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Combining Information across 
Microarray Studies

Many publically available microarray data sets
Can combine information across studies to:

1. Validate results from individual studies
Find intersection of differentially expressed genes
Build model using one study, validate using another

2. Discover new biological insights by analyses 
pooling data across studies. 

Potential for increased statistical power
Important since many individual studies are 
underpowered.



Pooling Data across Studies
Challenge: In general, microarray data 
from different studies not comparable
Clinical differences

Different study populations
Technical differences

Laboratory differences: sample collection and 
storage, microarray protocol
Different platforms: cDNA/oligo, different 
versions of same technology (e.g. Affy chips)



Pooling Data across Studies
Approaches in Existing Literature:

1. Include study effects in model
Gene-specific study effects
SVD, Distance-weighted Discrimination

Drawback: First-order corrections not enough
2. Model unitless summary measures

standardized log fold-change
t-statistics
probabilities of +/0/- expression

Drawback: Implicit assumptions about comparability 
of clinical populations across studies



Pooling Data across Studies
Sequence-related reasons for incomparability 
of raw expression levels across platforms:

Cross-hybridization
RNA degradation (near 5’ end)
Probe validity – map to RefSeq?
Alternative splicing

It may be possible that, by taking these into 
account, we can obtain more comparable raw 
expression levels to use in pooled analyses
Our focus: combining information across 
different versions of Affymetrix genechips



Overview of Affymetrix 
GeneChips

Probes: 25-base sequences from gene 
of interest
Probesets: set of probes corresponding 
to same gene.

Obtained from current sequence information 
in GenBank, Unigene, RefSeq

Generations of human chips:
HuGeneFL: 5600 genes, 20 probes/gene
U95Av2: 10,000 genes, 16 probes/gene
U133A: 14,500 genes, 11 probes/gene



“Partial Probeset” Method

…HuGeneFL :
HG_U95Av2: …

Matching Probes“Partial Probesets”
1. Identify “matching probes”
2. Recombine into new probesets based on UNIGENE 

clusters, which we refer to as “partial probesets” 
3. Eliminate any probesets containing just one or two 

probes
Note: Any quantification method can subsequently be 
used (MAS, dChip, RMA, PDNN)



Example: Lung Cancer Data

Two studies relating gene expression 
data to survival in lung cancer patients

1. Harvard (Bhattacharjee, et al. 2001)
124 lung adenocarcinoma samples

2. Michigan (Beer, et al. 2002)
86 lung adenocarcinoma samples

GOAL: Pool data across studies to 
identify prognostic genes for lung 
cancer.



Example: CAMDA 2003 Data
Two studies used different chip types:

Michigan: HuGeneFL
~130,000 probes in 6,633 probesets

Harvard: U95Av2 
~200,000 probes in 12,625 probesets

34,428 “matching probes” combined into 4,101 
partial probesets
After preprocessing, 1036 probesets considered 
in subsequent analyses
We used PDNN (Zhang et al. 2003 Nature 
Biotech) method for quantification



Assessing Our Method for Combining 
Information Across Chip Types

“Partial 
Probeset” 
method 
appears to give 
comparable 
expression 
levels across 
chip types.



Assessing our Method for Combining 
Information across Chip Types

Median “partial probeset” 
size is 7, vs. 16 or 20
Loss of precision?
No evidence of 
significant precision loss

Also, relative ordering of 
samples well preserved
(median r=0.95, using 
Spearman correlation)



Identifying Prognostic Genes
Series of 1036 multivariable Cox models fit to 
identify prognostic genes. Each model contained:

Study (Michigan=-1, Harvard=1).
Age (continuous factor).
Stage (early=0/late=1).
Probeset (log intensity value as continuous factor).

