Introduction to Bayesian Data Analysis and Markov Chain Monte Carlo

Jeffrey S. Morris
University of Texas M.D. Anderson Cancer Center
Department of Biostatistics
jeffmo@mdanderson.org

September 20, 2002

Abstract

The purpose of this talk is to give a brief overview of Bayesian Inference and Markov Chain Monte Carlo methods, including the Gibbs Sampler and Metropolis Hastings algorithm.

Outline

- Bayesian vs. Frequentist paradigm
- Bayesian Inference and MCMC
 - ⋆ Gibbs Sampler
 - ⋆ Metropolis-Hastings Algorithm
- Assessing Convergence of MCMC
- Hierarchical Model Example
- MCMC: Benefits and Cautions

Data: X Parameters: Θ

Data: X Parameters: Θ

- To a frequentist:
 - \star The data X are random, and the parameters Θ are fixed.

Data: X Parameters: Θ

- To a frequentist:
 - \star The data X are random, and the parameters Θ are fixed.
 - * (ML) Inference is performed by finding Θ such that $f(\mathbf{X}|\Theta)$ is maximized.

Data: X Parameters: Θ

To a frequentist:

- \star The data X are random, and the parameters Θ are fixed.
- * (ML) Inference is performed by finding Θ such that $f(\mathbf{X}|\Theta)$ is maximized.
- * We <u>cannot</u> make probability statements about parameters, but only can make statements about performance of estimators over repeated sampling (e.g.confidence intervals).

Data: X Parameters: Θ

To a frequentist:

- \star The data X are random, and the parameters Θ are fixed.
- * (ML) Inference is performed by finding Θ such that $f(\mathbf{X}|\Theta)$ is maximized.
- ★ We <u>cannot</u> make probability statements about parameters, but only can make statements about performance of estimators over repeated sampling (e.g.confidence intervals).

To a Bayesian:

 \star The current data X is fixed, and the unknown parameters Θ are random.

Data: X Parameters: Θ

To a frequentist:

- \star The data X are random, and the parameters Θ are fixed.
- * (ML) Inference is performed by finding Θ such that $f(\mathbf{X}|\Theta)$ is maximized.
- ★ We <u>cannot</u> make probability statements about parameters, but only can make statements about performance of estimators over repeated sampling (e.g.confidence intervals).

To a Bayesian:

- \star The current data X is fixed, and the unknown parameters Θ are random.
- \star Inference is performed via the posterior distribution $f(\mathbf{\Theta}|\mathbf{X})$.

MCMC OVERVIEW

Frequentist vs. Bayesian paradigms

Data: X Parameters: Θ

To a frequentist:

- \star The data X are random, and the parameters Θ are fixed.
- * (ML) Inference is performed by finding Θ such that $f(\mathbf{X}|\Theta)$ is maximized.
- We <u>cannot</u> make probability statements about parameters, but only can make statements about performance of estimators over repeated sampling (e.g.confidence intervals).

To a Bayesian:

- \star The current data X is fixed, and the unknown parameters Θ are random.
- \star Inference is performed via the posterior distribution $f(\mathbf{\Theta}|\mathbf{X})$.
- ★ We <u>can</u> make probability statements about parameters, since they are random quantities (e.g. credible intervals)

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

• The posterior distribution is computed by applying **Bayes' Rule:**

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

• $f(\mathbf{X}|\mathbf{\Theta})$ = Likelihood

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

- $f(\mathbf{X}|\mathbf{\Theta})$ = Likelihood
- $f(\Theta)$ = Prior Distribution

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

- $f(\mathbf{X}|\mathbf{\Theta}) = \text{Likelihood}$
- $f(\Theta)$ = Prior Distribution
 - ★ Reflects prior knowledge about Θ

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

- $f(\mathbf{X}|\mathbf{\Theta})$ = Likelihood
- $f(\Theta)$ = Prior Distribution
 - ★ Reflects prior knowledge about Θ
 - * Sometimes controversial

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

- $f(\mathbf{X}|\mathbf{\Theta})$ = Likelihood
- $f(\Theta)$ = Prior Distribution
 - ★ Reflects prior knowledge about Θ
 - * Sometimes controversial
 - ★ If little information available, just use diffuse priors (avoid improper priors)

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

- $f(\mathbf{X}|\mathbf{\Theta})$ = Likelihood
- $f(\Theta)$ = Prior Distribution
 - ★ Reflects prior knowledge about Θ
 - ⋆ Sometimes controversial
 - ★ If little information available, just use diffuse priors (avoid improper priors)
- $f(\mathbf{X})$ = Marginal Distribution = $\int f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})d\mathbf{\Theta}$

