### **Contributions of Statistics to Clinical Proteomic Research Jeffrey S. Morris** The University of Texas **M.D. Anderson Cancer Center** Houston, TX, USA http://biostatistics.mdanderson.org/Morris

#### **Major Areas of Statistical Input**

- 1. Experimental Design
  - Prevent systematic bias and experimental variation from sabotaging a study

#### 2. Quantitative Analysis

- Data visualization (frequently a simple look at the data will reveal problems)
  - Preprocessing (extract and normalize protein signal from raw data)
- Data Analysis (identify potential biomarkers and/or proteomic signatures for disease/response)

#### **Design makes a difference**

- Selection of appropriate controls
  - see your local epidemiologist (specificity?)
- Sample size
  - make sure you have enough to find meaningful differences (or when constrained, at least find out how small of a difference you can detect)
- Sample collection and handling must be carefully controlled
- May want to Block on factors likely to impact data (e.g. run time)
- Randomization is needed at multiple points in the process

#### **Sample handling is critical**

- All samples must be collected uniformly
  - Consistent protocol
  - Enforced at every collection site
- Failure to do this can (will) affect
   protein profiles
- The problem is particularly serious if sample handling is confounded with interesting variables (normal vs cancer)

# Hierarchical clustering of serum protein profiles of brain cancer



MALDI data from MDACC

# Clustering reflects changes in the sample collection protocol



MALDI data from MDACC

#### Unsupervised methods often cluster samples by run date





#### **A cautionary tale**

- Reference: Conrads et al., Endocrine Related Cancer, July 2004.
- Ovarian cancer
   ~90 controls, ~160 cases
- O-star instrument
  - high resolution
- Careful QA/QC
- Claim: can distinguish healthy women from cancer patients

#### **T-statistics identify separator at 8602D**



inical Proteomics in Oncology, Dijon, France

### Heat map of raw data near 8602 Da: Why are there two cancer groups?

Heat Map of 228 Qstar Spectra Near Best Split



## **QC: Colors indicate run date** (Conrads et al, ERC, Figure 6a)



al Proteomics in Oncology Dijon, Franci

## **QC: Colors indicate control/case** (Conrads et al, ERC, Figure 7)



## All controls were processed before all samples from cancer patients



1

#### **Design lessons**

- All samples must be processed using the same protocol
- Randomization should be performed
  - Before sample preparation steps
  - Before acquiring spectra/gels
- May also want to block on important factors – reduce variability – there are ways to filter out systematic block effects
- Same principles should be used for other sensitive laboratory instruments.

#### **Quantitative Analysis of Proteomics Data** Look at raw data Clean things up Pre-process Data Analysis -Calibration/Alignment -Clustering -Background Corr. -T-test, ANOVA **–Adjust Block Effects** -Normalization -Correlating with outcomes -Peak/spot finding -Peak/spot -Building predictive quantification models -Peak/spot matching Look at results across spectra/gels -Identify proteins and Look at processed validate them data

"Data is expensive, Analysis is cheap"

#### **Data Analysis: Beware of Multiplicities!**

- When performing biomarker detection, important to account for multiple tests when declaring biomarker "significant"
   If many peaks, p<0.05 gives lots of false +</li>
   Methods available to control FDR
- When building discriminating model, important to properly validate model
  - Independent validation samples/cross validation!!
  - Internal vs. External CV: Cross-validate feature selection step!

Are CV errors relevant for future data?

