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Example: MALDI-MS

Central dogma: DNA mRNA protein
Microarrays: measure expression levels of 10,000s 
of genes in sample (amount of mRNA) 
Proteomics: look at proteins in sample. 

Gaining increased attention in research
• Proteins more biologically relevant than mRNA 
• Can use readily available fluids (e.G. Blood, urine)

MALDI-TOF: mass spectrometry instrument 
that can see 100s or 1000s of proteins in 
sample
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MALDI-TOF schematic

Vestal and Juhasz.  J. Am. Soc. Mass Spectrom. 1998, 9, 892.
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Raw Spectrum
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Statistical Issues for Mass 
Spectrometry Experiments

Experimental Design
Blocking/RANDOMIZATION – reduce possibility 
of systematic bias polluting the data.

Preprocessing
Remove systematic artifacts/noise from data
Extract meaningful features (protein signal) : nxp matrix

Data Analysis/Discovery
Analyze n x p matrix 
• Find which features are associated with exp. cond.
• Build/validate classifier based on sets of features
• Cluster samples/features

Lots of existing methods available for this
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Statistical Model for Spectrum
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Statistical Model for Spectrum
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Statistical Model for Spectrum
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Statistical Model for Spectrum
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Statistical Model for Spectrum
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Preprocessing

Goal: Isolate protein signal Si(tj)
Filter out baseline and noise, normalize
Extract individual features from signal

Problem:
Baseline removal, denoising, 
normalization, and feature extraction 
are interrelated processes.
Where do we start?
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Denoising using Wavelets

First step: Isolate noise using wavelets
Wavelets: basis functions that can 
parsimoniously represent spiky functions
Standard denoising tool in signal processing 

Idea: Transform from time to wavelet domain, 
threshold small coefficients, transform back.

Result: Denoised function and noise estimate
Why does it work? Signal concentrated on few 
wavelet coefficients, white noise equally distributed.
Thresholding removes noise without affecting signal.

Does much better than denoising tools based 
on kernels or splines, which tend to attenuate 
peaks in the signal when removing the noise.
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Raw Spectrum
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Denoised Spectrum
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Noise
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Baseline Correction & Normalization

Baseline: smooth artifact, largely 
attributable to detector overload.

Estimated by monotone local minimum
More stably estimated after denoising

Normalization: adjust for possibly 
different amounts of material desorbing 
from plates

Divide by total area under the denoised 
and baseline corrected spectrum.
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Baseline Estimate
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Denoised, Baseline Corrected Spectrum
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Denoised, Baseline Corrected, and 
Normalized Spectrum
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Protein Signal
Ideal Form of Protein Signal:
Convolution of peaks

Proteins, peptides, and their alterations
Alterations: isotopes; matrix/sodium adducts; 
neutral losses of water, ammonia, or carbon

Limitations of instrument used means we 
may not be able to resolve all peaks.
Advantages of peak detection:

Reduces multiplicity problem
Focuses on units that are theoretically the 
scientifically interesting features of the data.
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Peak Detection
Easy to do after other preprocessing
Any local maximum after denoising, 
baseline correction, and normalization is 
assumed to correspond to a “peak”.
May want to require S/N>δ to reduce 
number of spurious peaks.

We can estimate the noise process σ(t) by 
applying a local median to the filtered noise 
from the wavelet transform.

Signal-to-noise estimate is ratio of 
preprocessed spectrum and noise.
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Peak Detection

3326 locations, 81 peaks
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Peak Detection (zoomed)
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Raw Spectrum with peaks
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Peak Quantification
Two options:

1. Area under the peak: Find the left and right 
endpoints of the peak, compute the AUC in this 
interval.

2. Maximum intensity: Take intensity at the local 
maximum (may want to take log or cube root)

Theoretically, AUP quantifies amount of given 
substance desorbed from the chip.

But it is very difficult to identify the endpoints of 
peaks
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Peak Quantification
The maximum intensity is a practical alternative 

No need for endpoints, should be correlated with AUP
Physics of mass spectrometry shows that, for a given ion 
with m/z value x, there is a linear relationship between 
the number of ions of that type desorbed from plate 
and the expected maximum peak intensity at x. 

Problem with both methods:      
Overlapping peaks that are not deconvolvable

Local maximum at t contains weighted average 
of information from multiple ions whose 
corresponding peaks have mass at location t.
Major problem – short of formal deconvolution, 
have not seen simple solution to this problem.
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Peak Matching Problem

If peak detection performed on individual 
spectra, peaks must be matched across 
samples to get n x p matrix.

Difficult and arbitrary process
What to do about “missing peaks?”

