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Planet Health Study
• Planet Health: school-based intervention study to 

reduce obesity in middle school youth by changing 
key physical activity and dietary risk factors.

• Design: 
– 10 schools paired up, randomized to intervention/control
– 1295 children: nutritional, behavioral, and health-related 

outcomes measured at baseline (F95) and follow-up (S97)
• Challenge: How to measure physical activity levels?  

– Questionnaires
– Accelerometers: objectively quantify activity levels

• 256 children: monitored using TriTrac-R3D activity 
monitor for one or two 4-day sessions in S97
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Accelerometers
• Accelerometers: small motion sensors that 

digitally record minute-by-minute activity levels
– Increasingly used in large surveillance studies and 

intervention trials to objectively monitor activity
• Monitoring children’s activity levels and correlating with obesity 

(Abbott & Davies 2004; Going, et al. 2003; Goldfield, et al. 2000;
Rowlands, et al. 2000; Rowlands, Eston, and Ingledew 1999)

• Monitoring physical activity of older adults (Talbot, et al. 2003)
• Index wandering behavior in Alzheimer patients (Algase, … 2003)
• Have potential for expanded use, e.g. in monitoring side effects of 

drugs, sleep studies, … 

• Numerous validation studies done
– 3D accelerometers do better than 1D
– Do reasonable job of measuring energy expenditure, when correlated 

with gold standard, for many types of activities
– Underestimate energy expenditure for certain types of activity, e.g. 

sedentary activities, climbing, biking, weightlifting
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TriTrac-R3D Accelerometer

• TriTrac-R3D: pocket-sized sensor worn on hip
– Minute-by-minute record of motion in 3 planes
– Condensed into single activity level measurement/minute, 

on either acceleration or “METs” scale (multiple of 
resting metabolic rate)

• METs for different activities (Rowlands, et al. 2004)
– 1 MET = minimum activity level 
– 3-6 MET = moderately intense activity
– >6 MET = vigorous activity
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Some Accelerometer Profiles
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Analyzing Accelerometer Data
• Major challenge: How to analyze these data?
• Standard strategy: Extract simple summary measures 

from the profiles, then limit the analysis to these.
1. Average daily activity levels
2. Proportion of time with activity levels corresponding to 

sedentary, moderately vigorous, and vigorous activities
3. 30-minute averages

• Benefit: simplifies data into recognized form.
• Limitations of these approaches:

– Do not make full use of information in functional data
– Cannot effectively deal with incomplete profiles

• We have analyzed these data using a new method that can model 
the functions themselves and deal with incomplete profiles.
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Accelerometer Data

• Here, we focus only on weekday profiles from children 
at control schools
– 550 profiles from 112 children, 1440 meas./profile
– Enormous amount of data; can be displayed using Heatmap

• Lots of missing data
– Measurement coded as missing for time periods for which 

there was virtually no activity (vector magnitude <10) for at 
least 30 consecutive minutes

– We focus on profiles >50% complete from 9am-8pm
• 292 profiles from 106 children

– We will return to this missingness issue later.
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Heatmap

Accelerometer Data
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Accelerometer Data
• Other measurements:

– Child-level covariates: school, race, gender, age, weight, 
height, BMI, % body fat, avg hrs of TV/week

– Day-level covariates: day of week, calendar date
• Goals:

1. Assess how activity levels vary throughout day, across 
schools, across different days of the week, over time from 
early to late Spring, and across various child-level covariates.

2. Assess relative variability in activity levels from day-to-day 
and child-to-child, in order to guide future study design.

– If we had just 1 measurement/profile, e.g. average 
daily activity level, we could answer these questions 
using linear mixed models.
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Example: Mixed Model
Suppose we have the average daily activity level 
computed from 292 daily profiles from 106 children.  
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• Yi = log(daily activity level) for profile i
• Xi1 = 1 if male, -1 if female;  Xi2=1 before DST, -1 after 

B1 (B2) : Effects of gender (DST) on activity levels
• Zik= 1 if profile i is from child k, 0 otherwise

Uk = random effect for child k; Uk~N(0,σc
2)

• Ei = residual error for profile i; Ei~N(0,σd
2)
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Functional Data Analysis
• Functional Data Analysis (Ramsay&Silverman 1997)

– Statistical methods to analyze functional data, where 
“units of observation” are actually continuous curves.

– Approach: Model entire functions instead of arbitrarily 
computed summary measures.

• Potential to extract more information from data
– Identify what times of day children are most active.
– Allow possibility that covariates may have different effects 

at different times of the day. 
– Also allows us to potentially incorporate partial 

information contained in incomplete profiles.
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Functional Mixed Model (FMM)
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• Bj(t): effect of covariate j on activity levels at time t
• Uk(t): random effect for child k at time t
• Q, S: account for child-to-child and day-to-day var.
• No restrictions (e.g. linear) placed on form of 

fixed/random effect functions and covariances.
– Provides flexibility necessary to model irregular functions 
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Example: Model
Let Yi(t) be a (log) accelerometer profile (from 9am-8pm).
Recall we have 292 profiles from 106 children
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• Covariates modeled: School (4), gender, % body fat, 
BMI, day-of-week (4), DST, avg tv hrs/wk

• Examples: 
– For Gender: Xi5=1 if boy, -1 if girl

B5(t) : add to mean log profile if boy, subtract if girl
– For TV hours: Xi13= {TVHrsi – mean(TVHrs)}/sd(TVHrs)

B13(t) : add (subtract) to mean log profile for each standard 
deviation above (below) the mean TVHrs.