#### Look at the Data!! Petricoin et al. (2002 Lancet) • Collected SELDI proteomics data on serum samples from

- 100 women with ovarian cancer
- 100 normal controls
- 16 women with benign disease
- Selected 50 normal and 50 cancer
- Trained a statistical/ computational algorithm to distinguish between the two types
- Tested the algorithm on the remaining samples

#### **Petricoin Results**

- Correctly classified 50/50 of the ovarian cancer test cases as cancer
- Correctly classified 47/50 normal samples as normal, with 3/50 classified as cancer
- Correctly classified 16/16 benign disease as "neither normal nor cancer"

#### Some structure is visible in Heat Map



All Spectra from the Initial Data Set

## **Structure disappears in Data Set 2** (same samples, different chip type)

All Spectra from the Initial Data Set, Rescanned



## Technology can overwhelm biology



Initial Scan (Top), Rescan (Bottom)

## Preprocessing

- We have found that preprocessing can be the most important step in the quantitative analysis process.
- It takes us from the raw data (spectra/gel images) to the meaningful scientific features we want to analyze (quantified peaks/spots)
- Important to get right, since subsequent analyses depend on results

#### **Semi-Statistical Model for Spectrum**

Baseline Protein Artifact Signal  $Y_i(t_i) = B_i(t_i) + N_i S_i(t_i) +$  $e_{ij}$ Normaladditive ization noise Factor (detector)

 $e_{ij} \sim N\{0, \sigma^2(t_j)\}$ 

#### Preprocessing

- Goal: Isolate protein signal S<sub>i</sub>(t<sub>j</sub>)
   Filter out baseline and noise, normalize
   Extract individual features from signal
- Problem:
  - Baseline removal, denoising, normalization, and feature extraction are interrelated processes.
  - Where do we start?

### **Denoising using Wavelets**

- First step: Isolate noise using wavelet
  - Wavelets: basis functions that can parsimoniously represent spiky functions
  - Standard denoising tool in signal processing
- Idea: Transform from time to wavelet domain, threshold small coefficients, transform back.
  - Result: Denoised function and noise estimate
  - Why does it work? Signal concentrated on few wavelet coefficients, white noise equally distributed.
     Thresholding removes noise without affecting signal.
- Does *much* better than denoising tools based on kernels or splines, which tend to attenuate peaks in the signal when removing the noise.

#### **Raw Spectrum**



inical Proteomics in Oncology, Dijon, France

## **Denoised Spectrum**



inical Proteomics in Oncology, Dijon, France





linical Proteomics in Oncology, Dijon, France

#### **Baseline Correction & Normalization**

- Baseline: smooth artifact, largely attributable to detector overload.
  - Estimated by monotone local minimum
    More stably estimated after denoising
- Normalization: adjust for possibly different amounts of material desorbing from plates
  - Divide by total area under the denoised and baseline corrected spectrum.

#### **Baseline Estimate**



inical Proteomics in Oncology, Dijon, France

#### **Denoised, Baseline Corrected Spectrum**



inical Proteomics in Oncology, Dijon, France

#### **Denoised, Baseline Corrected, and Normalized**



inical Proteomics in Oncology. Diion, France

### **Protein Signal**

#### Ideal Form of Protein Signal: Convolution of peaks

- Proteins, peptides, and their alterations
- Alterations: isotopes; matrix/sodium adducts; neutral losses of water, ammonia, or carbon
- Limitations of instrument used means we may not be able to resolve all peaks.
- Advantages of peak detection:
  - Reduces multiplicity problem
  - Focuses on units that are theoretically the scientifically interesting features of the data.

#### **Peak Detection**

- Easy to do after other preprocessing
- Any local maximum after denoising, baseline correction, and normalization is assumed to correspond to a "peak".
- May want to require S/N>δ to reduce number of spurious peaks.
  - We can estimate the noise process  $\sigma(t)$  by applying a local median to the filtered noise from the wavelet transform.
  - Signal-to-noise estimate is ratio of preprocessed spectrum and noise.

