Wavelet-Based Preprocessing Methods for Mass Spectrometry Data

Jeffrey S. Morris Department of Biostatistics and Applied Mathematics UT M.D. Anderson Cancer Center

Overview

- Background and Motivation
- Preprocessing Steps
 - Denoising using Wavelets
 - Baseline Correction/Normalization
 - Peak Detection/Quantification
 - Working with Average Spectrum
- Virtual Mass Spectrometer
- Simulation Study
- Conclusions

Example: MALDI-MS

- Central dogma: DNA \rightarrow mRNA \rightarrow protein
- Microarrays: measure expression levels of 10,000s of genes in sample (amount of mRNA)
- Proteomics: look at proteins in sample.
 - Gaining increased attention in research
 - Proteins more biologically relevant than mRNA
 - Can use readily available fluids (e.G. Blood, urine)

MALDI-TOF: mass spectrometry instrument that can see 100s or 1000s of proteins in sample

MALDI-TOF schematic

Vestal and Juhasz. Juf mail Soc. Mass Spectrom. 1998, 9, 892.

Raw Spectrum

Statistical Issues for Mass Spectrometry Experiments

Experimental Design

Blocking/RANDOMIZATION – reduce possibility of systematic bias polluting the data.

Preprocessing

- Remove systematic artifacts/noise from data
- Extract meaningful features (protein signal) : nxp matrix

Data Analysis/Discovery

- Analyze *n x p* matrix
 - Find which features are associated with exp. cond.
 - Build/validate classifier based on sets of features
 - Cluster samples/features
- Lots of existing methods available for this UT Dallas 4-05-05

$Y_{i}(t_{j}) = B_{i}(t_{j}) + N_{i}S_{i}(t_{j}) + e_{ij}$

Baseline Artifact $Y_i(t_j) = B_i(t_j) + N_i S_i(t_j) + e_{ij}$

Preprocessing

Goal: Isolate protein signal $S_i(t_j)$

- Filter out baseline and noise, normalize
- Extract individual features from signal

Problem:

- Baseline removal, denoising, normalization, and feature extraction are interrelated processes.
- Where do we start?

Denoising using Wavelets

First step: Isolate noise using wavelets

- Wavelets: basis functions that can parsimoniously represent spiky functions
- Standard denoising tool in signal processing
- Idea: Transform from time to wavelet domain, threshold small coefficients, transform back.
 - Result: Denoised function and noise estimate
 - Why does it work? Signal concentrated on few wavelet coefficients, white noise equally distributed. Thresholding removes noise without affecting signal.
- Does much better than denoising tools based on kernels or splines, which tend to attenuate peaks in the signal when removing the noise.

Raw Spectrum

UI DUNUS I 00 00

Denoised Spectrum

0 i Dunus i 00 00

Noise

Baseline Correction & Normalization

- Baseline: smooth artifact, largely attributable to detector overload.
 - Estimated by monotone local minimum
 - More stably estimated after denoising
- Normalization: adjust for possibly different amounts of material desorbing from plates
 - Divide by total area under the denoised and baseline corrected spectrum.

Baseline Estimate

Denoised, Baseline Corrected Spectrum

Denoised, Baseline Corrected, and Normalized Spectrum

Protein Signal

- Ideal Form of Protein Signal: Convolution of peaks
 - Proteins, peptides, and their alterations
 - Alterations: isotopes; matrix/sodium adducts; neutral losses of water, ammonia, or carbon
- Limitations of instrument used means we may not be able to resolve all peaks.
- Advantages of peak detection:
 - Reduces multiplicity problem
 - Focuses on units that are theoretically the scientifically interesting features of the data.

Peak Detection

- Easy to do after other preprocessing
- Any local maximum after denoising, baseline correction, and normalization is assumed to correspond to a "peak".
- May want to require S/N>δ to reduce number of spurious peaks.
 - We can estimate the noise process σ(t) by applying a local median to the filtered noise from the wavelet transform.
 - Signal-to-noise estimate is ratio of preprocessed spectrum and noise.

