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Overview
• Introduction

– Planet Health Study/Accelerometer Data
– Mixed Models/Wavelets

• Wavelet-based Functional Mixed Models
• Missing Data Methods for WFMM
• Analysis of Accelerometer Data from 

Planet Health Study
• Discussion/Conclusions
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Planet Health Study
• Planet Health: school-based intervention study to 

reduce obesity in middle school youth by changing 
key physical activity and dietary risk factors.

• Design: 
– 10 schools paired up, randomized to intervention/control
– 1295 children: nutritional, behavioral, and health-related 

outcomes measured at baseline (F95) and follow-up (S97)
• Challenge: How to measure physical activity levels?  

– Questionnaires
– Accelerometers: objectively quantify activity levels

• 256 children: monitored using TriTrac-R3D activity 
monitor for one or two 4-day sessions in S97
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Accelerometer Data
• Accelerometers: small motion sensors that 

digitally record minute-by-minute activity levels
– Increasingly used in surveillance and intervention studies 

• TriTrac-R3D: pocket-sized sensor worn on hip
– Minute-by-minute record of motion in 3 planes
– Condensed into single activity level measurement/minute, 

on either acceleration or “METs” scale (multiple of 
resting metabolic rate)

• METs for different activities (Rowlands, et al. 2004)
– 1 MET = minimum activity level 
– 3-6 MET = moderately intense activity
– >6 MET = vigorous activity
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Accelerometer Data
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Analyzing Accelerometer Data
• Major challenge: How to analyze these data?
• Standard analysis strategies involve simple, arbitrary 

summary measures:
– Average daily activity levels
– Proportion of time with activity levels corresponding to 

sedentary, moderately vigorous, and vigorous activities
– 30-minute averages

• Limitations of these approaches:
– Do not make full use of information in functional data
– Cannot effectively deal with incomplete profiles

• Methods that model the entire functions may be more 
effective in extracting information from these data
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Accelerometer Data

• Here, we focus only on weekday profiles from 
children at control schools
– 550 profiles from 112 children, 1440 meas./profile
– Enormous amount of data; can be displayed using

Heatmap

• Lots of missing data
– Use profiles >50% complete from 9am-8pm

• 292 profiles from 106 children
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Heatmap

Accelerometer Data



8/4/2005 Harvard SPH November 2004 9

Accelerometer Data
• Other measurements:

– Child-level covariates: school, race, gender, age, 
weight, height, BMI, % body fat, avg hrs of 
TV/week

– Day-level covariates: day of week, calendar date
• Goals:

1. Assess how activity levels vary throughout day, 
across schools, across different days of the week, 
over time from early to late Spring, and across 
various child-level covariates.

2. Assess relative variability in activity levels from 
day-to-day and child-to-child, in order to guide 
future study design.
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Statistical Challenges
• In order to model these data as functions, we 

need a method that can:
1. Model functions of arbitrary form
2. Jointly model functional effects of multiple 

covariates
3. Account for correlation between profiles from 

same child 
4. Incorporate information from incomplete 

profiles
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.



8/4/2005 Harvard SPH November 2004 12

Functional Mixed Model 
Morris and Carroll (2004) (Discrete version)

Y= N-by-T matrix containing the observed curves all 
sampled on a common equally-spaced grid of length T, t.
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• Bij is the effect of covariate i at location tj
• U and E follow the Matrix Normal distribution

– U~MN(P,Q) implies Cov{Uij, Ui’j’}=Pii’*Qjj’
• P and R are between-curve covariance matrices
• Q and S are within-curve covariance matrices (T × T)
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Example: Model

EZUXBY ++=

Let Y be 292×660 matrix containing 292 accelerometer 
profiles for each minute from 9am-8pm.

• X = 292 × 14 matrix of covariates
– School effects (5), gender, % body fat, BMI, day-of-

week (4), daylight savings time, avg tv hrs/wk
• B = 14 × 660 matrix of fixed effects functions

– Bij is effect of covariate i at time tj

• Z = 292 × 106 matrix indicating child for each profile
U = 106 × 660 matrix of random effect functions (1/child)

• E = 292 × 660 matrix of residual errors
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Functional Mixed Models
• Key feature of FMM: Does not require 

specification of parametric form for curves
• Most existing literature for nonparametrically 

modeling functional data is based on kernels or 
splines (Guo 2002).

• Kernels/fixed-knot splines may not work well 
for spatially heterogeneous data

• Wavelet Regression: nonparametric regression 
technique that better preserves local features 
present in the curves.
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Introduction to Wavelets
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)}

for obtaining T empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.

• Linear Representation: d = y W’
– W’ =T-by-T orthogonal projection matrix

• Inverse DWT (IDWT): y = d W



Wavelet Regression
• Wavelet Regression:

– Row vector y: response on equally-spaced grid t (length T)
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1. Project data into wavelet space using DWT.
d=y W’ where W’ is the orthogonal DWT matrix



Wavelet Regression
• Wavelet Regression:

– Row vector y: response on equally-spaced grid t (length T)

1. Project data into wavelet space using DWT.
d=y W’ where W’ is the orthogonal DWT matrix

*ε+= θd ),0(~ 2*
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2. Estimate θ by thresholding (or placing mixture prior on θ)
3. Project back to data space using IDWT 

• Yields adaptive regularized nonparametric estimate of g(t).