## **Peak Detection**



inical Proteomics in Oncology, Dijon, France

## **Peak Detection (zoomed)**



nical Proteomics in Oncology, Dijon, France
# **Raw Spectrum with peaks**



linical Proteomics in Oncology, Dilon, France

#### **Peak Quantification**

- Two options:
  - 1. Area under the peak: Find the left and right endpoints of the peak, compute the AUC in this interval.
  - 2. Maximum intensity: Take intensity at the local maximum (may want to take log or cube root)
- Theoretically, AUP quantifies amount of given substance desorbed from the chip.
  - But it is very difficult to identify the endpoints of peaks

#### **Peak Quantification**

- The maximum intensity is a practical alternative
- No need for endpoints, should be correlated with AUP
- Physics of mass spectrometry shows that, for a given ion with m/z value x, there is a linear relationship between the number of ions of that type desorbed from plate and the expected maximum peak intensity at x.

#### **Peak Matching Problem**

- If peak detection performed on individual spectra, peaks must be matched across samples to get n x p matrix.
  - Difficult and arbitrary process
  - What to do about "missing peaks?"
- Our Solution: Identify peaks on mean spectrum (at locations  $x_1, \ldots, x_p$ ), then quantify peaks on individual spectra by intensities at these locations.

## **Advantages/Disadvantages**

#### Advantages

- Avoids peak-matching problem
- Generally more sensitive and specific
  - Noise level reduced by sqrt(n)
  - Borrows strength across spectra in determining whether there is a peak or not (signals reinforced over spectra)
- Robust to minor calibration problems
- Disadvantage
  - May be less sensitive when prevalence of peak < 1/sqrt(n).</li>

#### Noise reduced in mean spectrum



nical Proteomics in Oncology, Dijon, France

## Noise reduced in mean spectrum



nical Proteomics in Oncology, Dijon, France

#### **Sample Spectrum**



linical Proteomics in Oncology, Dijon, France

#### **Simulated** spectra

- Difficult to evaluate processing methods on real data since we don't know "truth"
- We have developed a simulation engine to produce realistic spectra
  - Based on the physics of a linear MALDI-TOF with ion focus delay
  - Flexible incorporation of different noise models and different baseline models
  - Includes isotope distributions
  - Can include matrix adducts, other modifications

#### **Real and Virtual Spectra**



linical Proteomics in Oncology, Dijon, France

# **Simulation Results**

|                          | sensitivity | FDR  | pv*  |
|--------------------------|-------------|------|------|
| SUDWT<br>(indiv_spectra) | 0.75        | 0.09 | 0.03 |
| MUDWT                    | 0.83        | 0.06 | 0.97 |
| (mean spectrum)          |             |      |      |

\*pv=the proportion of simulations with higher sensitivity

# **Simulation Results** (by Prevalence)

| π:                     | <.05<br>(14%) | .0520<br>(16%) | .2080<br>(40%) | >.80<br>(30%) |
|------------------------|---------------|----------------|----------------|---------------|
| sensitivity<br>(SUDWT) | 0.43          | 0.74           | 0.81           | 0.82          |
| sensitivity<br>(MUDWT) | 0.38          | 0.74           | 0.93           | 0.97          |
| pv<br>(MUDWT)          | 0.25          | 0.49           | 1.00           | 1.00          |

# **Simulation Results** (by abundance)

| log(μ):                | <9.0<br>(31%) | 9.0-9.5<br>(27%) | 9.5-10<br>(23%) | >10<br>(19%) |
|------------------------|---------------|------------------|-----------------|--------------|
| sensitivity<br>(SUDWT) | 0.68          | 0.75             | 0.78            | 0.82         |
| sensitivity<br>(MUDWT) | 0.78          | 0.84             | 0.85            | 0.88         |
| pv<br>(MUDWT)          | 0.97          | 0.89             | 0.84            | 0.78         |

#### **Preprocessing 2d gels**

Usual Approach (e.g. PDQ, Progenesis)

- Background correct and normalize individual gels
  - Detect spots on individual gels
    - Match spots on each gel with spots on chosen reference gel
    - Detect spot boundaries, quantify each spot on each gel by normalized spot volume.

