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Functional Data Analysis of
Mass Spectrometry Data

e Model as “functional data”

Idea: Model entire spectrum as single entity, not
a collection of data points.

e \Wavelet-based Functional Mixed Models

Peak detection

Identify differentially expressed peaks while
controlling Bayesian FDR

Automatically account for block effects

Classify samples based on spectra, without
having to search high dimensional model spaces
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Example: Pancreatic Cancer Study

Koomen, et al. (2004)

256 blood serum samples — 141 pancreatic cancer,
115 normal controls

4 MALDI spectra/sample
— Fractions: MYO25, MYQO70, BSA25, BSA70
Samples (all fractions) run in 4 blocks on 4 different dates

Goals:
— ldentify differentially expressed protein peaks.
— Classify samples as C/N based on spectra.

Must adjust for block effects on spectra
This talk: Focus on MY OZ25 fraction, 4kD-10kD
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Example:Organ-Cell Line Expt

16 nude mice had 1 of 2 cancer cell lines
Injected into 1 of 2 organs (lung or brain)

Cell lines:
— A375P: human melanoma, low metastatic potential
— PC3MMZ2: human prostate, highly metastatic

Blood Serum extracted from each mouse — placed on 2
SELDI chips

Samples run at 2 different laser intensities (low/ high)
Total of 32 spectra (observed functions), 2 per mouse
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Example: Organ-Cell Line Expt

e Goal:
Find proteins differentially expressed by:
— Host organ site (lung/brain)
— Donor cell line (A375P/PC3MM?2)
— Organ-by-cell line interaction

e Combine information across laser intensities:
Requires us to include in modeling:

— Functional laser intensity effect

— Random effect functions to account for
correlation between spectra from same mouse
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L inear Mixed Models

Linear Mixed Model (Laird and Ware, 1982).
: erfil Z”lil U~ N(0, P)
w_w'g_i_wu_'—aeﬂ e~ N0 R )
N x1 N x p N xm N x1 e

 Fixed effects part, X5, accommodate a broad class of
mean structures, including main effects,
Interactions, and linear coefficients.

« Random effects part, Zu, provide a convenient
mechanism for modeling correlation among the N
observations.

71712006 ENAR 2005 Austin, TX



Functional Mixed Model (FMM)

Suppose we observe a sample of N curves, Yi(t), I=1, ..., N

Y; (t) :Zplxiij(t)+iZikUk(t)+ E, (1)

* B;(t) = fixed effect functions
e U, (t) = random effect functions
* E.(t) = residual error processes
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Pancreatic Cancer Example
Let Y.(t) be MALDI spectrum from sample |

Y;(t) = By (t) + 24: X;iB; (1) +E; (1)

X.;=1 If cancer, -1 if normal
X;; =1 1f block |, -1 if block 1 for j=2,3,4

B,(t) = overall mean spectrum
B,(t) = cancer effect function
B,(t) = block effect function for j=2,3,4

No random effects necessary
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Organ-by-Cell Line Example
Let Y.(t) be the SELDI spectrum I

Yi(t) = Boﬁ)"‘iXiij(t)+§:ZikUk(t)+ E; (t)

« X,;=1for lung, -1 brain. X,,=1 for A375P, -1 for PC3MM?2
Xig= X1 * X, X.,=1 for low laser intensity, -1 high.

» B,(t) = overall mean spectrum B,(t) = organ main effect function
B,(t) = cell-line main effect  B.(t) = org x cell-line int function
B,(t) = laser intensity effect function

e Z,=1 if spectrum 1 Is from mouse k (k=1, ..., 16)

« U, (1) is random effect funetionfar.mouse k.



