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Functional Data Analysis of 
Mass Spectrometry Data

• Model as “functional data”
– Idea: Model entire spectrum as single entity, not 

a collection of data points.
• Wavelet-based Functional Mixed Models

– Peak detection
– Identify differentially expressed peaks while 

controlling Bayesian FDR
– Automatically account for block effects
– Classify samples based on spectra, without 

having to search high dimensional model spaces
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Outline

• Introduction
– Examples
– Mixed Models/Functional Mixed Models
– Wavelets

• Wavelet-Based Functional Mixed Models
• Bayesian Inference for Mass Spectrometry
• Apply to Examples
• Discussion
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Example: Pancreatic Cancer Study
• Koomen, et al. (2004)
• 256 blood serum samples – 141 pancreatic cancer, 

115 normal controls
• 4 MALDI spectra/sample

– Fractions: MYO25, MYO70, BSA25, BSA70
• Samples (all fractions) run in 4 blocks on 4 different dates
• Goals:

– Identify differentially expressed protein peaks.
– Classify samples as C/N based on spectra.

• Must adjust for block effects on spectra
• This talk: Focus on MYO25 fraction, 4kD-10kD
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Example:Organ-Cell Line Expt
• 16 nude mice had 1 of 2 cancer cell lines 

injected into 1 of 2 organs (lung or brain)
• Cell lines:

– A375P: human melanoma, low metastatic potential
– PC3MM2: human prostate, highly metastatic

• Blood Serum extracted from each mouse – placed on 2 
SELDI chips

• Samples run at 2 different laser intensities (low/ high)
• Total of 32 spectra (observed functions),  2 per mouse
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Example: Organ-Cell Line Expt
• Goal:

Find proteins differentially expressed by:
– Host organ site (lung/brain)
– Donor cell line (A375P/PC3MM2)
– Organ-by-cell line interaction

• Combine information across laser intensities:
Requires us to include in modeling:
– Functional laser intensity effect
– Random effect functions to account for 

correlation between spectra from same mouse
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Functional Mixed Model (FMM)
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Suppose we observe a sample of N curves, Yi(t), i=1, …, N

• Bj(t) = fixed effect functions
• Uk(t) = random effect functions
• Ei(t) = residual error processes
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Pancreatic Cancer Example
Let Yi(t) be MALDI spectrum from sample i
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• B0(t) = overall mean spectrum     
B1(t) = cancer effect function
Bj(t) = block effect function for j=2,3,4

• No random effects necessary

• Xi1=1 if cancer, -1 if normal
Xij =1 if block j, -1 if block 1 for j=2,3,4
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Organ-by-Cell Line Example
Let Yi(t) be the SELDI spectrum i

• Xi1=1 for lung, -1 brain.  Xi2=1 for A375P, -1 for PC3MM2

Xi3= X1 * X2 Xi4=1 for low laser intensity, -1 high.
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• B0(t) = overall mean spectrum B1(t) = organ main effect function

B2(t) = cell-line main effect B3(t) = org x cell-line int function

B4(t) = laser intensity effect function

• Zik=1 if spectrum i is from mouse k (k=1, …, 16)

• Uk(t) is random effect function for mouse k.
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Functional Mixed Models
• Key feature of FMM: Does not require 

specification of parametric form for curves
• Methods based on kernels/fixed knot splines 

not well suited to spiky functional data
• Wavelet Regression: nonparametric 

regression technique that better preserves 
local features present in the curves.
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Functional Mixed Model 
(Discrete version)

Y= N-by-T matrix containing the observed spectra on 
sampling grid of size T
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• Bij is the effect of covariate i at location tj
• Q and S are covariance matrices (T x T) 
• Note: Some structure must be assumed on 

form of Q and S (discussed later)
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Introduction to Wavelets
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)}

for obtaining T empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.

• Linear Representation: d = y W’
– W’ =T-by-T orthogonal projection matrix

• Inverse DWT (IDWT): y = d W
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Wavelet Regression
• Wavelet Regression – 3 step process

1. Project data into wavelet space 
2. Threshold/shrink coefficients
3. Project back to data space

• Yields adaptively regularized (plot)
nonparametric estimates of function

• Morris, et al. (2003) extended to nested 
functional model (Bayesian)

• Morris and Carroll (2004) extended to general 
functional mixed model framework 

(Wavelet-based FMM)
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Adaptive Regularization
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space

{

} }

{

} }

{

}

{

}TT

N

TT

m

mNTT

p

pNTT

N
EUZBXY

×

×

×

×

××

×

××

×

++= W'W'W'W
TTTT

'

),0(~
 ),0(~

SMVNE
QMVNU

i

i



8/3/2005 ENAR 2005 Austin, TX

Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Model Each Column Separately
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Prior Assumptions
Mixture prior on Bijk

*:
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• Nonlinearly shrinks Bijk
* towards 0, leading to

adaptively regularized estimates of Bi(t).
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model
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Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integrated out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. for P, Q*, R, and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normals
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Wavelet-Based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.