Our Solution: Identify peaks on mean 
spectrum (at locations x1, …, xp), then 
quantify peaks on individual spectra by 
intensities at these locations.
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Advantages/Disadvantages

Advantages
Avoids peak-matching problem
Generally more sensitive and specific
• Noise level reduced by sqrt(n)
• Borrows strength across spectra in 

determining whether there is a peak or not 
(signals reinforced over spectra)

Robust to minor calibration problems
Disadvantage

Tends to be less sensitive when prevalence of 
peak < 1/sqrt(n).
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Noise reduced in mean spectrum



UT Dallas 4-05-05

Noise reduced in mean spectrum
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Peak detection with mean spectrum
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Sample Spectrum
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Simulated spectra
Difficult to evaluate processing methods 
on real data since we don’t know “truth”
Have developed a simulation engine to 
produce realistic spectra

Based on the physics of a linear MALDI-TOF 
with ion focus delay
Flexible incorporation of different noise 
models and different baseline models
Includes isotope distributions
Can include matrix adducts, other 
modifications
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MALDI-TOF schematic

Vestal and Juhasz.  J. Am. Soc. Mass Spectrom. 1998, 9, 892.
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Modeling the physics of 
MALDI-TOF

Parameters
D1 = distance from 

sample plate to first 
grid (8 mm)

V1 = voltage for 
focusing (2000 V)

D2 = distance between 
grids (17 mm)

V2 = voltage for 
acceleration(20000 V)

L = length of tube (1 m)
v0 = initial velocity ~ 

N(µ,σ)
v1 = velocity after 

focusing
δ= delay time

Equations
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Simulation of one protein, 
with isotope distribution
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Same protein simulated on a low 
resolution instrument
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Simulation of one protein with  
matrix adducts
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Simulated calibration spectrum 
with equal amounts of six proteins
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Simulated spectrum with a 
complex mixture of proteins
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Closeup of simulated 
complex spectrum
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Real and Virtual Spectra
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Using Virtual Mass Spectrometer

Input: virtual sample
proteins and peptides desorbed from sample
list of molecular masses w/ # of molecules

Output: virtual spectrum
Simulation Studies: virtual population

Defines distribution of proteins in proteome from 
which you are sampling
Assume p proteins; for each specify 4 quantities

• major peak location (m/z of dominant ion)
• prevalence (proportion of samples with protein)
• abundance (mean # ions desorbed from samples w/ protein)
• variance (var # of desorbed ions across samples w/ protein) 
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Simulation Study

1. Generated 100 random virtual populations based 
on MDACC MALDI study on pancreatic cancer.

2. For each virtual population, generated 100 
virtual samples, obtained 100 virtual spectra.

3. Applied preprocessing and peak detection 
method based on individual and average spectra

4. Summarized performance based on sensitivity 
(proportion of proteins detected) and FDR (proportion of 
peaks corresponding to real proteins).

Tricky to do – see paper for details.
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Simulation Results
Overall Results

sensitivity FDR pv*

SUDWT
(indiv. spectra)

0.75 0.09 0.03

MUDWT
(mean spectrum)

0.83 0.06 0.97

*pv=the proportion of simulations with higher sensitivity
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Simulation Results
By Prevalence

π: <.05
(14%)

.05-.20
(16%)

.20-.80
(40%)

>.80
(30%)

sensitivity 
(SUDWT)

0.43 0.74 0.81 0.82

sensitivity 
(MUDWT)

0.38 0.74 0.93 0.97

pv
(MUDWT)

0.25 0.49 1.00 1.00
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Simulation Results
By Abundance (mean log intensity)

log(µ): <9.0
(31%)

9.0-9.5
(27%)

9.5-10
(23%)

>10
(19%)

sensitivity 
(SUDWT)

0.68 0.75 0.78 0.82

sensitivity 
(MUDWT)

0.78 0.84 0.85 0.88

pv
(MUDWT)

0.97 0.89 0.84 0.78
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Conclusion
Wavelet-Based Preprocessing:
Coombes KR, Tsavachidis S, Morris JS, Baggerly KA, and Kuerer 
HM: Improved Peak Detection and Quantification of Mass 
Spectrometry Data Acquired from Surface-Enhanced Laser 
Desorption and Ionization by Denoising Spectra with the
Undecimated Discrete Wavelet Transform.   Proteomics, to 
appear 2005.
Using Average Spectrum for Preprocessing:
Morris JS, Coombes KR, Kooman J, Baggerly KA, and Kobayashi 
R: Feature Extraction and Quantification for Mass Spectrometry 
Data in Biomedical Applications Using the Mean Spectrum.
Bioinformatics, 22 Feb 2005: Epub ahead of print.
Virtual Mass Spectrometer:
Coombes KR, Koomen, JM, Baggerly KA, Morris JS, and 
Kobayashi R: Understanding the characteristics of mass 
spectrometry data through the use of simulation. Cancer 
Informatics, to appear 2005. 
Website: http://bioinformatics.mdanderson.org/

Contains code for preprocessing (Cromwell) and simulation engine, 
plus some publically available mass spectrometry data sets.

http://bioinformatics.mdanderson.org/
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Open problems: Preprocessing

Better calibration?
Internal validation

Better baseline correction?
Alternative methods for normalization?
Quality control/quality assurance?
Best approach for quantification?
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Open problems: Virtual Mass 
Spectrometry Instrument

Include more alterations
Adducts and neutral molecule losses
Multiply-charged ions

Develop more realistic model for 
baseline artifact
Generalize to other instruments?
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