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

- $f(\mathbf{X}|\mathbf{\Theta})$ = Likelihood
- $f(\Theta)$ = Prior Distribution
 - ★ Reflects prior knowledge about Θ
 - ★ Sometimes controversial
 - ★ If little information available, just use diffuse priors (avoid improper priors)
- $f(\mathbf{X})$ = Marginal Distribution = $\int f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})d\mathbf{\Theta}$
 - ⋆ Difficult to compute (usually intractable integral)

$$f(\mathbf{\Theta}|\mathbf{X}) = \frac{f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})}{f(\mathbf{X})}$$

- $f(\mathbf{X}|\mathbf{\Theta})$ = Likelihood
- $f(\Theta)$ = Prior Distribution
 - ★ Reflects prior knowledge about Θ
 - ★ Sometimes controversial
 - ★ If little information available, just use diffuse priors (avoid improper priors)
- $f(\mathbf{X})$ = Marginal Distribution = $\int f(\mathbf{X}|\mathbf{\Theta})f(\mathbf{\Theta})d\mathbf{\Theta}$
 - ⋆ Difficult to compute (usually intractable integral)
 - ⋆ Often not necessary to compute.

Conjugate priors: $f(\Theta)$ and $f(\Theta|\mathbf{X})$ have same distributional form.

Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.

Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta)$; $\theta \sim \text{Beta}(\alpha,\beta)$

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta); \quad \theta \sim \text{Beta}(\alpha,\beta)$

$$f(\theta|X) \propto f(X|\theta)f(\theta)$$

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta)$; $\theta \sim \text{Beta}(\alpha,\beta)$

$$f(\theta|X) \propto f(X|\theta)f(\theta)$$

 $\propto \theta^X (1-\theta)^{n-X} \theta^{\alpha} (1-\theta)^{\beta}$

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta)$; $\theta \sim \text{Beta}(\alpha,\beta)$

$$f(\theta|X) \propto f(X|\theta)f(\theta)$$

$$\propto \theta^{X}(1-\theta)^{n-X}\theta^{\alpha}(1-\theta)^{\beta}$$

$$= \theta^{\alpha+X}(1-\theta)^{\beta+n-X}$$

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta)$; $\theta \sim \text{Beta}(\alpha,\beta)$

$$f(\theta|X) \propto f(X|\theta)f(\theta)$$

 $\propto \theta^X (1-\theta)^{n-X} \theta^{\alpha} (1-\theta)^{\beta}$
 $= \theta^{\alpha+X} (1-\theta)^{\beta+n-X}$
 $= \text{kernel of Beta}(\alpha+X,\beta+n-X)$

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta)$; $\theta \sim \text{Beta}(\alpha,\beta)$

$$egin{array}{lll} f(heta|X) & \propto & f(X| heta)f(heta) \ & \propto & heta^X(1- heta)^{n-X} heta^lpha(1- heta)^eta \ & = & heta^{lpha+X}(1- heta)^{eta+n-X} \ & = & ext{kernel of Beta}(lpha+X,eta+n-X) \end{array}$$

 For single parameter problem: conjugate priors allow closed form posterior distributions. MCMC Overview

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta)$; $\theta \sim \text{Beta}(\alpha,\beta)$

$$f(\theta|X) \propto f(X|\theta)f(\theta)$$

$$\propto \theta^X (1-\theta)^{n-X} \theta^{\alpha} (1-\theta)^{\beta}$$

$$= \theta^{\alpha+X} (1-\theta)^{\beta+n-X}$$

$$= \text{kernel of Beta}(\alpha+X,\beta+n-X)$$

- For single parameter problem: conjugate priors allow closed form posterior distributions.
- What if we don't want to use conjugate priors?

- Conjugate priors: $f(\Theta)$ and $f(\Theta|X)$ have same distributional form.
- Examples: Normal-Normal, Beta-Binomial, Gamma-Poisson
- Ex: $(X|\theta) \sim \text{Binomial}(n,\theta); \quad \theta \sim \text{Beta}(\alpha,\beta)$

$$f(\theta|X) \propto f(X|\theta)f(\theta)$$

$$\propto \theta^X (1-\theta)^{n-X} \theta^{\alpha} (1-\theta)^{\beta}$$

$$= \theta^{\alpha+X} (1-\theta)^{\beta+n-X}$$

$$= \text{kernel of Beta}(\alpha+X,\beta+n-X)$$

- For single parameter problem: conjugate priors allow closed form posterior distributions.
- What if we don't want to use conjugate priors?What if we have multiple parameters?