Peak Detection

Peak Detection (zoomed)

Raw Spectrum with peaks

Peak Quantification

Two options:

- Area under the peak: Find the left and right endpoints of the peak, compute the AUC in this interval.
- 2. Maximum intensity: Take intensity at the local maximum (may want to take log or cube root)
- Theoretically, AUP quantifies amount of given substance desorbed from the chip.
- But it is very difficult to identify the endpoints of peaks

Peak Quantification

- The maximum intensity is a practical alternative
 - No need for endpoints, should be correlated with AUP
 - Physics of mass spectrometry shows that, for a given ion with m/z value x, there is a linear relationship between the number of ions of that type desorbed from plate and the expected maximum peak intensity at x.
- Problem with both methods: Overlapping peaks that are not deconvolvable
 - Local maximum at t contains weighted average of information from multiple ions whose corresponding peaks have mass at location t.
 - Major problem short of formal deconvolution, have not seen simple solution to this problem.

Peak Matching Problem

- If peak detection performed on individual spectra, peaks must be matched across samples to get n x p matrix.
 - Difficult and arbitrary process
 - What to do about "missing peaks?"

Our Solution: Identify peaks on mean spectrum (at locations x₁, ..., x_p), then quantify peaks on individual spectra by intensities at these locations.

Advantages/Disadvantages

Advantages

- Avoids peak-matching problem
- Generally more sensitive and specific
 - Noise level reduced by sqrt(n)
 - Borrows strength across spectra in determining whether there is a peak or not (signals reinforced over spectra)
- Robust to minor calibration problems
- Disadvantage
 - Tends to be less sensitive when prevalence of peak < 1/sqrt(n).</p>

Noise reduced in mean spectrum

Noise reduced in mean spectrum

Peak detection with mean spectrum

Sample Spectrum

Simulated spectra

- Difficult to evaluate processing methods on real data since we don't know "truth"
- Have developed a simulation engine to produce realistic spectra
 - Based on the physics of a linear MALDI-TOF with ion focus delay
 - Flexible incorporation of different noise models and different baseline models
 - Includes isotope distributions
 - Can include matrix adducts, other modifications

MALDI-TOF schematic

Vestal and Juhasz. Juf mail Soc. Mass Spectrom. 1998, 9, 892.

Modeling the physics of MALDI-TOF

F

- Parameters
 - D₁ = distance from sample plate to first grid (8 mm)
 - V₁ = voltage for focusing (2000 V)
 - D_2 = distance between grids (17 mm)
 - V₂ = voltage for acceleration(20000 V)
 - L = length of tube (1 m)
 - $v_0 = initial velocity ~ N(\mu, \sigma)$
 - v₁ = velocity after focusing
 - δ = delay time

quations

$$v_{1}^{2} = v_{0}^{2} + \frac{2qV_{1}}{mD_{1}}(D_{1} - \delta v_{0})$$

$$t_{DRIFT}^{2} = L^{2} / \left(\frac{2qV_{2}}{m} + v_{1}^{2}\right)$$

$$t_{ACCEL} = \frac{mD_{2}}{qV_{2}} \left(\frac{L}{t_{DRIFT}} - v_{1}\right)$$

$$t_{FOCUS} = \frac{mD_{1}}{qV_{1}}(v_{1} - v_{0})$$

Simulation of one protein, with isotope distribution

Same protein simulated on a low resolution instrument

Simulation of one protein with matrix adducts

Simulated calibration spectrum with equal amounts of six proteins

Simulated spectrum with a complex mixture of proteins

Closeup of simulated complex spectrum

Real and Virtual Spectra

Using Virtual Mass Spectrometer

Input: virtual sample

- proteins and peptides desorbed from sample
- list of molecular masses w/ # of molecules
- Output: virtual spectrum
- Simulation Studies: virtual population
 - Defines distribution of proteins in proteome from which you are sampling
 - Assume p proteins; for each specify 4 quantities
 - major peak location (m/z of dominant ion)
 - prevalence (proportion of samples with protein)
 - abundance (mean # ions desorbed from samples w/ protein)
 - variance (var # of desorbed ions across samples w/ protein) UT Dallas 4-05-05

