reduces multiplicity problem
– Focuses on units that are theoretically the 

scientifically interesting features of the data.
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Peak Detection

• Easy to do after other preprocessing
• Any local maximum after denoising, baseline 

correction, and normalization is assumed to 
correspond to a “peak”.

• May want to require S/N>δ to reduce 
number of spurious peaks.
– We can estimate the noise process σ(t) by 

applying a local median to the filtered noise from 
the wavelet transform.

– Signal-to-noise estimate is ratio of 
preprocessed spectrum and noise.
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Peak Detection

3326 locations, 81 peaks
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Peak Detection (zoomed)
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Raw Spectrum with peaks
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Peak Quantification

• Two options:
1. Area under the peak: Find the left and right 

endpoints of the peak, compute the AUC in this 
interval.

2. Maximum intensity: Take intensity at the local 
maximum (may want to take log or cube root)

• Theoretically, AUP quantifies amount of given 
substance desorbed from the chip.

– But it is very difficult to identify the endpoints of 
peaks
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Peak Quantification

• The maximum intensity is a practical 
alternative 

• No need for endpoints, should be 
correlated with AUP

• Physics of mass spectrometry shows that, 
for a given ion with m/z value x, there is a 
linear relationship between the number of 
ions of that type desorbed from plate and 
the expected maximum peak intensity at x. 
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Peak Matching Problem

• If peak detection performed on 
individual spectra, peaks must be 
matched across samples to get n x p 
matrix.
– Difficult and arbitrary process
– What to do about “missing peaks?”

• Our Solution: Identify peaks on mean 
spectrum (at locations x1, …, xp), then 
quantify peaks on individual spectra 
by intensities at these locations.
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Advantages/Disadvantages

• Advantages
– Avoids peak-matching problem
– Generally more sensitive and specific

• Noise level reduced by sqrt(n)
• Borrows strength across spectra in 

determining whether there is a peak or not 
(signals reinforced over spectra)

– Robust to minor calibration problems
• Disadvantage

– May be less sensitive when prevalence of peak 
< 1/sqrt(n).
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Noise reduced in mean spectrum
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Noise reduced in mean spectrum
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Sample Spectrum
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Simulated spectra

• Difficult to evaluate processing methods on 
real data since we don’t know “truth”

• We have developed a simulation engine to 
produce realistic spectra
– Based on the physics of a linear MALDI-TOF with 

ion focus delay
– Flexible incorporation of different noise models 

and different baseline models
– Includes isotope distributions
– Can include matrix adducts, other modifications
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Real and Virtual Spectra



July 5, 2006 Clinical Proteomics in Oncology, Dijon, France

Simulation Results

sensitivity FDR pv*

SUDWT
(indiv. spectra)

0.75 0.09 0.03

MUDWT
(mean spectrum)

0.83 0.06 0.97

*pv=the proportion of simulations with higher sensitivity
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Simulation Results (by Prevalence)

π: <.05
(14%)

.05-.20
(16%)

.20-.80
(40%)

>.80
(30%)

sensitivity 
(SUDWT)

0.43 0.74 0.81 0.82

sensitivity 
(MUDWT)

0.38 0.74 0.93 0.97

pv
(MUDWT)

0.25 0.49 1.00 1.00
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Simulation Results (by abundance)

log(µ): <9.0
(31%)

9.0-9.5
(27%)

9.5-10
(23%)

>10
(19%)

sensitivity 
(SUDWT)

0.68 0.75 0.78 0.82

sensitivity 
(MUDWT)

0.78 0.84 0.85 0.88

pv
(MUDWT)

0.97 0.89 0.84 0.78
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Preprocessing 2d gels

Usual Approach (e.g. PDQ, Progenesis)
Background correct and normalize 
individual gels
Detect spots on individual gels
Match spots on each gel with spots on 
chosen reference gel
Detect spot boundaries, quantify each 
spot on each gel by normalized spot 
volume.
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Preprocessing 2d gels
Problems with Standard Approach:
1. Time consuming (run overnight?)
2. Complicated algorithms lead to many 

errors:
• Detection errors (miss/split/merge)
• Matching errors
• Errors/variability in spot boundaries
These errors tend to increase as more gels are run 

in a given experiment, encouraging researchers 
to run small studies that may be underpowered 
for detecting realistic differences

3. Requires hand editing (days/weeks?)
4. Results in many “missing spots”: What to 

do about them? 
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Preprocessing 2d gels
Our Approach

Align gel images 
Compute average gel
Denoise average gel using wavelets
Detect spots on average gel using 
pinnacles
Background correct and normalize 
individual gels
Quantify each spot on each gel by taking 
maximum pixel intensity in neighborhood 
of pinnacle
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Gel Alignment

• Warp all gels to chosen reference gel 
so spots are aligned across gels

• Easier and more accurate than matching 
detected spots, since warping algorithm 
can borrow strength from nearby regions 
of the gel when aligning spots

• We use TT900 (Nonlinear) to do the 
warping; other image registration 
programs are available and being 
developed.
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Spot Detection