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$
$$= \frac{\int \mathbf{\Theta} f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}{\int f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}$$

Suppose we are interested in the posterior mean:

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$
$$= \frac{\int \mathbf{\Theta} f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}{\int f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}$$

How do we compute this integral if it is intractable?

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$
$$= \frac{\int \mathbf{\Theta} f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}{\int f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}$$

- How do we compute this integral if it is intractable?
 - ⋆ Numerical Integration (Quadrature)

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$
$$= \frac{\int \mathbf{\Theta} f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}{\int f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}$$

- How do we compute this integral if it is intractable?
 - Numerical Integration (Quadrature)
 May not work if there are many parameters.

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$
$$= \frac{\int \mathbf{\Theta} f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}{\int f(\mathbf{X}|\mathbf{\Theta}) f(\mathbf{\Theta}) d\mathbf{\Theta}}$$

- How do we compute this integral if it is intractable?
 - Numerical Integration (Quadrature)
 May not work if there are many parameters.
 - ⋆ Monte Carlo integration

Markov Chain Monte Carlo: Monte Carlo Integration

6

Monte Carlo integration:

Estimate integrals by randomly drawing samples from the required distribution.

Markov Chain Monte Carlo: Monte Carlo Integration

Monte Carlo integration:

Estimate integrals by randomly drawing samples from the required distribution.

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$

6

Monte Carlo integration:

Estimate integrals by randomly drawing samples from the required distribution.

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$

 $\approx \frac{1}{n} \sum_{t=1}^{n} \mathbf{\Theta}_{t},$

where $\Theta_t \sim f(\Theta|\mathbf{X})$

Monte Carlo integration:

Estimate integrals by randomly drawing samples from the required distribution.

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$

 $\approx \frac{1}{n} \sum_{t=1}^{n} \mathbf{\Theta}_{t},$

where $\Theta_t \sim f(\mathbf{\Theta}|\mathbf{X})$

We still need a method for drawing samples from the posterior distribution:

Monte Carlo integration:

Estimate integrals by randomly drawing samples from the required distribution.

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$

 $\approx \frac{1}{n} \sum_{t=1}^{n} \mathbf{\Theta}_{t},$

where $\Theta_t \sim f(\mathbf{\Theta}|\mathbf{X})$

- We still need a method for drawing samples from the posterior distribution:
 - * Rejection Sampling

Monte Carlo integration:

Estimate integrals by randomly drawing samples from the required distribution.

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$

 $\approx \frac{1}{n} \sum_{t=1}^{n} \mathbf{\Theta}_{t},$

where $\Theta_t \sim f(\mathbf{\Theta}|\mathbf{X})$

- We still need a method for drawing samples from the posterior distribution:
 - * Rejection Sampling
 - ★ Importance Sampling

Monte Carlo integration:

Estimate integrals by randomly drawing samples from the required distribution.

$$E(\mathbf{\Theta}|\mathbf{X}) = \int \mathbf{\Theta} f(\mathbf{\Theta}|\mathbf{X}) d\mathbf{\Theta}$$

 $\approx \frac{1}{n} \sum_{t=1}^{n} \mathbf{\Theta}_{t},$

where $\Theta_t \sim f(\mathbf{\Theta}|\mathbf{X})$

- We still need a method for drawing samples from the posterior distribution:
 - ⋆ Rejection Sampling
 - ★ Importance Sampling
 - ⋆ Markov Chain

Markov Chain: Method to draw samples from a desired stationary distribution.

Markov Chain: Method to draw samples from a desired stationary distribution.

- Steps:
 - 1. Obtain starting values Θ_0

Markov Chain: Method to draw samples from a desired stationary distribution.

- 1. Obtain starting values Θ_0
- 2. Sample Θ_1 from suitably chosen transition kernel $P(\Theta_1|\Theta_0)$

Markov Chain: Method to draw samples from a desired stationary distribution.

- 1. Obtain starting values Θ_0
- 2. Sample Θ_1 from suitably chosen transition kernel $P(\Theta_1|\Theta_0)$
- 3. Repeat second step n times to obtain chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$.

Markov Chain Monte Carlo: Markov Chains

Markov Chain: Method to draw samples from a desired stationary distribution.

- 1. Obtain starting values Θ_0
- 2. Sample Θ_1 from suitably chosen transition kernel $P(\Theta_1|\Theta_0)$
- 3. Repeat second step n times to obtain chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$.
- Theorems show that, under certain regularity conditions, the chain will converge to a particular stationary distribution after suitable burn-in period.