Functional Mixed Models

e Key feature of FMM: Does not require
specification of parametric form for curves

 Methods based on kernels/fixed knot splines
not well suited to spiky functional data

» Wavelet Regression: nonparametric
regression technique that better preserves
local features present in the curves.
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Functional Mixed Model
(Discrete version)

Y= N-by-T matrix containing the observed spectra on
sampling grid of size T

el B U. ~ MVN (0,Q)
e KB pae vl e
NH:T pHxHT mH;I' NH:T Ei ~ MVN (O, S)

* B Is the effect of covariate I at location t;
e Q and S are covariance matrices (T x T)

e Note: Some structure must be assumed on
form of Q and S (discussed later)
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Introduction to Wavelets

e Wavelets: families of orthonormal basis functions

g (t) e Z d jKij (t) | Daubechies (4) Basis Function
j,k_eS _
W,-k (t) =2y (27"t -k)
« = [ 9w ()t

e Discrete Wavelet Transform (DWT) fast algorlthm {O(T)}
for obtaining T empirical wavelet coefficients for curves
sampled on equally-spaced grid of length T.

o Linear Representation: d=y W’
— W’ =T-by-T orthogonal projection matrix
« Inverse DWT (IDWT): y=dW
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Wavelet Regression

Wavelet Regression — 3 step process
1. Project data into wavelet space
2. Threshold/shrink coefficients
3. Project back to data space

Yields adaptively regularized
nonparametric estimates of function

Morris, et al. (2003) extended to nested
functional model (Bayesian)

Morris and Carroll (2004) extended to general
functional mixed model framework
(Wavelet-based FMM)
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Adaptive Regularization

Regularization by Local Linear Smoothing

—— Span=0.05
—— Span=0.20

71712006

Adaptive Regularization by Wavelet Shrinkage
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Wavelet-Based FMM:

General Approach

1. Project observed functions Y into
wavelet space.

2. Fit FMM In wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates
(posterior samples) back to data space.
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Wavelet-Based FMM:

General Approach

1. Project observed functions Y Into
wavelet space.

2. Fit FMM In wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates
(posterior samples) back to data space.
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Wavelet-Based FMM

1. Project observed functions Y to wavelet space

o Apply DWT to rows of Y to get wavelet coefficients
corresponding to each observed function

) = ¥ W
- -
N xT NxT TxT

 Projects the observed curves into the space
spanned by the wavelet bases.

71712006 ENAR 2005 Austin, TX



Wavelet-Based FMM:

General Approach

1. Project observed functions Y into
wavelet space.

2. Fit FMM In wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates
(posterior samples) back to data space.
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Projecting FMM to Wavelet Space

N xp N xm
—— —~—
Y = x B + /U] | |
- — g —
N xT pxT mxT N xT
U. ~ MVN (0,Q)
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Projecting FMM to Wavelet Space

TxT N xp N xm
e\ ey ot
Y W = X B  /Z |J | ¢
-~ — —— —
N xT pxT mxT N xT
U, ~ MVN (0,Q)

1712006



Projecting FMM to Wavelet Space

T xT N xp TxT  Nxm T xT T xT

o ey P pr=r = o Ny e N

| T 1 T

YW =X BW+ Z UW-+ EW
= o o et
NxT pxT mxT N xT
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Projecting FMM to Wavelet Space

TxT N xp T xT N xm T xT

e\ e/ e\ = e

| | |
Y W = X BW + Z UW + E
- — — —
N xT pxT mxT N xT

U W'~ MVN (0, WQW")
E-W'~ MVN (0, WSW")
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Projecting FMM to Wavelet Space

N xp N xm

el i o - %
o= X B -+ £ U 4 B
—— — —— —
N xT pxT mxT N xT

U. ~MVN(0,Q")

E. ~MVN(0,S)
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Model Each Column Separately

N x p N xm

sy " e - o
s e ek gl ]
N x1 px1 m x1 N x1

u]'kk - N(O’qjk)
gy N{ds, )
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Prior Assumptions
Mixture prior on B;;, ™
B;;k = 7/;;k N (O, Tij) (= 7;k)5o
v = Bernoulli(r; )

* Nonlinearly shrinks B;; " towards 0, leading to
adaptively regularized estimates of B;(t).
» 7; & m; are regularization parameters

— Can be estimated from the data using empirical Bayes
— Extend Clyde&George (1999) to functional mixed model
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Model Fitting

MCMC to obtain posterior samples of model guantities
Work with marginal likelihood; U* integrated out;

Let 2 be a vector containing ALL covariance
parameters (i.e. for P, Q*, R, and S*).

