Functional Data Analysis for Accelerometer Data

Jeffrey S. Morris University of Texas M.D. Anderson Cancer Center, Houston, TX

Joint work with: Louise Ryan, Cassandra Arroyo, Brent Coull, and Steve Gortmaker

Harvard SPH Department of Health and Social Behavior

Planet Health Study

 Planet Health: school-based intervention study to reduce obesity in middle school youth by changing key physical activity and dietary risk factors.

• Design:

- 10 schools paired up, randomized to intervention/control
- 1295 children: nutritional, behavioral, and health-related outcomes measured at baseline (F95) and follow-up (S97)

• Challenge: How to measure physical activity levels?

- Questionnaires
- Accelerometers: objectively quantify activity levels

 256 children: monitored using TriTrac-R3D activity monitor for one or two 4-day sessions in S97

8/4/2005

Accelerometers

Accelerometers: small motion sensors that digitally record minute-by-minute activity levels

- Increasingly used in large surveillance studies and intervention trials to objectively monitor activity
 - Monitoring children's activity levels and correlating with obesity (Abbott & Davies 2004; Going, et al. 2003; Goldfield, et al. 2000; Rowlands, et al. 2000; Rowlands, Eston, and Ingledew 1999)
 - Monitoring physical activity of older adults (Talbot, et al. 2003)
 - Index wandering behavior in Alzheimer patients (Algase, ... 2003)
 - Have potential for expanded use, e.g. in monitoring side effects of drugs, sleep studies, ...

Numerous validation studies done

- 3D accelerometers do better than 1D
- Do reasonable job of measuring energy expenditure, when correlated with gold standard, for many types of activities
- Underestimate energy expenditure for certain types of activity, e.g. sedentary activities, climbing, biking, weightlifting

8/4/2005

TriTrac-R3D Accelerometer

- TriTrac-R3D: pocket-sized sensor worn on hip
 - Minute-by-minute record of motion in 3 planes
 - Condensed into single activity level measurement/minute, on either acceleration or "METs" scale (multiple of resting metabolic rate)
- METs for different activities (Rowlands, et al. 2004)
 - 1 MET = minimum activity level
 - 3-6 MET = moderately intense activity
 - >6 MET = vigorous activity

8/4/2005

Harvard SPH Department of Health and Social Behavior

Some Accelerometer Profiles

8/4/2005

Analyzing Accelerometer Data Major challenge: How to analyze these data? Standard strategy: Extract simple summary measures from the profiles, then limit the analysis to these.

- 1. Average daily activity levels
- 2. Proportion of time with activity levels corresponding to sedentary, moderately vigorous, and vigorous activities
- 3. 30-minute averages

8/4/2005

•

- **Benefit:** simplifies data into recognized form.
- **Limitations** of these approaches:
- Do not make full use of information in functional data
 - Cannot effectively deal with incomplete profiles
- We have analyzed these data using a new method that can model the functions themselves and deal with incomplete profiles.

Harvard SPH Department of Health and Social Behavior

Accelerometer Data

- Here, we focus only on weekday profiles from children at control schools
 - 550 profiles from 112 children, 1440 meas./profile
 - Enormous amount of data; can be displayed using Heatmap
- Lots of missing data
 - Measurement coded as *missing* for time periods for which there was virtually no activity (vector magnitude <10) for at least 30 consecutive minutes
 - We focus on profiles >50% complete from 9am-8pm
 - 292 profiles from 106 children
 - We will return to this missingness issue later.

8/4/2005

Harvard SPH Department of Health and Social Behavior

Heatmap

Accelerometer Data

Harvard SPH Department of Health and Social Behavior

8/4/2005

Accelerometer Data

• Other measurements:

- Child-level covariates: school, race, gender, age, weight, height, BMI, % body fat, avg hrs of TV/week
- Day-level covariates: day of week, calendar date

• Goals:

1. Assess how activity levels vary throughout day, across schools, across different days of the week, over time from early to late Spring, and across various child-level covariates.

2. Assess relative variability in activity levels from day-to-day and child-to-child, in order to guide future study design.

 If we had just 1 measurement/profile, e.g. average daily activity level, we could answer these questions using linear mixed models.

8/4/2005

Linear Mixed Models

Linear Mixed Model (Laird and Ware, 1982):

Fixed effects part, *Xβ*, accommodate a broad class of mean structures, including main effects, interactions, and linear coefficients.
 Random effects part, *Zu*, provide a convenient mechanism for modeling correlation among the *N* observations.