• Use of the average gel results in more 
sensitivity and specificity for spot detection

• Denoising the average gel using wavelets 
reduces the number of artifact spots found

• We identify spots based on their 
corresponding pinnacles

• A pixel location (x,y) on the gel is a pinnacle
if:

1. It is a peak (local maximum) in both the 
horizontal and vertical directions

2. It has a pixel intensity above some minimum 
threshold (e.g. median intensity on gel)
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Spot Detection

• Benefits of using Pinnacles for 
Spot Detection: 

1. Unambiguous definition
2. Not affected by overlapping spots
3. No need to find spot boundaries
4. Seems to capture most real spots
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Results: Spot Detection
Ave ra g e  G e l
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Spot Quantification
• We quantify each spot for each gel by taking the 

maximum pixel intensity within a neighborhood 
around the corresponding pinnacle
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Spot Quantification
• Why use pinnacle intensities?         

Why not use spot volumes?
1. Pixel intensity at a spot’s pinnacle is 

highly correlated its volume.
2. No need to detect spot boundaries, which 

reduces CV of quantification
3. Much quicker and easier
4. Results in spot intensities for each spot 

for every gel, i.e. no missing spots
• This approach leads to more reliable 

and precise spot quantifications
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Validation: Dilution Series 

• Nishihara and Champion (2002) conducted a 
dilution series experiment to validate 
PDQuest and Progenesis methods

• 4 replicate gels for each of 7 protein loads
0.5µg, 7.5µg, 10µg, 15µg, 30µg, 40µg, 50 µg

• Reliability assessed by computing R2 from 
regression of spot quantification on protein load

• Precision assessed by computing CV for 30µg load
• They only assessed set of 20 “representative” spots, 

and found good results (mean R2=0.98, CV~15)
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Results: 20 selected spots

Method mean R2 mean CV

Pinnacle 0.984 17.8

PDQuest 0.986 12.6

Progenesis 0.983 16.8

• Results of pinnacle method for 20 selected 
spots comparable

• What about the other ~1000 spots?
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Results: Reliability (Linearity)

Method spots 
detected

spots with 
R2>0.95

median R2

Pinnacle

PDQuest 1448 636 0.936

Progenesis



July 5, 2006 Clinical Proteomics in Oncology, Dijon, France

Results: Reliability (Linearity)

Method spots 
detected

spots with 
R2>0.95

median R2

Pinnacle

PDQuest 1448 636 0.936

Progenesis 381 286 0.975
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Results: Reliability (Linearity)

Method spots 
detected

spots with 
R2>0.95

median R2

Pinnacle 1040 853 0.980

PDQuest 1448 636 0.936

Progenesis 381 286 0.975
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Results: Reliability (Linearity)

P in n a c le P D Q u e s t P ro g e n e s is
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n = 1 0 4 0 n = 1 4 4 8 n = 3 8 1
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Results: Precision

Method spots 
detected

spots with 
CV<20%

median    
CV (%)

Pinnacle 1040 723 17.2

PDQuest 1377* 519 29.9

Progenesis 367* 204 18.7
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Results: Precision

P in n a c le P D Q u e s t P ro g e n e s is
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

C
V

M e th o d

D is tr ib u t io n  o f  C V  a c ro s s  S p o ts  (3 0  µg )

n = 1 0 4 0 n = 1 4 4 8 n = 3 8 1

• What if PDQuest and Progenesis are run on 
pre-aligned gels?
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Results: Reliability (Aligned Gels)

Method spots 
detected

spots with 
R2>0.95

median R2

Pinnacle 1040 853 0.980

PDQuest 
(after alignment)

1387 639 0.940

Progenesis 
(after alignment)

1038 592 0.965
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Results: Reliability (Aligned Gels)
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Results: Precision (Aligned Gels)

Method spots 
detected

spots with 
CV<20%

median    
CV (%)

Pinnacle 1040 723 17.2

PDQuest 
(after alignment)

1326* 392 31.5

Progenesis 
(after alignment)

942* 340 25.1
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Results: Precisionc (Aligned Gels)
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Advantages of our approach
• Automatic – After alignment, fully automated 
• Quick to implement – <1 minute for 60 gels
• Effective – appears to work very well, finding 

most “real” spots
• Sensitive – use of average gel borrows strength 

across gels, allowing one to find fainter spots, thus 
increasing realized dynamic range of gel

• Robust – use of average gel can eliminate artifacts 
limited to single gel

• No missing spots – we get quantifications for 
each spot on every gel

• Reliable and Precise – The use of the average 
gel and pinnacles results in more reliable and 
precise quantifications than standard approaches
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Conclusions

• Statistical Input is valuable at all levels 
of Proteomics experiment
– Experimental Design Phase
– Preprocessing
– Data Analysis and Discovery

• Principles:
– Randomize! Randomize! Randomize!
– Look at the Data!
– Preprocessing is important!
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Functional Mixed Models: SELDI Example

• Inclusion of nonparametric functional laser 
intensity effect is able to adjust for 
systematic differences in the x and y axes
between laser intensity scans
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MALDI Example: Block Effect
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