MCMC Steps

3.

Sample from {(B*|D, ).

Mixture of normals and point masses at 0 for each 1,j,k.

Sample from f(2D,B*):

Metropolis-Hastings steps for each j,k

If desired, sample from f(U*|D,B*,.0)):

Multivariate normals
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Wavelet-Based FMM:

General Approach

1. Project observed functions Y into

wavelet space.
2. Fit FMM in wavelet space

(Use MCMC to get posterior samples)

3. Project wavelet-space estimates
(posterior samples) back to data space.
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Wavelet-Based FMM

3. Project wavelet-space estimates
(posterior samples) back to data space.

« Apply IDWT to posterior samples of B* to get
posterior samples of fixed effect functions B(t) for
J=1,..., p, on grid t.

— B=B*W

e Posterior samples of U, (t), Q, and S are also

available, If desired.

e (Can be used for Bayesian inference/prediction
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Bayesian Inference:
Peak Detection

Focus specifically on peaks — locations in spectra
likely to correspond to proteins/peptides

Can use posterior mean estimate of overall mean
spectrum for peak detection (Morris et al. 2005)

All local maxima in (denoised) overall mean
spectrum considered peaks, possibly subject to
some threshold on Signhal-to-Noise ratio (S/N>0)

et K=# of peaks found
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Pancreatic Cancer:
Peak Detection

0.7 hﬁ I I \/LLM . : ‘/LAJ KLJJM [ o HL ﬁJUKJKN V)J( -

- » K=370 peaks detected
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- Organ-by-Cell Line:
Peak Detection
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= Found K=102 peaks (58 with S/N>2)
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Bayesian Inference:
Identifying Differentially Expressed Peaks

« ldentify which peaks are related to clinical factors of
Interest (cancer/normal, organ, cell line, interaction)

Procedure:

1. Compute posterior probability of differential
expression for each peak using posterior samples for
suitable fixed effect function (2-sided)
p;=min{Pr{B;(t)>0}Pr{B;(t)<0}]

ml K =l n

2. Rank peaks based on p;,
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Bayesian Inference:
Identifying Differentially Expressed Peaks

Procedure:

1. Rank peaks in ascending order of their 2-sided
posterior probabilities of differential expression.

Py Py -+ Pk i
2. Find K*such that: |(K")*) p,, <a/2
k=1

3. Let y=py». Any peak i with p;< yis called
“differentially expressed” for outcome |
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PanCreaticCance'r:
Differentially Expressed Peaks
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Cancer-Narmal on cube-root scale
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Cancer-Normal on'cube-root scale
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Pancreatic Cancer: Results
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Orgen-by-CeII Line:
Differentially Expressed Peaks
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Intensity

Intensity

Organ-by-Cell Line: Results
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Organ-by-Cell Line: Results

Intensity
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Bayesian Inference:
Investigating Block Effects

By including fixed effect for blocks, we can adjust
for systematic differences in spectra from
different blocks (time blocks, laser intensity)

o Systematic shifts in spectral intensities (y)
e Systematic shifts in peak locations (x)
e These adjustments are done automatically by
the model-fitting.

o Flexibility of nonparametric fixed effects allows us
to adjust for arbitrarily nonlinear misalignments
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Pancreatic Cancer: Block Effects
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Pancreatic Cancer: Block Effects
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Organ-by-Cell Line: Block Effects

(a) Laser Effect, peaks 3412.6 and 3456.6 (b) Mean Spectrum, peaks 3412.6 and 3496.6
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Bayesian Inference:
Discrimination/Classification