• Apply IDWT to posterior samples of B* to get 
posterior samples of fixed effect functions Bj(t) for 
j=1,…, p, on grid t. 

– B=B*W
• Posterior samples of Uk(t), Q, and S are also

available, if desired.
• Can be used for Bayesian inference/prediction
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Bayesian Inference:
Peak Detection

• Focus specifically on peaks – locations in spectra 
likely to correspond to proteins/peptides

• Can use posterior mean estimate of overall mean 
spectrum for peak detection (Morris et al. 2005)

• All local maxima in (denoised) overall mean 
spectrum considered peaks, possibly subject to 
some threshold on Signal-to-Noise ratio (S/N>δ)

• Let K=# of peaks found
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Pancreatic Cancer: 
Peak Detection

• K=370 peaks detected
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Organ-by-Cell Line: 
Peak Detection

• Found K=102 peaks (58 with S/N>2)
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Bayesian Inference:
Identifying Differentially Expressed Peaks

• Identify which peaks are related to clinical factors of 
interest (cancer/normal, organ, cell line, interaction)

Procedure:
1. Compute posterior probability of differential 

expression for each peak using posterior samples for 
suitable fixed effect function (2-sided)
pij=min[Pr{Bj(ti)>0},Pr{Bj(ti)<0}]

i=1, …, K j=1, …, p 
2. Rank peaks based on pij
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Bayesian Inference:
Identifying Differentially Expressed Peaks

Procedure:
1. Rank peaks in ascending order of their 2-sided 

posterior probabilities of differential  expression.
p(1), p(2), …, p(pK)

2. Find K* such that: 

3. Let ψ=p(K*).  Any peak i with pij< ψ is called 
“differentially expressed” for outcome j
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Pancreatic Cancer:
Differentially Expressed Peaks

• 370 peaks detected
• 83 differentially expressed using α=0.01
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Pancreatic Cancer: Results
• Known to be 

related to 
pancreatic 
cancer

• Under-
expressed in 
serum of 
cancerous 
patients

• May not be 
specific to 
pancreatic 
cancer

4240 4260 4280 4300 4320 4340
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

← p<0.0005

m/z

C
an

ce
r-N

or
m

al
 o

n 
cu

be
-ro

ot
 s

ca
le

4240 4260 4280 4300 4320 4340
0

1

2

3

4

5

6
Inter-α trypsin inhibitor (4284 D)

m/z

In
te

ns
ity

 o
f P

os
te

rio
r M

ea
n 

S
pe

ct
ru

m

Cancer
Normal



8/3/2005 ENAR 2005 Austin, TX

Pancreatic Cancer: Results
• Secreted from 

various 
organs, 
including 
pancreas

• Highly 
expressed in 
normal tissue 
with no 
inflammatory 
response

• Low 
expression in 
cancer cell 
lines
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• 14/102 differentially expressed using α =0.01
• 5 interaction, 2 organ, 3 cell line, 4 organ+cell line
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Organ-by-Cell Line:
Differentially Expressed Peaks
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Organ-by-Cell Line: Results
• Specific to 

brain-injected 
mice

• May be CGRP-
II (3882.34 
Dal), peptide in 
mouse 
proteome that 
dilates blood 
vessels in brain

• Host response 
to tumor 
implanted in 
brain?
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Organ-by-Cell Line: Results
• Higher in mice 

injected with 
metastatic (PC3-
MM2) cell line

• May be MTS1 
(11721.43 Dalt), 
metastatic cell 
protein in mouse 
proteome.

• Also higher in lung-
injected mice than 
brain-injected mice
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Bayesian Inference:
Investigating Block Effects

• By including fixed effect for blocks, we can adjust 
for systematic differences in spectra from 
different blocks (time blocks, laser intensity)

• Systematic shifts in spectral intensities (y)
• Systematic shifts in peak locations (x)

• These adjustments are done automatically by 
the model-fitting.