MCMC Overview

Markov Chain Monte Carlo: Markov Chains

Markov Chain: Method to draw samples from a desired stationary distribution.

- 1. Obtain starting values Θ_0
- 2. Sample Θ_1 from suitably chosen transition kernel $P(\Theta_1|\Theta_0)$
- 3. Repeat second step n times to obtain chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$.
- Theorems show that, under certain regularity conditions, the chain will converge to a particular stationary distribution after suitable burn-in period.
- End result: A (correlated) sample from the stationary distribution.

Given Markov Chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$ with stationary distribution $f(\Theta|\mathbf{X})$ with burn-in m, we can estimate the posterior mean using Monte Carlo integration:

• Given Markov Chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$ with stationary distribution $f(\Theta|\mathbf{X})$ with burn-in m, we can estimate the posterior mean using Monte Carlo integration:

$$E(\mathbf{\Theta}|\mathbf{X}) \approx \frac{1}{n-m} \sum_{t=m+1}^{n} \mathbf{\Theta}_{t}.$$

• Given Markov Chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$ with stationary distribution $f(\Theta|\mathbf{X})$ with burn-in m, we can estimate the posterior mean using Monte Carlo integration:

$$E(\mathbf{\Theta}|\mathbf{X}) \approx \frac{1}{n-m} \sum_{t=m+1}^{n} \mathbf{\Theta}_{t}.$$

Other quantities can also be computed from Markov Chain:

• Given Markov Chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$ with stationary distribution $f(\Theta|\mathbf{X})$ with burn-in m, we can estimate the posterior mean using Monte Carlo integration:

$$E(\mathbf{\Theta}|\mathbf{X}) \approx \frac{1}{n-m} \sum_{t=m+1}^{n} \mathbf{\Theta}_{t}.$$

- Other quantities can also be computed from Markov Chain:
 - ★ Standard errors
 - ⋆ Quantiles
 - ⋆ Density estimates

• Given Markov Chain $\{\Theta_0, \Theta_1, \dots, \Theta_n\}$ with stationary distribution $f(\Theta|\mathbf{X})$ with burn-in m, we can estimate the posterior mean using Monte Carlo integration:

$$E(\mathbf{\Theta}|\mathbf{X}) \approx \frac{1}{n-m} \sum_{t=m+1}^{n} \mathbf{\Theta}_{t}.$$

- Other quantities can also be computed from Markov Chain:
 - ★ Standard errors
 - Quantiles
 - ⋆ Density estimates
- Samples can be used to perform any Bayesian inference of interest.
- How do we generate the Markov Chain?

9

• Gibbs Sampler(Geman and Geman, 1984):

Markov transition kernel consists of drawing from *full conditional* distributions.

- Gibbs Sampler(Geman and Geman, 1984):
 - Markov transition kernel consists of drawing from *full conditional* distributions.
- Suppose $\Theta = \{\theta_1, \theta_2, \dots, \theta_p\}^T$.

Gibbs Sampler(Geman and Geman, 1984):

Markov transition kernel consists of drawing from *full conditional* distributions.

• Suppose $\Theta = \{\theta_1, \theta_2, \dots, \theta_p\}^T$.

Full conditional distribution for parameter i: $f(\theta_i|\mathbf{X},\mathbf{\Theta}_{-i})$

Gibbs Sampler(Geman and Geman, 1984):

Markov transition kernel consists of drawing from *full conditional* distributions.

• Suppose $\Theta = \{\theta_1, \theta_2, \dots, \theta_p\}^T$.

Full conditional distribution for parameter i: $f(\theta_i|\mathbf{X},\mathbf{\Theta}_{-i})$

Conditions on:

- ★ The data X
- \star The values for all other parameters Θ_{-i} .

Steps of Gibbs sampler:

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

$$\begin{array}{c} \theta_{1}^{(1)} \; \text{from} \; f(\theta_{1}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \theta_{2}^{(1)} \; \text{from} \; f(\theta_{2}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \theta_{p}^{(1)} \; \text{from} \; f(\theta_{p}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}$$

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

```
\begin{array}{c} \theta_{1}^{(1)} \text{ from } f(\theta_{1}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \theta_{2}^{(1)} \text{ from } f(\theta_{2}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \theta_{p}^{(1)} \text{ from } f(\theta_{p}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}
```

3. Repeat step two to get chain of length $n: \{\Theta^{(0)}, \Theta^{(1)}, \dots \Theta^{(n)}\}.$

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

```
\begin{array}{c} \theta_{1}^{(1)} \text{ from } f(\theta_{1}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \theta_{2}^{(1)} \text{ from } f(\theta_{2}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \theta_{p}^{(1)} \text{ from } f(\theta_{p}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}
```

- 3. Repeat step two to get chain of length n: $\{\Theta^{(0)}, \Theta^{(1)}, \dots \Theta^{(n)}\}$.
- 4. Assuming convergence by iteration m, compute posterior mean, quantiles, etc. using samples m through n.

