Wavelet-Based Modeling of Hierarchical Functions in Colon Carcinogenesis

Jeffrey S. Morris MD Anderson Cancer Center Joint work with Marina Vannucci, Philip J. Brown, and Raymond J. Carroll,

4-Aug-05

Outline

Introduction

- Scientific Background/Case Study
- Hierarchical Functional Model

Our Method

- Wavelet Space Modeling
- Model Fitting and Inference
- Case Study
- Conclusions

Architecture of Colon

Stem Cells: 創 Mother cells near crypt base Depth in crypt ~ age of cells Relative Cell **Position** (Depth w/in crypt): $t \in (0,1)$

Colon Carcinogenesis Studies

- Rats fed different diets, exposed to carcinogen, then euthanized.
- DNA adducts, DNA repair, apoptosis quantified as staining intensities along crypt wall
- Data has hierarchical structure
 - Treatment groups rats crypts - cells
 - Hierarchical Functional Data

4-Aug-05

Colon Carcinogenesis Study

- Fish oil diet protective compared with corn oil dietStudy:
 - 2 diets (fish/corn) x 5 times (0h,3h,6h,9h,12h)
 - 3 rats per diet x time combination
 - ~ 25 crypts per rat,
 - function sampled on fine grid interpolated to 256-grid
- Response: DNA Repair Enzyme (MGMT)
- Questions of interest:
 - At what depths within crypts is MGMT expressed?
 - Diet effect on MGMT? Depend on time/depth?

– Does MGMT vary more from crypt-crypt or rat-rat? 4-Aug-05

Hierarchical Functional Model

Hierarchical Functional Model:

$$\begin{aligned} \mathbf{Y}_{abc} &= g_{abc}(t) + \mathbf{e}_{abc}, \\ g_{abc}(t) &= g_{ab}(t) + \eta_{abc}(t) \\ g_{ab}(t) &= g_a(t) + \xi_{ab}(t) \end{aligned}$$

where $\mathbf{e}_{abc} \sim MVN(\mathbf{0}, \sigma_e^2 \mathbf{I}),$

 $\eta_{abc}(\bullet)$ and $\xi_{ab}(\bullet)$: mean 0 random processes with covariance surfaces $\Sigma_1(t_1, t_2)$ and $\Sigma_2(t_1, t_2)$. Jeffrey S. Morris

DNA Repair Data

DNA Repair Enzyme for Selected Crypts

Fish, T3, R1, C6

Fish, T 9, R 3, C 8

Corn, T 9, R 3, C 19

Fish, T 3, R 1, C 23

Fish, T 9, R 3, C 19

Corn, T 9, R 3, C 20

4-Aug-05

80

60

4

20

0

MGMT

Jeffrey S. Morris

Functional Mixed Models

- Methods for nonparametrically modeling nested functional data:
- Brumback and Rice, 1998
 - Model nested and crossed functional data using splines.
- Wang, 1998; Guo, 2002
 - Functional mixed models using splines
- Splines effective for spiky data like ours?

Introduction to Wavelets

Wavelets: families of orthonormal basis functions

4-Aug-05

Wavelet Space Model

 $\mathbf{\mathbf{d}}_{abc} = \{ d_{abc}^{j,k} \} = \mathbf{W} \mathbf{y}_{abc}$

Discrete Wavelet Transform

 $|d_{abc}^{j,k} \sim N(\theta_{abc}^{j,k}, \sigma_{e}^{2})|$

 $\theta_{abc}^{j,k} \sim N(\theta_{ab}^{j,k}, \sigma_{1,i}^2)$ $\theta_{ab}^{j,k} \sim N(\theta_a^{j,k}, \sigma_{2,i}^2)$

IDWT can be used to convert wavelet space quantities to data space

Shrinkage Prior Prior on $\theta_{a}^{j,k} \Rightarrow$ Normal-0 mixture $\theta_{a}^{j,k} = \gamma_{a}^{j,k} N(0,\tau_{i}^{2}) + (1-\gamma_{a}^{j,k}) I_{0}$ $\gamma_a^{j,k} \sim \text{Bernoulli}(p_i)$ Nonlinear shrinkage – adaptive regularization p_i and τ_i^2 - regularization parameters (scale dependent regularization) Smaller p_i : More smoothing at scale 2^{j-1} 4-Aug-05 Jeffrey S. Morris 11