#### Preprocessing 2d gels Problems with Standard Approach:

- 1. Time consuming (run overnight?)
- 2. Complicated algorithms lead to many errors:
  - Detection errors (miss/split/merge)
  - Matching errors
  - Errors/variability in spot boundaries

These errors tend to increase as more gels are run in a given experiment, encouraging researchers to run small studies that may be underpowered for detecting realistic differences

- 3. Requires hand editing (days/weeks?)
- 4. Results in many "missing spots": What to do about them?

### **Preprocessing 2d gels**

#### **Our Approach**

- Align gel images
- Compute average gel
  - Denoise average gel using wavelets
  - Detect spots on average gel using *pinnacles* 
    - Background correct and normalize individual gels
    - Quantify each spot on each gel by taking maximum pixel intensity in neighborhood of pinnacle

## **Gel Alignment**

- Warp all gels to chosen reference gel so spots are aligned across gels
- Easier and more accurate than matching detected spots, since warping algorithm can borrow strength from nearby regions of the gel when aligning spots
- We use TT900 (Nonlinear) to do the warping; other image registration programs are available and being developed.

#### **Spot Detection**

- Use of the average gel results in more sensitivity and specificity for spot detection
- Denoising the average gel using wavelets reduces the number of artifact spots found
- We identify spots based on their corresponding *pinnacles*
- A pixel location (x,y) on the gel is a *pinnacle* if:
  - 1. It is a *peak* (local maximum) in both the horizontal and vertical directions
  - 2. It has a pixel intensity above some minimum threshold (e.g. median intensity on gel)



ical Proteomics in Oncology, Dilon, France

y 5, 200*6* ار



al Proteomics in Oncology, Dijon, France



al Proteomics in Oncology, Dijon, France

#### **Spot Detection**

- Benefits of using Pinnacles for Spot Detection:
- Unambiguous definition
  Not affected by overlapping spots
  No need to find spot boundaries
  Seems to capture most real spots

#### **Results: Spot Detection**

Average Gel



#### **Spot Quantification**

We quantify each spot for each gel by taking the maximum pixel intensity within a neighborhood around the corresponding pinnacle



ical Proteomics in Oncology, Dijon, France



#### nical Proteomics in Oncology, Dijon, France



#### ical Proteomics in Oncology Dilon, France

ity 5, 2006 -



#### **Spot Quantification**

- Why use pinnacle intensities? Why not use spot volumes?
- 1. Pixel intensity at a spot's pinnacle is highly correlated its volume.
- 2. No need to detect spot boundaries, which reduces CV of quantification
- 3. Much quicker and easier
- 4. Results in spot intensities for each spot for every gel, i.e. no missing spots
- This approach leads to more reliable and precise spot quantifications

## **Validation: Dilution Series**

- Nishihara and Champion (2002) conducted a dilution series experiment to validate
  PDQuest and Progenesis methods
- 4 replicate gels for each of 7 protein loads 0.5μg, 7.5μg, 10μg, 15μg, 30μg, 40μg, 50 μg
- **Reliability** assessed by computing R<sup>2</sup> from regression of spot quantification on protein load

Precision assessed by computing CV for 30μg load
 They only assessed set of 20 "representative" spots, and found good results (mean R<sup>2</sup>=0.98, CV~15)

#### **Results: 20 selected spots**

| Method     | mean R <sup>2</sup> | mean CV |
|------------|---------------------|---------|
| Pinnacle   | 0.984               | 17.8    |
| PDQuest    | 0.986               | 12.6    |
| Progenesis | 0.983               | 16.8    |

 Results of pinnacle method for 20 selected spots comparable

What about the other ~1000 spots?