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

```
\begin{array}{c} \boldsymbol{\theta}_1^{(1)} \ \hline \text{from} \ f(\boldsymbol{\theta}_1^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \boldsymbol{\theta}_2^{(1)} \ \text{from} \ f(\boldsymbol{\theta}_2^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \boldsymbol{\theta}_p^{(1)} \ \text{from} \ f(\boldsymbol{\theta}_p^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}
```

- 3. Repeat step two to get chain of length n: $\{\Theta^{(0)}, \Theta^{(1)}, \dots \Theta^{(n)}\}$.
- 4. Assuming convergence by iteration m, compute posterior mean, quantiles, etc. using samples m through n.
- Many variations possible:

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

```
\begin{array}{c} \theta_{1}^{(1)} \ \hline \text{from} \ f(\theta_{1}^{(1)} | \mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \theta_{2}^{(1)} \ \text{from} \ f(\theta_{2}^{(1)} | \mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \theta_{p}^{(1)} \ \text{from} \ f(\theta_{p}^{(1)} | \mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}
```

- 3. Repeat step two to get chain of length n: $\{\Theta^{(0)}, \Theta^{(1)}, \dots \Theta^{(n)}\}$.
- 4. Assuming convergence by iteration m, compute posterior mean, quantiles, etc. using samples m through n.
- Many variations possible:
 - ⋆ Parameters to update each iteration, order of updating

10

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

```
\begin{array}{c} \theta_1^{(1)} \text{ from } f(\theta_1^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \theta_2^{(1)} \text{ from } f(\theta_2^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \theta_p^{(1)} \text{ from } f(\theta_p^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}
```

- 3. Repeat step two to get chain of length n: $\{\Theta^{(0)}, \Theta^{(1)}, \dots \Theta^{(n)}\}$.
- 4. Assuming convergence by iteration m, compute posterior mean, quantiles, etc. using samples m through n.
- Many variations possible:
 - ⋆ Parameters to update each iteration, order of updating
 - ★ 'Blocking' parameters together, working with marginalized distributions

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

```
\begin{array}{c} \theta_{1}^{(1)} \text{ from } f(\theta_{1}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \theta_{2}^{(1)} \text{ from } f(\theta_{2}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \theta_{p}^{(1)} \text{ from } f(\theta_{p}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}
```

- 3. Repeat step two to get chain of length n: $\{\Theta^{(0)}, \Theta^{(1)}, \dots \Theta^{(n)}\}$.
- 4. Assuming convergence by iteration m, compute posterior mean, quantiles, etc. using samples m through n.
- Many variations possible:
 - ⋆ Parameters to update each iteration, order of updating
 - * 'Blocking' parameters together, working with marginalized distributions
- If conjugate priors used for all parameters, full conditionals in closed form.

- Steps of Gibbs sampler:
 - 1. Choose a set of starting values $\Theta^{(0)}$.
 - 2. Generate $(\mathbf{\Theta}^{(1)}|\mathbf{\Theta}^{(0)})$ by sampling:

```
\begin{array}{c} \theta_{1}^{(1)} \text{ from } f(\theta_{1}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-1}^{(0)}) \\ \theta_{2}^{(1)} \text{ from } f(\theta_{2}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-2}^{(0)}) \\ \vdots \\ \theta_{p}^{(1)} \text{ from } f(\theta_{p}^{(1)}|\mathbf{X}, \boldsymbol{\Theta}_{-p}^{(0)}) \end{array}
```

- 3. Repeat step two to get chain of length n: $\{\Theta^{(0)}, \Theta^{(1)}, \dots \Theta^{(n)}\}$.
- 4. Assuming convergence by iteration m, compute posterior mean, quantiles, etc. using samples m through n.
- Many variations possible:
 - ⋆ Parameters to update each iteration, order of updating
 - * 'Blocking' parameters together, working with marginalized distributions
- If conjugate priors used for all parameters, full conditionals in closed form.
- What if we don't have closed form distributions for full conditionals?

Metropolis-Hastings Algorithm

• Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

 $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \mathbf{\Theta}_{-i}^{(t-1)})$.

Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

 $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \mathbf{\Theta}_{-i}^{(t-1)})$.

11

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

- $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \mathbf{\Theta}_{-i}^{(t-1)})$.
- Steps:
 - 1. Get $\theta^{(0)}$ = starting value for θ .

11

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

 $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \mathbf{\Theta}_{-i}^{(t-1)})$.

- Steps:
 - 1. Get $\theta^{(0)}$ = starting value for θ .
 - 2. Get θ^* =proposed value for $\theta^{(1)}$, by sampling from *proposal density* $q(\theta|\mathbf{X},\theta^{(0)})$.

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

 $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \mathbf{\Theta}_{-i}^{(t-1)})$.

- Steps:
 - 1. Get $\theta^{(0)}$ = starting value for θ .
 - 2. Get θ^* =proposed value for $\theta^{(1)}$, by sampling from *proposal density* $q(\theta|\mathbf{X},\theta^{(0)})$.
 - 3. Compute $\alpha(\theta^{(0)}, \theta^*) = \min\left(1, \frac{\pi(\theta^*)q(\theta^{(0)}|\theta^*)}{\pi(\theta^{(0)}q(\theta^*|\theta^{(0)})}\right)$.

Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

- $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \overline{\mathbf{\Theta}_{-i}^{(t-1)}})$.
- Steps:
 - 1. Get $\theta^{(0)}$ = starting value for θ .
 - 2. Get θ^* =proposed value for $\theta^{(1)}$, by sampling from proposal density $q(\theta|\mathbf{X},\theta^{(0)}).$
 - 3. Compute $\alpha(\theta^{(0)}, \theta^*) = \min\left(1, \frac{\pi(\theta^*)q(\theta^{(0)}|\theta^*)}{\pi(\theta^{(0)}q(\theta^*|\theta^{(0)})}\right)$. 4. Generate $u \sim \text{Uniform(0,1)}$.

Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

 $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \mathbf{\Theta}_{-i}^{(t-1)})$.

- Steps:
 - 1. Get $\theta^{(0)}$ = starting value for θ .
 - 2. Get θ^* =proposed value for $\theta^{(1)}$, by sampling from proposal density $q(\theta|\mathbf{X},\theta^{(0)}).$
 - 3. Compute $\alpha(\theta^{(0)}, \theta^*) = \min\left(1, \frac{\pi(\theta^*)q(\theta^{(0)}|\theta^*)}{\pi(\theta^{(0)}q(\theta^*|\theta^{(0)})}\right)$.

 4. Generate $u \sim \text{Uniform}(0,1)$.

 If $u < \alpha \Rightarrow \text{let } \theta^{(1)} = \theta^*$, else let $\theta^{(1)} = \theta^{(0)}$.

Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970):

Method to construct a Markov Chain for θ , even if closed form expression for distribution is not available.

 $\pi(\theta)$: kernel of distribution of interest for θ , $f(\theta_i^{(t)}|\mathbf{X}, \mathbf{\Theta}_{-i}^{(t-1)})$.

- Steps:
 - 1. Get $\theta^{(0)}$ = starting value for θ .
 - 2. Get θ^* =proposed value for $\theta^{(1)}$, by sampling from proposal density $q(\theta|\mathbf{X},\theta^{(0)})$.
 - 3. Compute $\alpha(\theta^{(0)}, \theta^*) = \min\left(1, \frac{\pi(\theta^*)q(\theta^{(0)}|\theta^*)}{\pi(\theta^{(0)}q(\theta^*|\theta^{(0)})}\right)$.

 4. Generate $u \sim \text{Uniform}(0,1)$.

 If $u < \alpha \Rightarrow \text{let } \theta^{(1)} = \theta^*$, else let $\theta^{(1)} = \theta^{(0)}$.
- Types of proposals: Random Walk, Independence, Symmetric

The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?

The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?

i.e. How do I decide how long the burn-in should be?

- The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?
 - i.e. How do I decide how long the burn-in should be?
 - 1. Look at time series plots for the parameters.

- The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?
 - i.e. How do I decide how long the burn-in should be?
 - 1. Look at time series plots for the parameters.
 - 2. Run multiple chains with divergent starting values.