• Flexibility of nonparametric fixed effects allows us 
to adjust for arbitrarily nonlinear misalignments



8/3/2005 ENAR 2005 Austin, TX

Pancreatic Cancer: Block Effects
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Pancreatic Cancer: Block Effects
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Organ-by-Cell Line: Block Effects
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Bayesian Inference: 
Discrimination/Classification

• New samples can be classified as Cancer/Normal 
based on their spectra using posterior predictive 
probabilities 

• X=cancer status of test sample (1=cancer, -1=not)
• y=test spectrum, Yt=training spectra
• Classify as cancer if Pr(X=1|y,Yt)>0.50

• Straightforward to compute given posterior samples 
of model parameters

• Can be used to perform classification without having 
to first do feature selection
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Bayesian Inference: 
Discrimination/Classification
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Pancreatic Cancer:
Classification Accuracy

Accuracy Sensitivity Specificity

Training 
Data

81% 78% 83%

Test Data 
(8-fold CV)

70% 73% 66%

• Koomen, et al. 2004: 90% sensitivity, 77% specificity
• Used entire spectrum and all 4 fractions 
• We only used small region of 1 fraction – doing others
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Pancreatic Cancer:
Classification Accuracy

• Performance improved by not using all wavelet coeffs 
• Leave out those likely to be unrelated to peaks
• Lowest frequencies removed (j=1,2,3,4): baseline
• Highest frequency removed (j=16): noise

Accuracy Sensitivity Specificity

Training 
Data

83% 78% 89%

Test Data 
(8-fold CV)

74% 75% 73%



8/3/2005 ENAR 2005 Austin, TX

Discussion
• Flexible method for modeling mass spectrometry data

– Multiple fixed effects
– Block effects
– Random effects

• Various types of inference possible
– Peak detection, differentially expressed peaks, control FDR, 

classification without feature selection

• Easy-to-use code being developed
– Only necessary inputs: Y, X, Z matrices 
– Available by end of Summer 2005.

• Method also applies to other types of functional data.
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Wavelet-Based Hierarchical 
Functional Models

• Most existing wavelet regression methods are for 
single function case

• Morris, Vannucci, Brown, and Carroll (2003)
– Bayesian wavelet-based method for estimating mean 

function for functional data from nested design.
– Extended wavelet regression to hierarchical functional 

context.

• Morris and Carroll (2004)
– Extended to functional mixed model framework
– Allowed nonstationary covariance structures
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Example: Model Fitting
• Daubechies 8 wavelet basis, J=11 levels
• Empirical Bayes procedure used to estimate   

regularization parameters πij andτij from data.
• Burn-in 1000; 20,000 MCMC samples; thin=10
• Took 7hr 53min on Win2000 P-IV 2.8GHz 2GB RAM

– That is Matlab code; C++ code takes ~2 hours.
• Trace plots indicated good convergence properties
• Metropolis Hastings acceptance probabilities good:

– Range of (0.04, 0.53)
– (10th,50th,90th) percentiles of (0.20, 0.29, 0.50)
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Discussion
• Introduced unified modeling approach for FDA 

– Applied here to MALDI-TOF, but method is general.

• Method based on mixed models; is FLEXIBLE
– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions for future sampled curves
– Predictive probabilities for group membership of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability in the model propagated throughout inference.
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Discussion
• Since functions adaptively regularized using wavelet shrinkage, 

the method is appropriate for spatially heterogeneous
functional data.

• Approach is Bayesian.  The only informative priors to elicit are 
regularization parameters, which can be estimated from data 
using empirical Bayes.

• Method generalizes to higher dimensional functions, e.g. image 
data, space/time (fixed domain) data.

• We used wavelet bases, but approach can be generalized to 
other orthogonal basis functions.

• Major challenges in developing unified statistical modeling 
approach for replicated functional data, but worth the effort.
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Organ-by-Cell Line: Results
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Organ-by-Cell Line: 
Flagged peaks

m/z Effect p Comment
3412.6 int. <0.0005 PC3MM2>A375P for brain-injected only

3496.6 organ <0.0005 Only expressed in brain-injected mice

3886.3 organ <0.0005 Only expressed in brain-injected mice

11721 cell line <0.0005 PC3MM2>A375P

4168.2 int. 0.0005 PC3MM2>A375P in brain-injected only

4252.1 int. <0.0005 PC3MM2>A375P in brain-injected only

4270.1 cell line <0.0005 PC3MM2>A375P

5805.3 int. <0.0005 brain>lung only for mice given A375P cell-line

6015.2 cell line <0.0005 PC3MM2>A375P

11721 organ <0.0005 lung>brain

Detecting ‘significant’ peaks: Top 9 peaks
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