Exact p-values for each probeset computed 
using permutation approach
By using multivariate modeling, we search for genes 
offering prognostic information beyond clinical 
predictors



Results
Histogram suggests 
there are some 
significant probesets

FDR=0.20 corresponds 
pval cutoff of 0.0024 
(BUM, Pounds and 
Morris 2003)

26 probesets flagged 
as significant



Selected Flagged Genes
Rank Gene β p Function

1

2

4

8

11

12

16 CLU -0.52 0.00109 Marker of SCLC

21 FSCN1 0.66 0.00150 Marker of invasiveness in Stg 1 NSCLC

25 BTG2 -0.75 0.00232 Induced by p53 in SCLC cell lines

20

FCGRT -2.07 <0.00001 Induced by IF-γ in treating SCLC

ENO2 1.46 0.00001 Marker of NSCLC

RRM1 1.81 0.00002 Linked to survival in NSCLC

CHKL -1.43 0.00010 Marker of NSCLC

CPE 0.72 0.00031 Marker of SCLC

ADRBK1 -2.20 0.00044 Co-expressed with Cox-2 in lung ADC

SEPW1 -1.29 0.00145 H202 cytotox. in NSCLC cell lines
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Results
Our gene list has almost no overlap with other 
publications of these data. Reasons:

1. We addressed a different research question
Us: ID Genes offering prognostic info beyond clinical
Michigan: Univariate Cox models fit; results used to 
construct dichotomous “risk index” 
Harvard: Cluster analysis done; clusters linked to 
survival; found genes driving the clustering

2. Pooling across studies yielded significant 
gains in statistical power.

Most genes (17/26) in our study are not flagged if we 
analyze 2 data sets separately (i.e. no pooling) 



Limitations of Partial Probeset Method

Worked well for combining across HuGeneFL/ 
U95Av2 

~25% probes from HuGeneFL on U95Av2, with 
4,101 probesets

Not enough matching probes for use with 
U95Av2/U133A

~6% of probes from U95Av2 also on U133A, with 
only 628 probesets

Requiring matching probes strong criterion, 
maybe weaker criterion would suffice?



Alternative Splicing

Diagram of C2GnT I gene organization and different mRNA variants of this gene that are 
differentially expressed across tissue types.  From Falkenberg, et al. (2003)
Glycobiology 13(6), 411-418.



Full-Length Transcript Based Probesets

New probeset definition (FLTBP): probes match 
the same set of full-length mRNA sequences
Procedure 

1. Construct comprehensive library of full-length mRNA 
transcript sequences from RefSeq and HinvDB

2. For each probe, identify all matching full-length 
transcripts using Blast program
U95Av2: 15% matched no sequence, 33% matched multiple seq.
U133A:   18% matched no sequence, 38% matched multiple seq.

3. Group probes with same matched target lists (FLTBPs)
U95Av2: 23,972 probesets, U133A: 14,148 probesets



Full-Length Transcript Based Probesets

Matching across chip types:
9,642 FLTBPs match across U95Av2 and U133A
Affymetrix has their own method for mapping their 
probesets across arrays – 9,480 pairs of probesets 
(only about ½ map the same way as FLTBPs)

Example: Lung cancer cell line data
28 cell lines, each hybridized onto both U95Av2 and 
U133A arrays.
Paired design suggests any differences between paired 
measurements due to technical, not biological, sources.
Different quantification methods (PDNN, RMA, MAS, dChip)



Results
Density 
estimate of 
chip-to-chip 
correlations for 
each gene
Positive shift 
for FLTBP 
suggests better 
correlations
Improvement 
greatest for 
PDNN
Correlation still 
not perfect
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Example: Sample Gene 1
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Plot of probe signals for two chip types (Red=FLTBP)
Scatterplot of log-expression values for each sample across 
the two chip types (Black=all probes, Red=FLTBP)
Correlation across chips significantly improved with FLTBP



Example: Sample Gene 2
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Again, significantly higher correlation using FLTBP than 
using Affymetrix’ definition



Results
Boxplot of 
chip-to-chip 
correlations 
(over genes) 
for each 
sample
PDNN resulted 
in higher 
correlations
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Conclusions

New method for pooling info across studies 
using different versions of Affymetrix chips.

Recombine matched probes into new 
probesets using Unigene clusters.
Method appears to obtain comparable
expression levels across chips without sacrificing 
much precision or significantly altering the 
relative ordering of the samples.
Worked well combining information across
HuGeneFL/U95Av2, but not U95Av2/U133A



Conclusions

Discussed new probeset definition based on 
full-length transcript sequences.

Removes effect of known alternative splicing
Yields stronger between-chip correlations than 
Affymetrix standard definitions

Pooling information across studies is difficult –
there is still more work to be done – but worth 
the effort.
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