Adaptive Regularization

Regularization by Local Linear Smoothing

4-Aug-05

Adaptive Regularization

Regularization by Local Linear Smoothing

4-Aug-05

Adaptive Regularization

Regularization by Local Linear Smoothing

Adaptive Regularization by Wavelet Shrinkage

4-Aug-05

Fitting the Model

Hierarchical model fit using MCMC

- Marginalized model used
- Steps: $(\Omega^{j}=VCs \text{ at wavelet level } j)$ 1. Sample $\theta_{a}^{j,k}$ from $(\theta_{a}^{j,k} | \mathbf{d}_{a}^{j,k}, \Omega^{j})$ for each j, k, a- Mixture of point mass at 0 and Normal 2. Sample Ω^{j} from $(\Omega^{j} | \mathbf{d}^{j,k}, \theta_{a}^{j,k})$ for each j- Metropolis step used

IDWT applied to samples of $\{\theta_a^{j,k}\}$ yield posterior samples of $g_a(t)$.

4-Aug-05

Fitting the Model

- Relative variability at hierarchical levels, measured by trace of covariance matrices, can be computed directly from wavelet space variance components.
 - Can also obtain posterior samples for rat- and crypt-level curves.

1. Sample from $(\theta_{ab}^{j,k} | \theta_a^{j,k}, \Omega^j, \mathbf{d}_{ab}^{j,k})$ for each a, b, j, k2. Sample from $(\theta_{abc}^{j,k} | \theta_{ab}^{j,k}, \Omega^j, \mathbf{d}_{abc}^{j,k})$ for each a, b, c, j, k

Results: DNA Repair Enzyme Estimates & 90% posterior bounds by diet/time

Results: DNA Repair Enzyme Estimates of individual rat profiles for T12 rats

18

Results: DNA Repair Enzyme

More repair enzyme at base of crypt
Possible diet effect at 12 hr time point

Relative variability:

- **79%** between crypts
 - 20% between rats
 - 1% within crypts
- Important to sample lots of crypts per rat

Conclusions

Bayesian method for hierarchical functional data

- Nonparametrically estimate curves at mean, individual and subsampling levels using wavelet shrinkage.
- Covariance parameter estimates

Posterior samples from MCMC allow inference to be done

- All done with unified, 'nonparametric' model that appropriately adjusts for imbalance & correlation.
- Wavelets allow use of simpler covariance structures and work well for irregular functions
- Applicable to other functional data sets

Mixture Prior and Nonlinear Shrinkage

Shrinkage **Function:**

Linear

 $h(Z, T_j^2, p_j) = \left(\frac{T_j^2}{T_j^2 + 1}\right) \underbrace{\Pr\left\{\gamma_a^{j,k} = 1 \mid \mathbf{d}_a^{j,k}\right\}}_{\text{Nonlinear}}$ Shrinkage

 $\Pr\left(\gamma_a^{j,k} = 1 \,|\, \mathbf{d}_a^{j,k}\right) = \frac{O^{j,k}}{O^{j,k-1}}, \quad O^{j,k} = \text{Posterior Odds}$

 $\underbrace{O_{j,k}}_{\text{Posterior Odds}} = \left(\frac{p_j}{1 - p_j}\right) (1 + T_j^2)^{-1} \exp\left\{\frac{(Z^{j,k})^2}{2} \left(\frac{T_j^2}{T_i^2 + 1}\right)\right\}$

Prior Odds

Bayes Factor

 $Z^{j,k} = \hat{\theta}_{a,NS}^{j,k} / \sqrt{\operatorname{Var}(\hat{\theta}_{a,NS}^{j,k})} \qquad T_i^2 = \tau_i^2 / \operatorname{Var}(\hat{\theta}_{a,NS}^{j,k})$

4-Aug-05

Shrinkage Curves

4-Aug-05