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Functional Data Analysis

• Functional Data:
– Ideal units of observation: curves
– Observed data:  curves sampled on fine grid

• With the development of new automated data 
collection devices, these type of data are 
increasingly encountered in scientific 
research.
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Accelerometer Data
Planet Health Study

• Planet Health: 5 intervention/5 control schools in Boston
• Accelerometer profile: x=time, y=activity level

– ~400 children, ~4 days/child (~1600 profiles)
Goal:  Assess effect of intervention on childrens’ activity 

levels, while controlling for various covariates.
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Mass Spectrometry Proteomics
Cancer Cell Line Study

• Cell line Study: ~180 rats; 3 cell lines/4 organ sites
• Proteomic Spectrum: x=molecular mass, y=intensity

– Peaks correspond to proteins present in sample
• Goal: Identify proteins in blood serum proteome associated  

with implanted cell line, host organ site, and their interaction.
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SOIR (Spectroscopic Oblique-Indicence Reflectometry)
Melanoma Diagnosis Study

• Melanoma Study: Diagnose melanoma using SOIR
• SOIR: x=optical fiber number, y=wavelength , z=intensity

– 42 lesions; histology known (malignant/not) 
– 5 SOIR images from each lesion and adjacent normal tissue

• Goal: Develop SOIR-based diagnostic tool for melanoma
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Functional Mixed Model 
(Discrete Version)

Y= N-by-T matrix containing the observed curves all 
sampled on a common equally-spaced grid of length T.
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• U and E follow the Matrix Normal distribution
– U~MN(P,Q) implies Cov{Uij, Ui’j’}=Pii’*Qjj’

• P and R are between-curve covariance matrices
• Q and S are within-curve covariance matrices (T × T)
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Functional Mixed Models
• Key feature of FMM: Does not require specification 

of parametric form for curves
• Most existing literature for nonparametrically 

modeling functional data is based on kernels or 
splines.

• Kernels/fixed-knot splines may not work well for 
spatially heterogeneous functional data 
– e.g. curves have lots of local features, like peaks

• Wavelet Regression: nonparametric regression 
technique that better preserves local features 
present in the curves.
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Introduction to Wavelets
• Wavelets: families of orthonormal basis functions
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• Discrete Wavelet Transform (DWT): fast algorithm 
{O(T)} for obtaining T empirical wavelet coefficients for 
curves sampled on equally-spaced grid of length T.
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Wavelet Regression

• Wavelet Regression – 3 step process
1. Project data into wavelet space 
2. Threshold/shrink coefficients
3. Project back to data space

• Yields adaptively regularized
nonparametric estimates of function

• Most work limited to single function case
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Covariance Assumptions
• We choose parametric structures for P and R to 

model the covariance structure between the curves. 
– Based on the experimental design
– As in linear mixed models.

• We assume the between-wavelet covariance matrices 
Q* and S* are diagonal.
– Assume wavelet coefficients within given random effect 

function or residual error process are independent
– Heuristically justified by whitening property of DWT
– Common assumption in wavelet regression
– Is parsimonious in wavelet space (T parameters), yet leads 

to flexible class of covariance structures in data space
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Adaptive Regularization via 
Shrinkage Prior

Mixture prior on Bijk
*:

0
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• Nonlinearly shrinks Bijk
* towards 0, leading to

adaptively regularized estimates of Bi.
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model
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Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integrated out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. for P, Q*, R, and S*).
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normals
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Wavelet-Based FMM: 
General Approach
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(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.

• Apply IDWT to posterior samples of B* to get 
posterior samples of fixed effect functions Bi for 
i=1,…, p, on grid t. 

– B=B*W
• Posterior samples of U, P, Q, R, and S are also

available, if desired.
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Wavelet-Based FMM: 
Inference

• Posterior samples of model quantities enable various 
types of Bayesian inference & prediction:

– Posterior credible intervals (pointwise or joint)
– Predictive distributions for future sampled curves

• Used in missing data methodology for incomplete profiles
– Predictive probabilities for group membership of new curves
– Bayes Factors for functional inference/model selection

• Structure of model makes computation feasible 
in spite of enormous size of data set.
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Model: Planet Health Study
Y = 503-by-660 matrix, N=503 weekday profiles (200 children) 

• X={1,Xinterv, Xcov, Xinter*cov} , where
Xinterv= 1 if profile from child in intervention school, -1 control. 
Xcov     = covariates month, day-of-week, gender, obesity, race
Xinter*cov  = various intervention-by-covariate interactions

EZUXBY ++=
Profile=minute-by-minute activity levels from 9am-8pm.

• B={B0
T , Bint

T , Bcov
T, Bint*cov

T }T, where
B0 = overall mean profile (1 x T),  Bint = intervention effect (1 x T)

Bcov = covariate effects (p x T),  Bint*cov = interaction effects (p x T)

• Z={Zschool, Zchild} U={Uschool, Uchild}
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Discussion
• Introduced unified modeling approach for FDA 
• Method based on mixed models; is FLEXIBLE

– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
• Since a unified modeling approach is used, all sources of 

variability in the model propagated throughout inference.
• Since functions adaptively regularized using wavelet 

shrinkage, the methodology can be used for spatially 
heterogeneous functional data.
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Discussion
• Approach is Bayesian.  The only informative priors to elicit are 

regularization parameters, which can be estimated from data 
using empirical Bayes.

• Method complex, but code straightforward to implement
• Normality assumption can be relaxed through use of scale 

mixtures of normals (or Dirichlet processes?)
• Method generalizes to higher dimensional functions, e.g. image 

data, space/time (fixed domain) data.
• We used wavelet bases, but approach generalizable to use other 

orthonormal basis functions.
• Major challenges in developing unified statistical modeling 

approach for replicated functional data, but worth the effort.
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