• Note: exp{Bj(t)} is multiplicative effect on activity levels
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Wavelet-Based Functional Mixed Models

• Morris and Carroll (2004): Describe method for fitting 
functional mixed models that is appropriate for 
irregular (spiky) functional data.
– “Wavelet-based functional mixed models” (WFMM) 
– Uses mathematical constructs called “wavelets” to efficiently 

represent the functions.
– Yields estimates and Bayesian inference for model quantities

• Problem: WFMM requires complete profiles
– Cannot incorporate info. from incomplete profiles
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Incomplete Profiles
• Lots of missing data (Missing Data)

Example of incomplete profile
• We focus on 9am-8pm (Missingness vs. Time-of-Day) 

– Most profiles are missing outside this region.

• WFMM can only be applied to complete profiles
(with no missing regions)
– Only 95 of the 292 profiles are complete from 9am to 8pm

• How do we incorporate information from other 197
incomplete profiles ?  
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Missing Data

Incomplete Profiles
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Approach: Incomplete Profiles
1. First fit model to complete profiles, get estimates 

and standard errors for model parameters.
2. Use these to estimate predictive distributions for the 

the incomplete profiles  (fig)
• Borrow information about what the curves in these regions look like.
• Account for child-specific and day-specific covariates.

3. Regress missing data on the observed data to obtain 
imputation distribution for missing regions (fig)

• Borrow information from nearby times in incomplete profiles.
• Makes predictions for missing regions “connected” with observed.

4. Supplement WFMM with step to stochastically 
impute values for missing data.

• Inference appropriately accounts for uncertainty in 
imputation
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Incomplete Profile

Return
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Predictive Distribution

Return
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Imputation distribution

Return
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Incomplete Profiles
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Classical Statistical Inference
Y=data,     Θ=parameters (mean functions/covariances)

Likelihood: f(Y|Θ)
Frequentist (classical) approach

• Parameters are fixed, unknown quantities
– Cannot have “distributions”

• Estimate Θ by maximizing the likelihood
• Perform asymptotic inference 

– Assumes “large” sample sizes
• Yields p-values and confidence intervals, which must 

be interpreted in terms of “repeated sampling”
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Bayesian Statistical Inference

Bayesian approach
• Parameters are random quantities with distribution

Prior Distribution: f(Θ)
• Inference based on posterior distribution of Θ

– Computed using Bayes’ Rule:  f(Θ|Y) = f(Y|Θ)×f(Θ)/f(Y)
– Yields posterior probabilities and credible intervals, which can 

be interpreted as probabilities of parameters
• When f(Θ|Y) not directly computable, MCMC used

– Simulation technique yielding random samples from posterior distribution

Y=data,    Θ=parameters (mean functions/covariances)

Likelihood: f(Y|Θ)
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Statistical Inference in FMM
• Prior distributions made “uninformative”

– Exception: smoothing parameters, which can be estimated 
from the data using an “empirical Bayes” approach

• We use MCMC to draw samples from posterior 
distributions of Bi(t) functions and covariances.

• For each covariate effect, we compute 90% pointwise 
credible intervals at each value of t

• We also compute posterior prob. of nonzero effects, 
aggregating data within following time intervals:
1. All day (9am-8pm) 2. Morning (9am-11:30am)
3. Lunch (11:30am-12:30pm) 4. Afternoon (12:30-2:15pm)
5. Going home (2:15pm-3pm) 6. After school (3pm-5:30pm)
7. Early evening (5:30pm-7pm) 8. Late evening (7pm-8pm)
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Results: Overall mean function
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Selected Results: School Effects
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• School schedules 
evident in effects
– Spikes every 48min  

(changing classes)
– 3 lunch periods
– School out at 2:15pm

• Not so evident in 
individual curves
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Selected Results: BMI Effect
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• BMI coded as 
continuous factor 
(mean-centered)

• BMI effect positive         
(post prob<0.0005)
– Higher BMI, more active
– Preprocessing artifact? 

• Should raw activity 
levels be monitored 
instead of METs?
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Selected Results: DST Effect
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• DST – April 6th
• More active after DST 

(overall 8%, p=0.062)
• Especially strong:

– As school is letting out
(2:15-3:00, 25%, p=0.03)

– In early evening
(5:30-7:00, 30%, p=0.01)

• Note:  Sunset was
– 5:10-6:15 before DST
– 7:15-8:10 after DST
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Selected Results: TV hours/wk
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• TVhrs coded as 
continuous factor 
(standardized)

• TVhrs effect negative     
(-1.3% per sd, p=0.03)
– More TV, less active
– 3:00-5:30, -2.6%, p=0.02
– 7:00-8:00, -3.6%, p=0.008

• Positive effect over lunch
– +2.7%, p=0.03
– More TV, on average 

more active over lunch
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Results: Covariance Analysis

• Variability: 91% day-to-day, 9% child-to-child
– Important to have many days per child

• Study variability as function of t
– Child-to-child variability: school day > after school
– Day-to-day variability: after school > school day
– Relative day-to-day variability after school: 95%-99%

• Equivalent designs:
– 108 children, 4 days/child 
– 72 children, 8 days/child
– 54 children, 16 days/child

• Less children, more days, save $$$?
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Results: Bouts
• Can compute 

posterior predictive 
probabilities of 
bouts for children
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Results: Bouts

• Model-based
predictive 
probabilities not 
far from 
empirically-
estimated
probabilities

• Can compute 
posterior predictive 
probabilities of 
bouts for children
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Conclusions
• Found some interesting results in Planet Health

– School schedules, DST, Day of Week, TV hours
– Day-to-day variability large – needs lots of days/child
– Raw vector magnitudes instead of METs?

• Functional mixed models promising method for 
analyzing accelerometer data
– Makes use of all of the data
– Can detect effects that vary over time
– Can accommodate incomplete profiles
– After the fact, one can perform inference that averages 

within different time periods of interest
– Can still look at probabilities bouts, but as function of time
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