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Abstract
The purpose of this talk is to give a brief overview of Bayesian

Inference and Markov Chain Monte Carlo methods, including the Gibbs
Sampler and Metropolis Hastings algorithm.
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Outline

• Bayesian vs. Frequentist paradigm

• Bayesian Inference and MCMC

? Gibbs Sampler
? Metropolis-Hastings Algorithm

• Assessing Convergence of MCMC

• Hierarchical Model Example

• MCMC: Benefits and Cautions
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Frequentist vs. Bayesian paradigms

• Data: X Parameters: Θ

• To a frequentist:

? The data X are random, and the parameters Θ are fixed.
? (ML) Inference is performed by finding Θ such that f(X|Θ) is

maximized.
? We cannot make probability statements about parameters, but only can

make statements about performance of estimators over repeated
sampling (e.g.confidence intervals).

• To a Bayesian:

? The current data X is fixed, and the unknown parameters Θ are random.
? Inference is performed via the posterior distribution f(Θ|X).
? We can make probability statements about parameters, since they are

random quantities (e.g. credible intervals)



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood

• f(Θ)= Prior Distribution



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood

• f(Θ)= Prior Distribution

? Reflects prior knowledge about Θ



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood

• f(Θ)= Prior Distribution

? Reflects prior knowledge about Θ
? Sometimes controversial



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood

• f(Θ)= Prior Distribution

? Reflects prior knowledge about Θ
? Sometimes controversial
? If little information available, just use diffuse priors (avoid improper priors)



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood

• f(Θ)= Prior Distribution

? Reflects prior knowledge about Θ
? Sometimes controversial
? If little information available, just use diffuse priors (avoid improper priors)

• f(X)= Marginal Distribution =
∫
f(X|Θ)f(Θ)dΘ



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood

• f(Θ)= Prior Distribution

? Reflects prior knowledge about Θ
? Sometimes controversial
? If little information available, just use diffuse priors (avoid improper priors)

• f(X)= Marginal Distribution =
∫
f(X|Θ)f(Θ)dΘ

? Difficult to compute (usually intractable integral)



MCMC OVERVIEW 3

Bayes’ Rule

• The posterior distribution is computed by applying Bayes’ Rule:

f(Θ|X) =
f(X|Θ)f(Θ)

f(X)

• f(X|Θ)= Likelihood

• f(Θ)= Prior Distribution

? Reflects prior knowledge about Θ
? Sometimes controversial
? If little information available, just use diffuse priors (avoid improper priors)

• f(X)= Marginal Distribution =
∫
f(X|Θ)f(Θ)dΘ

? Difficult to compute (usually intractable integral)
? Often not necessary to compute.
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• Conjugate priors: f(Θ) and f(Θ|X) have same distributional form.

• Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson

• Ex: (X|θ) ∼ Binomial(n, θ); θ ∼ Beta(α, β)

f(θ|X) ∝ f(X|θ)f(θ)

∝ θX(1− θ)n−Xθα(1− θ)β

= θα+X(1− θ)β+n−X

= kernel of Beta(α+X,β + n−X)

• For single parameter problem: conjugate priors allow closed form posterior
distributions.

• What if we don’t want to use conjugate priors?

What if we have multiple parameters?
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=
∫

Θf(X|Θ)f(Θ)dΘ∫
f(X|Θ)f(Θ)dΘ

• How do we compute this integral if it is intractable?

? Numerical Integration (Quadrature)
May not work if there are many parameters.

? Monte Carlo integration
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≈ 1
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? Rejection Sampling
? Importance Sampling
? Markov Chain
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• Markov Chain : Method to draw samples from a desired stationary
distribution.

• Steps:

1. Obtain starting values Θ0

2. Sample Θ1 from suitably chosen transition kernel P (Θ1|Θ0)
3. Repeat second step n times to obtain chain {Θ0,Θ1, . . . ,Θn}.

• Theorems show that, under certain regularity conditions, the chain will
converge to a particular stationary distribution after suitable burn-in period.

• End result: A (correlated) sample from the stationary distribution.
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Markov Chain Monte Carlo

• Given Markov Chain {Θ0,Θ1, . . . ,Θn} with stationary distribution f(Θ|X)
with burn-in m, we can estimate the posterior mean using Monte Carlo
integration:

E(Θ|X) ≈ 1
n−m

n∑
t=m+1

Θt.

• Other quantities can also be computed from Markov Chain:

? Standard errors
? Quantiles
? Density estimates

• Samples can be used to perform any Bayesian inference of interest.

• How do we generate the Markov Chain?



MCMC OVERVIEW 9

Gibbs Sampler

• Gibbs Sampler(Geman and Geman, 1984):

Markov transition kernel consists of drawing from full conditional
distributions.



MCMC OVERVIEW 9

Gibbs Sampler

• Gibbs Sampler(Geman and Geman, 1984):

Markov transition kernel consists of drawing from full conditional
distributions.

• Suppose Θ = {θ1, θ2, . . . , θp}T .



MCMC OVERVIEW 9

Gibbs Sampler

• Gibbs Sampler(Geman and Geman, 1984):

Markov transition kernel consists of drawing from full conditional
distributions.

• Suppose Θ = {θ1, θ2, . . . , θp}T .

Full conditional distribution for parameter i: f(θi|X,Θ−i)



MCMC OVERVIEW 9

Gibbs Sampler

• Gibbs Sampler(Geman and Geman, 1984):

Markov transition kernel consists of drawing from full conditional
distributions.

• Suppose Θ = {θ1, θ2, . . . , θp}T .

Full conditional distribution for parameter i: f(θi|X,Θ−i)

Conditions on:

? The data X
? The values for all other parameters Θ−i.
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Gibbs Sampler

• Steps of Gibbs sampler:

1. Choose a set of starting values Θ(0).
2. Generate (Θ(1)|Θ(0)) by sampling:

θ
(1)
1 from f(θ(1)
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...
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quantiles, etc. using samples m through n.

• Many variations possible:

? Parameters to update each iteration, order of updating
? ’Blocking’ parameters together, working with marginalized distributions

• If conjugate priors used for all parameters, full conditionals in closed form.

• What if we don’t have closed form distributions for full conditionals?
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Method to construct a Markov Chain for θ, even if closed form expression
for distribution is not available.

π(θ): kernel of distribution of interest for θ, f(θ(t)
i |X,Θ
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• Steps:

1. Get θ(0)= starting value for θ.
2. Get θ∗=proposed value for θ(1), by sampling from proposal density

q(θ|X, θ(0)).

3. Compute α(θ(0), θ∗)=min
(

1,
π(θ∗)q(θ(0)|θ∗)
π(θ(0)q(θ∗|θ(0))

)
.

4. Generate u ∼Uniform(0,1).
If u < α⇒ let θ(1) = θ∗, else let θ(1) = θ(0).

• Types of proposals: Random Walk, Independence, Symmetric
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• Can estimate mean growth curve by linear regression, but growth curve
models necessary to get standard errors right.
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? No need to make simplified modeling assumptions out of convenience.
? Given posterior samples, can get all benefits of Bayesian inference.

• Words of Caution:

? Monitor convergence!
∗ Unfortunately, the most complex models tend to converge very slowly.
∗ Can try blocking and marginalization to decrease correlation of model

parameters in MCMC.
? Check if your answers make sense - compare with plots and simple

methods
? Perform sensitivity analysis on priors.

• Other book: Gelman, Carlin, Stern, & Rubin (1995) Bayesian Data Analysis
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