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Outline
• Introduction: 

– Functional Data
– Example: Accelerometers

• Functional Mixed Models
• Wavelet-based Functional Mixed Models
• Posterior Predictive Distribution-Based 

Multiple Imputation Scheme
• Application/Results
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Functional Data
• Functional Data:

– Ideal units of observation: curves
– Observed data:  curves sampled on fine grid

• Increasingly encountered in biomedical research with new 
technologies taking automated measurements

• Present unique challenges:
– Extremely large data sets (>100s-1000s per curve)
– Curves may be complex and irregular, spatially 

heterogeneous with many local features
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Accelerometer Data
• Accelerometers: small motion sensors that 

digitally record minute-by-minute activity levels
– Increasingly used in surveillance and intervention studies 

• TriTrac-R3D: sensor worn on hip
– Minute-by-minute record of motion in 3 planes
– Condensed into single activity level 

measurement/minute
– Activity “profile” for each day
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Accelerometer Data
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Accelerometer Data
• Planet Health Study (Harvard University):

– Intervention study investigating activity levels of middle 
school children in Boston area schools

– Children’s activity levels objectively monitored using 
TriTrac-R3D activity monitor for one or two 4-day sessions

– Data considered:  292 daily profiles/103 children/5 schools 
660 measurements/profile (every minute from 9am-8pm)

• Goals:
1. Assess how activity levels vary throughout day, across 

schools, across different days of the week, over time from 
early to late Spring, and across various child-level 
covariates.

2. Assess relative variability in activity levels from day-to-day 
and child-to-child, in order to guide future study design.



7/7/2006 http://biostatistics.mdanderson.
org/Morris

Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Functional Mixed Model 
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Suppose we observe a sample of N curves, 
Yi(t), i=1, …, N, all defined on T
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• Bj(t) = fixed effect functions
• Uk(t) = random effect functions
• Ei(t) = residual error processes  
• Q and S are covariance surfaces on T×T

– S(t1,t2) = Cov{Ei(t1),Ei(t2)}: describes within-curve
covariance structure of residual curve-to-curve deviations
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Functional Mixed Model 
(Discrete version)

Y= N-by-T matrix containing the observed spectra on 
sampling grid of size T
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• Bij is the effect of covariate i at location tj
• Q and S are covariance matrices (T x T) 
• Note: Some structure must be assumed on 

form of Q and S (discussed later)
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Model

EZUXBY ++=

Let Y be 292×660 matrix containing 292 accelerometer 
profiles for each minute from 9am-8pm.

• X = 292 × 14 matrix of covariates
– School effects (5), gender, triceps calipers, BMI, day-

of-week (4), daylight savings time, avg tv hrs/wk
• B = 14 × 660 matrix of fixed effects functions

– Bij is effect of covariate i at time tj

• Z = 292 × 106 matrix indicating child for each profile
U = 106 × 660 matrix of random effect functions (1/child)

• E = 292 × 660 matrix of residual errors
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Introduction to Wavelets
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• Wavelets: families of orthonormal basis functions
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)}

for obtaining T empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.

• Linear Representation: d = y W’
– W’ =T-by-T orthogonal projection matrix

• Inverse DWT (IDWT): y = d W
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Wavelet Space FMM

• B*=BW’ & U*=UW’ : Rows contain wavelet 
coefficients for the fixed and random effect functions, 

• E*=EW’ is the matrix of wavelet-space residuals
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D : empirical wavelet coefficients for observed curves
Row i contains wavelet coefficients for observed curve i
Each column double-indexed by wavelet scale j and location k

• Q*=WQW’ and S*=WSW’ model the covariance structure 
between wavelet coefficients for a given function.

• Q* and S* are typically too large to estimate in an
unstructured fashion: special structure assumed.
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Prior Assumptions
Mixture prior on βijk
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• Nonlinearly shrinks βijk
* towards 0, leading to

adaptively regularized estimates of βi(t).
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model
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Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integrated out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. Q* and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normals
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Wavelet-Based FMM: 
General Approach

2. Fit FMM in wavelet space
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1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.

• Apply IDWT to posterior samples of B* to get 
posterior samples of fixed effect functions Bj(t) for 
i=1,…, p, on grid t. 

– B=B*W
• Posterior samples of Uk(t), Q, and S are also

available, if desired.
• Can be used for Bayesian inference/prediction
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Heatmap of Missingness
(Black=missing)

Return
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Incomplete Profiles
• Lots of missing data (Missing Data)

Example of incomplete profile
• WFMM can only be applied to complete 

profiles (with no missing regions)
– 95 of the 292 profiles complete from 9am-8pm

• How do we incorporate information from 
other 197 incomplete profiles ?  
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Approach: Incomplete Profiles
1. First fit model to complete profiles, get posterior 

distribution samples for model parameters.
2. Use these to estimate predictive distributions for the 

the incomplete profiles  (fig)
• Borrow information about what the curves in these regions look like.
• Account for child-specific and day-specific covariates.

3. Regress missing data on the observed data to obtain 
imputation distribution for missing regions (fig)

• Borrow information from nearby times in incomplete profiles.
• Makes predictions for missing regions “connected” with observed.