# **Results: Reliability (Linearity)**

| Method     | spots<br>detected | spots with<br>R <sup>2</sup> >0.95 | median R <sup>2</sup> |
|------------|-------------------|------------------------------------|-----------------------|
| Pinnacle   |                   |                                    |                       |
| PDQuest    | 1448              | 636                                | 0.936                 |
| Progenesis |                   |                                    |                       |

# **Results: Reliability (Linearity)**

| Method     | spots<br>detected | spots with<br>R <sup>2</sup> >0.95 | median R <sup>2</sup> |
|------------|-------------------|------------------------------------|-----------------------|
| Pinnacle   |                   |                                    |                       |
| PDQuest    | 1448              | 636                                | 0.936                 |
| Progenesis | 381               | 286                                | 0.975                 |

# **Results: Reliability (Linearity)**

| Method     | spots<br>detected | spots with<br>R <sup>2</sup> >0.95 | median R <sup>2</sup> |
|------------|-------------------|------------------------------------|-----------------------|
| Pinnacle   | 1040              | 853                                | 0.980                 |
| PDQuest    | 1448              | 636                                | 0.936                 |
| Progenesis | 381               | 286                                | 0.975                 |

# **Results: Reliability (Linearity)** Distribution of R<sup>2</sup> across Spots



# **Results: Precision**

| Method     | spots<br>detected | spots with<br>CV<20% | median<br>CV (%) |
|------------|-------------------|----------------------|------------------|
| Pinnacle   | 1040              | 723                  | 17.2             |
| PDQuest    | 1377*             | 519                  | 29.9             |
| Progenesis | 367*              | 204                  | 18.7             |

#### **Results: Precision**

#### Distribution of CV across Spots (30 µg)



#### What if PDQuest and Progenesis are run on pre-aligned gels?

linical Proteomics in Oncology, Dijon, France
# **Results: Reliability (Aligned Gels)**

| Method                          | spots<br>detected | spots with<br>R <sup>2</sup> >0.95 | median R <sup>2</sup> |
|---------------------------------|-------------------|------------------------------------|-----------------------|
| Pinnacle                        | 1040              | 853                                | 0.980                 |
| PDQuest<br>(after alignment)    | 1387              | 639                                | 0.940                 |
| Progenesis<br>(after alignment) | 1038              | 592                                | 0.965                 |

ily 5, 2006.

linical Proteomics in Oncology, Dijon, France

# **Results: Reliability (Aligned Gels)**

Distribution of R<sup>2</sup> across Spots, After Alignment



# **Results: Precision (Aligned Gels)**

| Method                          | spots<br>detected | spots with<br>CV<20% | median<br>CV (%) |
|---------------------------------|-------------------|----------------------|------------------|
| Pinnacle                        | 1040              | 723                  | 17.2             |
| PDQuest<br>(after alignment)    | 1326*             | 392                  | 31.5             |
| Progenesis<br>(after alignment) | 942*              | 340                  | 25.1             |

ily 5, 2006

inical Proteomics in Oncology, Dijon, France

# **Results: Precisionc (Aligned Gels)**



# **Advantages of our approach**

- Automatic After alignment, fully automated
- Quick to implement <1 minute for 60 gels</li>
- Effective appears to work very well, finding most "real" spots
- Sensitive use of average gel borrows strength across gels, allowing one to find fainter spots, thus increasing realized dynamic range of gel
- Robust use of average gel can eliminate artifacts limited to single gel
- No missing spots we get quantifications for each spot on every gel
- Reliable and Precise The use of the average gel and pinnacles results in more reliable and precise quantifications than standard approaches

## **Conclusions**

- Statistical Input is valuable at all levels
  of Proteomics experiment
  - Experimental Design Phase
  - Preprocessing
  - Data Analysis and Discovery
- Principles:
  - Randomize! Randomize! Randomize!
  - Look at the Data!
  - Preprocessing is important!