8/4/2005

Harvard SPH Department of Health and Social Behavior

Example: Mixed Model Suppose we have the average daily activity level computed from 292 daily profiles from 106 children.

$$Y_{i} = B_{0} + X_{i1}B_{1} + X_{i2}B_{2} + \sum_{k=1}^{106} Z_{ik}U_{k} + E_{i}$$

- Y_i = log(daily activity level) for profile *i*
- X_{i1} = 1 if male, -1 if female; X_{i2}=1 before DST, -1 after
 B₁ (B₂) : Effects of gender (DST) on activity levels
- $Z_{ik} = 1$ if profile *i* is from child *k*, 0 otherwise
 - U_k = random effect for child k; $U_k \sim N(0, \sigma_c^2)$

8/4/2005

• E_i = residual error for profile *i*; $E_i \sim N(0, \sigma_d^2)$

Functional Data Analysis

• Functional Data Analysis (Ramsay&Silverman 1997)

- Statistical methods to analyze functional data, where "units of observation" are actually continuous curves.
- Approach: Model entire functions instead of arbitrarily computed summary measures.
- Potential to extract more information from data
 - Identify what times of day children are most active.
 - Allow possibility that covariates may have different effects at different times of the day.
 - Also allows us to potentially incorporate partial information contained in incomplete profiles.

8/4/2005

Functional Mixed Model (FMM)

Suppose we observe a sample of N
curves, $Y_i(t)$, i=1, ..., N $U_k(t) \sim GP\{0, Q(t_1, t_2)\}$
 $E_i(t) \sim GP\{0, S(t_1, t_2)\}$

$$Y_{i}(t) = B_{0}(t) + \sum_{j=1}^{p} X_{ij}B_{j}(t) + \sum_{k=1}^{q} Z_{ik}U_{k}(t) + E_{i}(t)$$

- $B_{i}(t)$: effect of covariate *j* on activity levels at time *t*
- $U_k(t)$: random effect for child k at time t
- Q, S: account for child-to-child and day-to-day var.
- No restrictions (e.g. linear) placed on form of fixed/random effect functions and covariances.
 - Provides flexibility necessary to model irregular functions

8/4/2005

Example: Model Let Y_i(t) be a (log) accelerometer profile (from 9am-8pm). Recall we have 292 profiles from 106 children

$$Y_{i}(t) = B_{0}(t) + \sum_{j=1}^{13} X_{ij}B_{j}(t) + \sum_{k=1}^{106} Z_{ik}U_{k}(t) + E_{i}(t)$$

- *Covariates modeled:* School (4), gender, % body fat, BMI, day-of-week (4), DST, avg tv hrs/wk
- Examples:
 - For Gender: X_{i5} =1 if boy, -1 if girl

8/4/2005

- $B_5(t)$: add to mean log profile if boy, subtract if girl
- For TV hours: X_{i13} = {TVHrs_i mean(TVHrs)}/sd(TVHrs) $B_{13}(t)$: add (subtract) to mean log profile for each standard deviation above (below) the mean TVHrs.

Note: exp{B_j(t)} is multiplicative effect on activity levels

Wavelet-Based Functional Mixed Models

- Morris and Carroll (2004): Describe method for fitting functional mixed models that is appropriate for irregular (spiky) functional data.
 - "Wavelet-based functional mixed models" (WFMM)
 - Uses mathematical constructs called "wavelets" to efficiently represent the functions.
 - Yields estimates and Bayesian inference for model quantities
- Problem: WFMM requires *complete profiles*
 Cannot incorporate info. from incomplete profiles

Incomplete Profiles

- Lots of missing data (<u>Missing Data</u>)
 <u>Example of *incomplete profile*</u>
- We focus on 9am-8pm (Missingness vs. Time-of-Day) – Most profiles are missing outside this region.
- WFMM can only be applied to *complete profiles* (with no missing regions)
 - Only 95 of the 292 profiles are *complete* from 9am to 8pm
- How do we incorporate information from other 197 *incomplete profiles* ?

8/4/2005

Missing Data

Missingness vs. Time-of-Day

Approach: Incomplete Profiles

- 1. First fit model to *complete profiles*, get estimates and standard errors for model parameters.
- 2. Use these to estimate *predictive distributions* for the the incomplete profiles (fig)
 - Borrow information about what the curves in these regions look like.
 - Account for child-specific and day-specific covariates.
- 3. Regress missing data on the observed data to obtain *imputation distribution* for missing regions (fig)
 - Borrow information from nearby times in incomplete profiles.
 - Makes predictions for missing regions "connected" with observed.
- 4. Supplement WFMM with step to stochastically impute values for missing data.
 - Inference appropriately accounts for uncertainty in imputation