Simulation Study

- 1. Generated 100 random virtual populations based on MDACC MALDI study on pancreatic cancer.
- For each virtual population, generated 100 virtual samples, obtained 100 virtual spectra.
- Applied preprocessing and peak detection method based on individual and average spectra
- Summarized performance based on sensitivity (proportion of proteins detected) and FDR (proportion of peaks corresponding to real proteins).
 - Tricky to do see paper for details.

Simulation Results Overall Results

	sensitivity	FDR	pv*
SUDWT	0.75	0.09	0.03
(indiv. spectra)			
MUDWT	0.83	0.06	0.97
(mean spectrum)			

*pv=the proportion of simulations with higher sensitivity

Simulation Results By Prevalence

π:	<.05 (14%)	. 0520 (16%)	. 2080 (40%)	>. 80 (30%)
sensitivity (SUDWT)	0.43	0.74	0.81	0.82
sensitivity (MUDWT)	0.38	0.74	0.93	0.97
pv (MUDWT)	0.25	0.49	1.00	1.00

Simulation Results By Abundance (mean log intensity)

log(μ) :	<9.0 (31%)	9.0-9.5 (27%)	9.5-10 (23%)	> 10 (19%)
sensitivity (SUDWT)	0.68	0.75	0.78	0.82
sensitivity (MUDWT)	0.78	0.84	0.85	0.88
pv (MUDWT)	0.97	0.89	0.84	0.78

Conclusion

Wavelet-Based Preprocessing:

Coombes KR, Tsavachidis S, Morris JS, Baggerly KA, and Kuerer HM: Improved Peak Detection and Quantification of Mass Spectrometry Data Acquired from Surface-Enhanced Laser Desorption and Ionization by Denoising Spectra with the Undecimated Discrete Wavelet Transform. *Proteomics*, to appear 2005.

Using Average Spectrum for Preprocessing:

Morris JS, Coombes KR, Kooman J, Baggerly KA, and Kobayashi R: Feature Extraction and Quantification for Mass Spectrometry Data in Biomedical Applications Using the Mean Spectrum. *Bioinformatics*, 22 Feb 2005: Epub ahead of print.

Virtual Mass Spectrometer:

Coombes KR, Koomen, JM, Baggerly KA, Morris JS, and Kobayashi R: Understanding the characteristics of mass spectrometry data through the use of simulation. *Cancer Informatics*, to appear 2005.

- Website: <u>http://bioinformatics.mdanderson.org/</u>
 - Contains code for preprocessing (Cromwell) and simulation engine, plus some publically available mass spectrometry data sets.

Open problems: Preprocessing

Better calibration?

Internal validation

Better baseline correction?

- Alternative methods for normalization?
- Quality control/quality assurance?
- Best approach for quantification?

Open problems: Virtual Mass Spectrometry Instrument

- Include more alterations
 - Adducts and neutral molecule losses
 - Multiply-charged ions
- Develop more realistic model for baseline artifact
- Generalize to other instruments?

Acknowledgements

Bioinformatics

- Kevin Coombes
- Keith Baggerly
- Jianhua Hu
- Jing Wang
- Lianchun Xiao
- Spyros Tsavachidis
- Thomas Liu
- Proteomics (MDACC)
 - Ryuji Kobayashi
 - David Hawke
 - John Koomen
- Ciphergen
 - Charlotte Clarke

Biologists (MDACC)

- Jim Abbruzzese
- I.J. Fidler
- Stan Hamilton
- Nancy Shih
- Ken Aldape
- Henry Kuerer
- Herb Fritsche
- Gordon Mills
- Lajos Pusztai
- Jack Roth
- Lin Ji