# **Acknowledgements**

### Bioinformatics

- Kevin Coombes
- Keith Baggerly
- Phil Brown (U Kent)
- Jianhua Hu
- Jing Wang
- Lianchun Xiao
- Spyros Tsavachidis
- Thomas Liu
- Auston Wei

### Proteomics (MDACC)

- Howard Gutstein (2D)
- Ryuji Kobayashi
- David Hawke
- John Koomen
- Ciphergen

### Biologists (MDACC)

- Howard Gutstein
- Jim Abbruzzese
- I.J. Fidler
- Stan Hamilton
- Nancy Shih
- Ken Aldape
- Henry Kuerer
- Herb Fritsche
- Gordon Mills
- Lajos Pusztai
- Jack Roth
- Lin Ji

cal Proteomics in Oncology, Dijon, France

## **References:**

#### **Experimental Design:**

- 1. Baggerly, KA, Morris JS, and Coombes KR: Reproducibility of SELDI Mass Spectrometry Patterns in Serum: Comparing Proteomic Data Sets from Different Experiments. *Bioinformatics*, 20(5): 777-785, 2004.
- 2. Baggerly KA, Edmonson S, Morris JS, and Coombes KR: High-Resolution Serum Proteomic Patterns for Ovarian Cancer Detection. *Endocrine-Related Cancers*, 11(4): 583-584, 2004.
- 3. Hu J, Coombes KR, Morris JS, and Baggerly KA: The Importance of Experimental Design in Proteomic Mass Spectrometry Experiments: Some Cautionary Tales. *Briefings in Genomics and Proteomics*, 3(4), 322-331, 2005.
- 4. Coombes KR, Morris JS, Hu J, Edmondson SR, and Baggerly KA: Serum Proteomics Profiling: A Young Technology Begins to Mature. *Nature Biotechnology*, 23(3): 291-292, 2005.
- 5. Baggerly KA, Coombes KR, and Morris JS. Are the NCI/FDA Ovarian Proteomic Data Biased? A Reply to Producers and Consumers. *Cancer Informatics*, 1(1): April 14, 2005.
- 6. Baggerly KA, Morris JS, Edmonson S, and Coombes KR: Signal in Noise: Evaluating Reported Reproducibility of Serum Proteomic Tests for Ovarian Cancer. *Journal of the National Cancer Institute*, 97: 307-309, 2005 (with commentary).

## **References:**

#### **Simulation:**

1. Coombes KR, Koomen, JM, Baggerly KA, Morris JS, and Kobayashi R: Understanding the characteristics of mass spectrometry data through the use of simulation. *Cancer Informatics* 1, 2005.

#### Preprocessing:

- 1. Coombes KR, Tsavachidis S, Morris JS, Baggerly KA, and Kuerer HM: Improved Peak Detection and Quantification of Mass Spectrometry Data Acquired from Surface-Enhanced Laser Desorption and Ionization by Denoising Spectra with the Undecimated Discrete Wavelet Transform. *Proteomics*, 5: 4107-4117, 2005.
- 2. Morris JS, Coombes KR, Kooman J, Baggerly KA, and Kobayashi R: Feature Extraction and Quantification for Mass Spectrometry Data in Biomedical Applications Using the Mean Spectrum. *Bioinformatics*, 21(9): 1764-1775, 2005.
- 3. Morris JS, Brown PJ, Baggerly KA, Herrick RA, and Coombes KR: Bayesian Methods for Analysing Mass Spectrometry Proteomic Data Using Functional Mixed Models. *Biometrics*, under revision.
- 4. Morris JS and Gutstein H: Fast, Automatic Pinnacle-Based Method for Detecting and Quantifying Spots in 2d Gel Data Using the Average Gel. In preparation.
- Links to papers and code can be found at
  <u>http://biostatistics.mdanderson.org/Morris</u>

## **Functional Mixed Models: SELDI Example**



 Inclusion of nonparametric functional laser intensity effect is able to adjust for systematic differences in the x and y axes

between laser intensity scans

linical Proteomics in Oncology, Dijon, France

## **MALDI Example: Block Effect**



nical Proteomics in Oncology, Dijon, France