8/4/2005

Incomplete Profile

8/4/2005

Harvard SPH Department of Health and Social Behavior

Predictive Distribution

8/4/2005

Imputation distribution

8/4/2005

Harvard SPH Department of Return Health and Social Behavior

Incomplete Profiles

8/4/2005

Classical Statistical Inference

Y=data, Θ =parameters (mean functions/covariances) *Likelihood:* $f(Y|\Theta)$

Frequentist (classical) approach

- Parameters are *fixed*, *unknown* quantities – Cannot have "distributions"
- Estimate \varTheta by maximizing the likelihood
- Perform asymptotic inference
 - Assumes "large" sample sizes
- Yields *p-values* and *confidence intervals*, which must be interpreted in terms of "repeated sampling"

8/4/2005

Bayesian Statistical Inference

Y=data, Θ =parameters (mean functions/covariances) *Likelihood:* $f(Y|\Theta)$

Bayesian approach

- Parameters are *random* quantities with distribution
 Prior Distribution: f(Θ)
- Inference based on *posterior distribution* of Θ
 - Computed using *Bayes' Rule:* $f(\Theta|Y) = f(Y|\Theta) \times f(\Theta)/f(Y)$
 - Yields *posterior probabilities* and *credible intervals*, which can be interpreted as probabilities of parameters

When f(O|Y) not directly computable, MCMC used

 Simulation technique yielding random samples from posterior distribution 8/4/2005
 Harvard SPH Department of Health and Social Behavior

Statistical Inference in FMM

- Prior distributions made "uninformative"
 - Exception: *smoothing parameters*, which can be estimated from the data using an "empirical Bayes" approach
- We use MCMC to draw samples from posterior distributions of *B_i(t)* functions and covariances.
- For each covariate effect, we compute 90% pointwise credible intervals at each value of *t*
- We also compute posterior prob. of nonzero effects, aggregating data within following time intervals:

 All day (9am-8pm)
 Morning (9am-11:30am)
 Lunch (11:30am-12:30pm)

5. Going home (2:15pm-3pm)
6. After school (3pm-5:30pm)
7. Early evening (5:30pm-7pm)
8. Late evening (7pm-8pm)

8/4/2005

Results: Overall mean function

8/4/2005

Selected Results: School Effects

(a) School E

Selected Results: BMI Effect

(b) BM

• BMI coded as continuous factor (mean-centered) BMI effect positive (post prob<0.0005) - Higher BMI, more active - Preprocessing artifact? Should raw activity levels be monitored instead of METs?

Selected Results: DST Effect

(c) Daylight Savings Time

• DST – April 6th More active after DST (overall 8%, *p*=0.062) • Especially strong: As school is letting out (2:15-3:00, 25%, p=0.03)- In early evening (5:30-7:00, 30%, p=0.01)• Note: Sunset was - 5:10-6:15 before DST - 7:15-8:10 after DST

Selected Results: TV hours/wk

(d) Average Hours of TV per Week

 TVhrs coded as continuous factor (standardized) TVhrs effect negative (-1.3% per sd, p=0.03)- More TV, less active -3:00-5:30, -2.6%, p=0.02-7:00-8:00, -3.6%, p=0.008 Positive effect over lunch -+2.7%, p=0.03- More TV, on average more active over lunch

Results: Covariance Analysis

- Variability: 91% day-to-day, 9% child-to-child
 - Important to have many days per child
- Study variability as function of t
 - Child-to-child variability: school day > after school
 - Day-to-day variability: after school > school day
 - Relative day-to-day variability after school: 95%-99%
- Equivalent designs:
 - 108 children, 4 days/child
 - 72 children, 8 days/child
 - 54 children, 16 days/child
- Less children, more days, save \$\$\$?

Results: Bouts

8/4/2005

Results: Bouts

• Can compute posterior predictive probabilities of bouts for children Model-based predictive probabilities not far from empiricallyestimated probabilities

34

8/4/2005

Conclusions

- Found some interesting results in Planet Health
 - School schedules, DST, Day of Week, TV hours
 - Day-to-day variability large needs lots of days/child
 - Raw vector magnitudes instead of METs?
- Functional mixed models promising method for analyzing accelerometer data
 - Makes use of all of the data

8/4/2005

- Can detect effects that vary over time
- Can accommodate incomplete profiles
- After the fact, one can perform inference that averages within different time periods of interest
- Can still look at probabilities bouts, but as function of time

Acknowledgements

- Statistical Collaborators on work related to WFMM: Raymond J. Carroll, Louise Ryan, Phil Brown, Marina Vannucci, Kevin Coombes, Keith Baggerly, Naisyin Wang, Brent Coull, and Cassandra Arroyo.
- Other Scientific Collaborators: Steve Gortmaker, Joanne Lupton, Josh Fidler, Lihong Wang, Victor Prieto, Stan Hamilton, Ryuji Kobayashi, David Hawke, John Kooman, Nancy Turner, and Meeyoung Hong.
- Thanks to Dick Herrick for assistance in optimizing the code for the method, and for converting the Matlab code to C++.

8/4/2005