Wtg  ˆ)(ˆ θ=
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Adaptive Regularization
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Wavelet-based FMM: 
• Morris, et al. (2003) introduced new 

Bayesian method generalizing wavelet 
regression to hierarchical functional 
framework

• Bayesian inference on mean curve and random 
effect functions for nested functional data

• Morris and Carroll (2004) extended this 
work to functional mixed model

• Arbitrary functional fixed and random effects
• Wavelet-based functional mixed models
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Wavelet-based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Wavelet-based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Prior Assumptions
Mixture prior on B*

ijk:

0
*** )1(),0( δγτγ ijkijijkijk NB −+=

)(Bernoulli*
ijijk πγ =

• Nonlinearly shrinks Bijk
* towards 0, leading to

adaptively regularized estimates of Bi(t).
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model
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Model Fitting
• Let Ω be a vector containing ALL covariance 

parameters (i.e. for P, Q*, R, and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normals
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Wavelet-based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.
• Apply IDWT to posterior samples of B* to get 

posterior samples of B
– B=B*W

• Also for U, P, Q, R, and S 
• Can be used for Bayesian inference/prediction

• Posterior probabilities
• Bayes Factors 
• Posterior predictive probabilities
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Incomplete Profiles
• Lots of missing data (Missing Data)

Example of incomplete profile
• WFMM can only be applied to complete 

profiles (with no missing regions)
– 95 of the 292 profiles complete from 9am-8pm

• How do we incorporate information from 
other 197 incomplete profiles ?  
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Missing Data

Accelerometer Data
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Approach: Incomplete Profiles
1. First fit model to complete profiles, get estimates 

and standard errors for model parameters.
2. Use these to estimate predictive distributions for the 

the incomplete profiles  (fig)
• Borrow information about what the curves in these regions look like.
• Account for child-specific and day-specific covariates.

3. Regress missing data on the observed data to obtain 
imputation distribution for missing regions (fig)

• Borrow information from nearby times in incomplete profiles.
• Makes predictions for missing regions “connected” with observed.

4. Supplement WFMM with step to stochastically 
impute values for missing data.

• Inference appropriately accounts for uncertainty in 
imputation
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Incomplete Profile

Return
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Predictive Distribution
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Imputation distribution
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Incomplete Profiles
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Missing Data in the WFMM
• Problem: Imputation distribution in data space, 

modeling done in wavelet space
• Solution: Project Imputation Distributions into 

wavelet space
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Model

EZUXBY ++=

Let Y be 292×660 matrix containing 292 accelerometer 
profiles for each minute from 9am-8pm.

• X = 292 × 14 matrix of covariates
– School effects (5), gender, % body fat, BMI, day-of-

week (4), daylight savings time, avg tv hrs/wk
• B = 14 × 660 matrix of fixed effects functions

– Bij is effect of covariate i at time tj

• Z = 292 × 106 matrix indicating child for each profile
U = 106 × 660 matrix of random effect functions (1/child)

• E = 292 × 660 matrix of residual errors
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Some Results
• School #5:

– Spikes every 48min  
(changing classes)

– 3 lunch periods
– School out at 2:15pm

• BMI effect positive
– Artifact of preprocessing?

• Daylight Savings Time
– More active after DST
– Especially 2-3pm, 5-7pm

• Avg hrs TV/week
– More TV=less active
– Especially 3-5pm, 7-8pm
– More active at lunch
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Results: Covariance Analysis

• Variability: 91% day-to-day, 9% child-to-child
– Important to have many days per child

• Study variability as function of t
– Child-to-child variability: school day > after school
– Day-to-day variability: after school > school day
– Relative day-to-day variability after school: 95%-99%

• Equivalent designs:
– 108 children, 4 days/child 
– 72 children, 8 days/child
– 54 children, 16 days/child

• Less children, more days, save $$$?
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Results: Bouts
• Can compute 

posterior predictive 
probabilities of 
bouts for children
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Results: Bouts

• Model-based
predictive 
probabilites not far 
from empirically-
estimated
probabilities

• May want heavier 
tails

• Can compute 
posterior predictive 
probabilities of 
bouts for children
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Discussion
• WFMM: unified modeling approach for FDA

– Extract information from samples of accelerometer profiles 

• Method based on mixed models; is FLEXIBLE
– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions for future sampled curves
– Predictive probabilities for group membership of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability in the model propagated throughout inference.
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Discussion
• Since functions adaptively regularized using wavelet shrinkage, 

the method is appropriate for spatially heterogeneous functional 
data, like accelerometer data.

• Approach is Bayesian.  The only informative priors to elicit are 
regularization parameters, which can be estimated from data 
using empirical Bayes.

• Method complex, but code straightforward to implement.
• Method generalizes to higher dimensional functions, e.g. image 

data, space/time (fixed domain) data.
• We used wavelet bases, but approach can be generalized to 

other orthogonal basis functions.
• Unified modeling approach makes it possible to develop 

rigorous methods for incorporating of observed functions with 
missing data
– Makes it possible to relax equally-spaced grid assumption
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