4. Supplement WFMM with step to stochastically 
impute values for missing data.

• Inference appropriately accounts for uncertainty in 
imputation
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Incomplete Profile

Return
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Predictive Distribution
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Imputation distribution
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Incomplete Profiles
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Missing Data in the WFMM
• Problem: Imputation distribution in data space, 

modeling done in wavelet space
• Solution: Project imputation distributions into 

wavelet space
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• Add step to MCMC whereby “missing” wavelet 
coefficients Dijk~N(M*ijk,V*ijk)



7/7/2006 http://biostatistics.mdanderson.
org/Morris (20min)

Selected Results: School Effects
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• School schedules 
evident in effects
– Spikes every 48min  

(changing classes)
– 3 lunch periods
– School out at 2:15pm

• Not so evident in 
individual curves
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Selected Results: DST Effect
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• DST – April 6th
• More active after DST 

(overall 8%, p=0.062)
• Especially strong:

– As school is letting out
(2:15-3:00, 25%, p=0.03)

– In early evening
(5:30-7:00, 30%, p=0.01)

• Note:  Sunset was
– 5:10-6:15 before DST
– 7:15-8:10 after DST
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Selected Results: TV hours/wk
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• TVhrs coded as 
continuous factor 
(standardized)

• TVhrs effect negative     
(-1.3% per sd, p=0.03)
– More TV, less active
– 3:00-5:30, -2.6%, p=0.02
– 7:00-8:00, -3.6%, p=0.008

• Positive effect over lunch
– +2.7%, p=0.03
– More TV, on average 

more active over lunch
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Results: Covariance Analysis

• Variability: 91% day-to-day, 9% child-to-child
– Important to have many days per child

• Study variability as function of t
– Child-to-child variability: school day > after school
– Day-to-day variability: after school > school day
– Relative day-to-day variability after school: 95%-99%

• Equivalent designs:
– 108 children, 4 days/child 
– 72 children, 8 days/child
– 54 children, 16 days/child

• Less children, more days, save $$$?



7/7/2006 http://biostatistics.mdanderson.
org/Morris

Discussion
• WFMM unified modeling approach for FDA 

– Can accommodate very irregular functions

• Method based on mixed models; is FLEXIBLE
– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions for future sampled curves
– Predictive probabilities for classification of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability in the model propagated throughout inference.
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Discussion
• Approach is Bayesian.  The only informative priors to 

elicit are regularization parameters, which can be 
estimated from data using empirical Bayes.

• Developed general-use code – reasonably fast and 
straightforward to use  minimum information to 
specify is Y, X, Z matrices.

• Can deal with missing data, i.e. partially observed 
functions (not discussed here)

• Method generalizes to higher dimensional functions, 
e.g. image data, space/time (fixed domain) data.
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Accelerometer Example
Let Yij(t) be accelerometer profile on day j from child i

)()()()()()(
1 2

1 1
0 tEtUtBXtBXtBtY iji

p

k

p

k

day
kijk

child
kikij ++++= ∑ ∑

= =

• Xik= child-level covariates (school, race, gender, BMI, % 
body fat, avg hrs of TV/week)     
Xijk=day-level covariates (day-of-week, DST)

• B0(t) = overall mean profile  
Bk

child(t) = effect functions for child-level covariates 
Bk

day(t)  = effect functions for day-level covariates 

• Ui(t) = Random effect function for child i
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Results: Bouts
• Can compute 

posterior predictive 
probabilities of 
bouts for children
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Results: Bouts

• Model-based
predictive 
probabilites not far 
from empirically-
estimated
probabilities

• May want heavier 
tails

• Can compute 
posterior predictive 
probabilities of 
bouts for children
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Some Results
• School #5:

– Spikes every 48min  
(changing classes)

– 3 lunch periods
– School out at 2:15pm

• BMI effect positive
– Artifact of preprocessing?

• Daylight Savings Time
– More active after DST
– Especially 2-3pm, 5-7pm

• Avg hrs TV/week
– More TV=less active
– Especially 3-5pm, 7-8pm
– More active at lunch
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Results
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Adaptive Regularization
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Simulation: Covariance Structure

• True mean: line plus peak
• True variance: increasing in t, with extra var at peak
• True autocorrelation: Strong autocorrelation (0.9) at 

left, weak autocorrelation (0.1) right, extra at peak
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Simulation: Covariance Structure

• Independence in wavelet space accommodates 
varying degrees of autocorrelation in data space

• Allowing variance components to vary across scale j 
and location k accommodates nonstationarities
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Model Each Column Separately
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Selected Results: BMI Effect
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• BMI Coded as 
continuous factor 
(mean-centered)

• BMI effect positive 
(p<0.0005)

– Higher BMI, more active
– Preprocessing artifact? 

• Should raw activity 
levels be monitored 
instead of METs?
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Functional Mixed Models
• Key feature of FMM: Does not require 

specification of parametric form for curves
• Kernels/fixed-knot splines may not work well 

for spatially heterogeneous data – inherent 
smoothness assumptions attenuate local 
features

• Wavelet Regression: nonparametric 
regression technique that better preserves 
local features present in the curves.
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Wavelet Regression
• Wavelet Regression – 3 step process

1. Project data into wavelet space 
2. Threshold/shrink coefficients
3. Project back to data space

• Yields adaptively regularized (plot)
nonparametric estimates of function

• Morris, et al. (2003) extended to hierarchical 
functional model (Bayesian)

• Morris and Carroll (2006) extended to general 
functional mixed model framework (wavelet-
based functional mixed model)
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