« New samples can be classified as Cancer/Normal
based on their spectra using posterior predictive

probabilities
e X=cancer status of test sample (1=cancer, -1=not)
e y=test spectrum, Y'=training spectra
» Classify as cancer if Pr(X=1]y,Y)>0.50

e Straightforward to compute given posterior samples
of model parameters

e Can be used to perform classification without having
to first do feature selection
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Bayesian Inference:
Discrimination/Classification
Pr(X =1|y,Y')=0/(0+1)

prior odds
% = ~  Bayes Factor i t
_ Pr(X = 1) ><B ygFEt nE _ fly|X =1,Y t)
1-Pr(X =1) Ll

fyIX=1Y)=[f(y|X=10)f(©]Y')d®

B
~B™Y f(y|X =16
b=1
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Bayesian Inference:
Discrimination/Classification

f(y|X=1,0")=fd|X=10"")
=Hf(djk\le,®’;kb>)
],k
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Pancreatic Cancer:
Classification Accuracy

Accuracy | Sensitivity | Specificity
Training 81% 8% 83%
Data
Test Data 70% 3% 66%
(8-fold CV)

« Koomen, et al. 2004: 90% sensitivity, 77% specificity

e Used entire spectrum and all 4 fractions

» We only used small region of 1 fraction — doing others

71712006
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Pancreatic Cancer:
Classification Accuracy

Performance improved by not using all wavelet coeffs
o Leave out those likely to be unrelated to peaks
o Lowest frequencies removed (J=1,2,3,4): baseline
e Highest frequency removed (j=16): noise

Accuracy | Sensitivity | Specificity
Training 83% 78% 89%
Data
Test Data 4% 15%0 13%

(8-fold CV)
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Discussion

Flexible method for modeling mass spectrometry data
— Multiple fixed effects

— Block effects

— Random effects

Various types of inference possible

— Peak detection, differentially expressed peaks, control FDR,
classification without feature selection

Easy-to-use code being developed
— Only necessary inputs: Y, X, Z matrices
— Available by end of Summer 2005.

Method also applies to other types of functional data.
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Wavelet-Based Hierarchical
Functional Models

o Most existing wavelet regression methods are for
single function case

e Morris, Vannuccl, Brown, and Carroll (2003)

— Bayesian wavelet-based method for estimating mean
function for functional data from nested design.

— Extended wavelet regression to hierarchical functional
context.

« Morris and Carroll (2004)

— Extended to functional mixed model framework
— Allowed nonstationary covariance structures
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Example: Model Fitting

Daubechies 8 wavelet basis, J=11 levels

Empirical Bayes procedure used to estimate
regularization parameters z; andg; from data.

Burn-in 1000; 20,000 MCMC samples; thin=10

Took 7hr 53min on Win2000 P-1V 2.8GHz 2GB RAM
— That is Matlab code; C++ code takes ~2 hours.

Trace plots indicated good convergence properties

Metropolis Hastings acceptance probabilities good:
— Range of (0.04, 0.53)
— (10th, 50t 90™) percentiles of (0.20, 0.29, 0.50)
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Discussion

Introduced unified modeling approach for FDA
— Applied here to MALDI-TOF, but method is general.

Method based on mixed models; i1s FLEXIBLE

— Accommodates a wide range of experimental designs
— Addresses large number of research questions

Posterior samples allow Bayesian inference and prediction
— Posterior credible intervals; pointwise or joint
— Predictive distributions for future sampled curves
— Predictive probabilities for group membership of new curves
— Bayesian functional inference can be done via Bayes Factors

Since a unified modeling approach is used, all sources of

variability in the model propagated throughout inference.
11712006 ENAR 2005 Austin, TX



Discussion

Since functions adaptively regularized using wavelet shrinkage,
the method Is appropriate for spatially heterogeneous
functional data.

Approach is Bayesian. The only informative priors to elicit are
regularization parameters, which can be estimated from data
using empirical Bayes.

Method generalizes to higher dimensional functions, e.g. image
data, space/time (fixed domain) data.

We used wavelet bases, but approach can be generalized to
other orthogonal basis functions.