12

- The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?
 - i.e. How do I decide how long the burn-in should be?
 - 1. Look at time series plots for the parameters.
 - 2. Run multiple chains with divergent starting values.
 - 3. Run formal diagnostics (Gelman and Rubin 1992, Geweke 1992)

12

- The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?
 - i.e. How do I decide how long the burn-in should be?
 - 1. Look at time series plots for the parameters.
 - 2. Run multiple chains with divergent starting values.
 - 3. Run formal diagnostics (Gelman and Rubin 1992, Geweke 1992)
- Other issues:
 - ★ Length of chain

12

- The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?
 - i.e. How do I decide how long the burn-in should be?
 - 1. Look at time series plots for the parameters.
 - 2. Run multiple chains with divergent starting values.
 - 3. Run formal diagnostics (Gelman and Rubin 1992, Geweke 1992)
- Other issues:
 - ⋆ Length of chain
 - ★ Thinning to decrease autocorrelation

12

- The Markov Chain is known to converge to the stationary distribution of interest, but how do I know when convergence has been achieved?
 - i.e. How do I decide how long the burn-in should be?
 - 1. Look at time series plots for the parameters.
 - 2. Run multiple chains with divergent starting values.
 - 3. Run formal diagnostics (Gelman and Rubin 1992, Geweke 1992)
- Other issues:
 - ⋆ Length of chain
 - ★ Thinning to decrease autocorrelation

Example: Growth curves for rats.

- Example: Growth curves for rats.
- Data Y_{ij} consists of weights for 30 rats over 5 weeks.

- Example: Growth curves for rats.
- Data Y_{ij} consists of weights for 30 rats over 5 weeks.

Rat Growth Model Data

- Example: Growth curves for rats.
- Data Y_{ij} consists of weights for 30 rats over 5 weeks.

Rat Growth Model Data

 Can estimate mean growth curve by linear regression, but growth curve models necessary to get standard errors right.

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$

$$\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$$

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$

$$\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$$

$$\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$$

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$

$$\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$$

$$\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$$

$$\beta_i \sim \mathsf{Normal}(\beta_c, \tau_\beta)$$

Model:

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$
 $\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$
 $\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$
 $\beta_i \sim \mathsf{Normal}(\beta_c, \tau_\beta)$

Model could be fit using linear mixed model or Bayesian hierarchical model.

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$
 $\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$
 $\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$
 $\beta_i \sim \mathsf{Normal}(\beta_c, \tau_\beta)$

- Model could be fit using linear mixed model or Bayesian hierarchical model.
- Priors (conjugate and vague):

$$\alpha_c, \beta_c \sim \text{Normal}(0, 10^{-6})$$

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$
 $\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$
 $\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$
 $\beta_i \sim \mathsf{Normal}(\beta_c, \tau_\beta)$

- Model could be fit using linear mixed model or Bayesian hierarchical model.
- Priors (conjugate and vague):

$$\alpha_c, \beta_c \sim \mathsf{Normal}(0, 10^{-6})$$
 $\tau_c, \tau_\alpha, \tau_\beta \sim \mathsf{Gamma}(0.001, 0.001)$

Model:

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$
 $\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$
 $\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$
 $\beta_i \sim \mathsf{Normal}(\beta_c, \tau_\beta)$

- Model could be fit using linear mixed model or Bayesian hierarchical model.
- Priors (conjugate and vague):

$$\alpha_c, \beta_c \sim \mathsf{Normal}(0, 10^{-6})$$
 $\tau_c, \tau_\alpha, \tau_\beta \sim \mathsf{Gamma}(0.001, 0.001)$

Gibbs sampler:

Since conjugate priors were used, the full conditionals are all available in closed form and can be derived using some algebra.

Model:

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$
 $\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$
 $\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$
 $\beta_i \sim \mathsf{Normal}(\beta_c, \tau_\beta)$

- Model could be fit using linear mixed model or Bayesian hierarchical model.
- Priors (conjugate and vague):

$$\alpha_c, \beta_c \sim \mathsf{Normal}(0, 10^{-6})$$
 $\tau_c, \tau_\alpha, \tau_\beta \sim \mathsf{Gamma}(0.001, 0.001)$

Gibbs sampler:

Since conjugate priors were used, the full conditionals are all available in closed form and can be derived using some algebra.

WinBUGS: Statistical software to perform MCMC in general problems.

Model:

$$Y_{ij} \sim \mathsf{Normal}(\mu_{ij}, \tau_c)$$
 $\mu_{ij} = \alpha_i + \beta_i (x_j - \overline{x})$
 $\alpha_i \sim \mathsf{Normal}(\alpha_c, \tau_\alpha)$
 $\beta_i \sim \mathsf{Normal}(\beta_c, \tau_\beta)$

- Model could be fit using linear mixed model or Bayesian hierarchical model.
- Priors (conjugate and vague):

$$\alpha_c, \beta_c \sim \mathsf{Normal}(0, 10^{-6})$$
 $\tau_c, \tau_\alpha, \tau_\beta \sim \mathsf{Gamma}(0.001, 0.001)$

Gibbs sampler:

Since conjugate priors were used, the full conditionals are all available in closed form and can be derived using some algebra.