Mayjor challenges in developing unified statistical modeling

approach for replicated functional data, but worth the effort.
717/2006 ENAR 2005 Austin, TX



- Organ-by-Cell Line: Results

{a) Organ Main Effect Curve B1(t) {b) Cell Line Main Effect Curve B2(t)
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Organ-by-Cell Line:
Flagged peaks

Detecting ‘significant’ peaks: Top 9 peaks

m/z Effect p Comment
3412.6 int. <0.0005 PC3MM2>A375P for brain-injected only
3496.6 organ <0.0005 Only expressed in brain-injected mice
3886.3 organ <0.0005 Only expressed in brain-injected mice
4168.2 int. 0.0005 PC3MM2>A375P in brain-injected only
4252.1 int. <0.0005 PC3MM2>A375P in brain-injected only
4270.1 cell line <0.0005 PC3MM2>A375P
5805.3 int. <0.0005 brain>lung only for mice given A375P cell-line
6015.2 cell line <0.0005 PC3MM2>A375P
11721 cell line <0.0005 PC3MMZ2>A375P
11721 organ <0.0005 lung>brain
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Example: Mass Spectrometry
Proteomics

Central dogma: DNA > mRNA -2 protein

Microarrays: measure expression levels of 10,000s of
genes In sample (amount of MRNA)

Proteomics: look at proteins in sample.

— Galning increased attention in research
« Proteins more biologically relevant than mRNA
e Can use readily available fluids (e.g. blood, urine)

MALDI-TOF: mass spectrometry instrument

that can see 100s or 1000s of proteins In
sample
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Sample MALDI-TOF Spectrum

x10°
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Mass/Charge X 105

« MALDI-TOF Spectrum: observed function
e g(t) = intensity of spectrum at m/z value t

 Intensity at peak (roughly) estimates the abundance
of some protein with molecular weight of t Daltons
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Example: Mouse proteomics study

e 16 mice had 1 of 2 cancer cell lines injected Into
1 of 2 organs (lung or brain)

e Cell lines:
— A375P: human melanoma, low metastatic potential
— PC3MMZ2: human prostate, highly metastatic
« Blood serum extracted and placed on SELDI chip
e Run at 2 different laser intensities (low/ high)
e Total of 32 spectra (observed functions), 2 per mouse
e Observations on equally-spaced grid of 7985
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Example: Mouse proteomics study

Goal: Find proteins differentially expressed by:
— Host organ site (lung/brain)

— Donor cell line (A375P/PC3MM?2)

— Organ-by-cell line interaction

Combine information across laser intensities:
Requires us to include in modeling:
— Functional laser intensity effect

— Random effect functions to account for
correlation between spectra from same mouse
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Model: SELDI Example
Let Y.(t) be the SELDI spectrum I

log, {Y; (t)} = By(t)

> X,B,(

16
> 24U
k=1

E; (1)

« X,;=1for lung, -1 brain. X,,=1 for A375P, -1 for PC3MM?2
Xig= X1 * X, X.,=1 for low laser intensity, -1 high.

» B,(t) = overall mean spectrum B,(t) = organ main effect function

B,(t) = cell-line main effect

B,(t) = laser intensity effect function

e Z,=1 if spectrum 1 Is from mouse k (k=1, ..., 16)

« U, (1) is random effect funetionfar.meuse k.

B.(t) = org x cell-line int function
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Adaptive Regularization

 Posterior samples/estimates of random effect functions U.(t) are
‘also adaptively regularized from Gaussian prior, since eac
wavelet coefficient has its own random effect & residual variance

e Able to preserve
spikes in random
effect functions,
as well

e Important for
estimation of
random effect
functions AND for

\ | valid inference on

M R e fixed effect

_ _ _ functions.
11712006 ENAR 2005 Austin; TX




Bayesian Inference

Given posterior samples of all model quantities, we can
perform any desired Bayesian inference or prediction:

1. Pointwise posterior credible intervals for funct. effects

2. Posterior probabilities of interest — either pointwise,
joint, or aggregating across locations within the curve.

3. Can account for multiple testing in identifying

significant regions of curves by controlling the expected
Bayesian FDR

4. Can compute posterior predictive distributions, which
can be used for model-checking or other purposes.
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Bayesian Inference:
Ildentifying Significant Regions of Curves

Procedure (desired effect size >0, FDR o)

Compute pointwise posterior probabilities of effect size of
Interest being at least 6 pi=Pr{|Bi(t})|>0]Y}
forl=1, ...; T

Sort peaks in descending order of p; {p;y, I=1, ..., T}

ldentify cutpoint ¢, on posterior probabilities that controls
expected Bayesian FDR to be < o, P, =Pioy Where

Ak max{l* : i{l— Py} S a}

Flag the set of locations {t; : p; < ¢} as significant
(According to model, expect only a to be false pos.)

71712006 ENAR 2005 Austin, TX



Intensity (Log2 scale)

Prob(2-fold change|Data)

Results: SELDI Example

Cell Line Main Effect
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Using a=0.05, 6=1 (2-fold expression on log, scale)

Organ-by-Cell Line Interaction Effect
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Pointwise Posterior Probabilities of 2-Fold Change,

Prob(2-fold change|Data)
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we flag a number of spectral regions.
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p(t)=Prob(2.0-Fold|Data)

‘Results: SELDI Example

(a) Organ Main Effect (b) Organ Main Effect
10 T : I ~ 4 T :
s LUng-Injected |
5l | === Brain-Injected | 2
= B 0 .
:.5 %\ (= = = = =
{ = [ - e Em G e G M R Gm S R R e S e e e e s e A
@ @
£ Bt
s |_UING-INjected
=4 || m— Brain-Injected
; 4 Overall Mean Spectrum
3800 3850 3900 3950 4000 7500 7550 7600 7650 7700
m/z (Daltons) m/z (Daltons)
(c) Pointwise Posterior Probabilities, 2-fold difference (d) Pointwise Posterior Probabilities, 2-fold difference
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3900 D (CGRP- II) dilates blood vessels |n bram

7620 D (nerogranin): active In synaptlc modelmg In braln
--_(Not detected as peak) |
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(d) Pointwise Posterior Probabilites
2-fold difference
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(b) Pointwise Posterior Probabilites
1.5-fold difference
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Block 1 — Block 2 Effect Block 1 - Block 3 Effect Block 1 - Block 4 Effect
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Results: SELDI Example

(a) Laser Effect, Peaks 3412.6 and 3496.6 (c) Laser Effect, Peak 11721.0
5

= = r 1
(7] (72}
f = —
o & o5 1
= =
= A AN P —————\
=8 N ks
= = L 1
g = -0.5
j—
(=} o
= = -1 - -
s ‘ ‘ ‘ ‘
340 3450 1.15 1.16 1.17 1.18 1.19 1.2 1.21
m/z

(b) Group Mean Curves, Peak 3886.3 (d) Group Mean Curves, Peak 11721.0

O era Mean Overall Mean
ntensity

Low Laser |
/ /Z\ 2/
o . .
1.15 1.16 1.1

m/z

High Laser Intensit

%) ] o
T

A

Normalized Intensity
Normalized Intensity

1.18
m/z

Inclusion of nonparametric functional laser intensity
effect is able to adjust for systematic differences in
the x and y axes between laser intensity scans
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Intensity (raw)
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Results SELDI Example

NNNNNN

Normal

Intensi

1 2
m/z (D ) m/z (Daltons)

Raw Sp_ectrum, Preprocessed Spectrum,
x 10* Pancreatic Cancer Pancreatic Cancer
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1.5} 1
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= =
[ 2]
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201 1
0.5} 1
MNL " L M 7
o I
o 1 2 3 1 2 3 1 2
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m/z (Daltons) x 10%

Draws of spectra from posterior predictive
distribution yield data that looks like real SELDI
data (3rd column) indicating reasonable model flt.
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