WinBUGS: Statistical software to perform MCMC in general problems.

- Why use MCMC?
 - * Flexible computing tool with ability to fit complex models.

- Why use MCMC?
 - ★ Flexible computing tool with ability to fit complex models.
 - * No need to make simplified modeling assumptions out of convenience.

- Why use MCMC?
 - ★ Flexible computing tool with ability to fit complex models.
 - * No need to make simplified modeling assumptions out of convenience.
 - ★ Given posterior samples, can get all benefits of Bayesian inference.

- Why use MCMC?
 - ★ Flexible computing tool with ability to fit complex models.
 - * No need to make simplified modeling assumptions out of convenience.
 - ★ Given posterior samples, can get all benefits of Bayesian inference.
- Words of Caution:

- Why use MCMC?
 - ★ Flexible computing tool with ability to fit complex models.
 - ⋆ No need to make simplified modeling assumptions out of convenience.
 - ★ Given posterior samples, can get all benefits of Bayesian inference.
- Words of Caution:
 - ⋆ Monitor convergence!

- Why use MCMC?
 - ★ Flexible computing tool with ability to fit complex models.
 - ⋆ No need to make simplified modeling assumptions out of convenience.
 - ★ Given posterior samples, can get all benefits of Bayesian inference.
- Words of Caution:
 - ⋆ Monitor convergence!
 - Unfortunately, the most complex models tend to converge very slowly.

Why use MCMC?

- ★ Flexible computing tool with ability to fit complex models.
- ⋆ No need to make simplified modeling assumptions out of convenience.
- * Given posterior samples, can get all benefits of Bayesian inference.

- ⋆ Monitor convergence!
 - Unfortunately, the most complex models tend to converge very slowly.
 - * Can try blocking and marginalization to decrease correlation of model parameters in MCMC.

Why use MCMC?

- ★ Flexible computing tool with ability to fit complex models.
- ⋆ No need to make simplified modeling assumptions out of convenience.
- ★ Given posterior samples, can get all benefits of Bayesian inference.

- ⋆ Monitor convergence!
 - Unfortunately, the most complex models tend to converge very slowly.
 - * Can try blocking and marginalization to decrease correlation of model parameters in MCMC.
- Check if your answers make sense compare with plots and simple methods

Why use MCMC?

- ★ Flexible computing tool with ability to fit complex models.
- ⋆ No need to make simplified modeling assumptions out of convenience.
- ★ Given posterior samples, can get all benefits of Bayesian inference.

- ⋆ Monitor convergence!
 - Unfortunately, the most complex models tend to converge very slowly.
 - * Can try blocking and marginalization to decrease correlation of model parameters in MCMC.
- Check if your answers make sense compare with plots and simple methods
- ★ Perform sensitivity analysis on priors.

MCMC OVERVIEW

Conclusions

Why use MCMC?

- ★ Flexible computing tool with ability to fit complex models.
- ⋆ No need to make simplified modeling assumptions out of convenience.
- ★ Given posterior samples, can get all benefits of Bayesian inference.

- ⋆ Monitor convergence!
 - Unfortunately, the most complex models tend to converge very slowly.
 - Can try blocking and marginalization to decrease correlation of model parameters in MCMC.
- Check if your answers make sense compare with plots and simple methods
- ★ Perform sensitivity analysis on priors.
- Other book: Gelman, Carlin, Stern, & Rubin (1995) Bayesian Data Analysis

MCMC OVERVIEW 16

References

Gelman A and Rubin DB (1992). Inference from iterative simulation using multiple sequences. *Statistical Science* **7**, 457 75472.

Geman S and Geman D (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. *IEEE Trans. Pattn. Anal. Mach. Intel.* **6**, 721 75741.

Geweke J (1992). Evaluation of accuracy of sampling-based approaches to the calculation of posterior moments. In *Bayesian Statistics 4*(ed. JM Bernardo, J Berger, AP Dawid and AFM Smith), pp. 169 75193. Oxford University Press.

Gilks WR, Richardson S, and Spiegelhalter DJ (1996). Markov Chain Monte Carlo in Practice, Chapman and Hall.

Hastings WK (1970). Monte Carlo sampling methods using Markov chains and their applications. *Biometrika* **57**, 97 75109.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH and Teller E (1953). Equations of state calculations by fast computing machine. *J. Chem. Phys.* 21, 1087 751091.