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How Does Mass Spec Work?
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What Do the Data Look Like?
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Learning: Spotting the Samples
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What the Guts Look Like
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Taking Data
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Some Other Common Steps

Fractionating the Samples

Changing the Laser Intensity

Working with Different Matrix Substrates
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SELDI: A Special Case

www.ciphergen.com

Precoated surface performs some preselection of the proteins for
you.

Machines are nominally easier to use.
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A Tale of Two Examples

Example 1 : Learning from the literature

Example 2 : Testing out our understanding

A story in pictures
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Example 1: Feb 16 ’02 Lancet

• 100 ovarian cancer patients

• 100 normal controls
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Example 1: Feb 16 ’02 Lancet

• 100 ovarian cancer patients

• 100 normal controls

• 16 patients with ’benign disease’

Use 50 cancer and 50 normal spectra to train a classification
method; test the algorithm on the remaining samples.
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Their Results

• Correctly classified 50/50 of the ovarian cancer cases.

• Correctly classified 46/50 of the normal cases.

• Correctly classified 16/16 of the benign disease as ’other’.

Data at http://clinicalproteomics.steem.com

Large sample sizes, using serum
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The Data Sets

3 data sets on ovarian cancer

Data Set 1 : The initial experiment. 216 samples, baseline
subtracted, H4 chip

Data Set 2 : Followup: the same 216 samples, baseline
subtracted, WCX2 chip

Data Set 3 : New experiment: 162 cancers, 91 normals, baseline
NOT subtracted, WCX2 chip

A set of 5-7 separating peaks is supplied for each data set.

We tried to (a) replicate their results, and (b) check consistency
of the proteins found
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We Can’t Replicate their Results (DS1 & DS2)
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Some Structure is Visible in DS1
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Or is it? Not in DS2
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Processing Can Trump Biology (DS1 & DS2)
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We Can Analyze Data Set 3!
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Do the DS2 Peaks Work for DS3?
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Which Peaks are Best? T-statistics

Note the magnitudes: t-values in excess of 20 (absolute value)!
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One Bivariate Plot: M/Z = (435.46,465.57)

Perfect Separation. These are the first 2 peaks in their list, and
ones we checked against DS2.



TAMU: PROTEOMICS SPECTRA 23

Another Bivariate Plot: M/Z = (2.79,245.2)

Perfect Separation, using a completely different pair. Further,
look at the masses: this is the noise region.
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Perfect Classification with Noise?

This is a problem, in that it suggests a qualitative difference in
how the samples were processed, not just a difference in the
biology.

This type of separation reminds us of what we saw with benign
disease.
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Mass Accuracy is Poor?

A tale of 5 masses...

Feb ’02 Apr ’02 Jun ’02
DS1 DS2 DS3
-7.86E-05 -7.86E-05 -7.86E-05
2.18E-07 2.18E-07 2.18E-07
9.60E-05 9.60E-05 9.60E-05
0.000366014 0.000366014 0.000366014
0.000810195 0.000810195 0.000810195
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How are masses determined?

Calibrating known proteins
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Calibration is the Same?

M/Z vectors the same for all three data sets.

Machine calibration the same for 4+ months?
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U
= a(t− t0)2 + b, U = 20K, t = (0, 1, ...) ∗ 0.004
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What is the Calibration Equation?

The Ciphergen equation

m/z

U
= a(t− t0)2 + b, U = 20K, t = (0, 1, ...) ∗ 0.004

Fitting it here

a = 0.2721697 ∗ 10−3, b = 0, t0 = 0.0038

These are the default settings that ship with the software!
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Other issues

Q-star data different

clinical trials?
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Example 2: Proteomics Data Mining

41 samples, 24 with lung cancer∗, 17 controls.

20 fractions per sample.

Goal: distinguish the two groups;

Data used to be at

http://www.radweb.mc.duke.edu/cme/proteomics/explain.htm

but the site has been retired. Send email to Ned Patz or Mike
Campa at Duke if interested.

http://www.radweb.mc.duke.edu/cme/proteomics/explain.htm
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Raw Spectra Have Different Baselines

Note the need for baseline correction.
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Oscillatory Behavior...

Roughly half the spectra have sinusoidal noise.
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Oscillatory Behavior...

Roughly half the spectra have sinusoidal noise. We’re seeing the
A/C power cord.



TAMU: PROTEOMICS SPECTRA 33

Baseline Adj: Fraction Agreement, Before & After
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Fractionation is Unstable
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Unfractionating the Data
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The Overall Average Shows Spikes. Difference It.
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Computer Buffer?

Spike spacing has a wavelength of 4096 = 212.
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Are We Done Cleaning Yet?

Give the problem a chance to be easy, try some simple
clustering.
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PCA Splits off Half the Normals
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Peaks at Integer Multiples of M/Z 180.6!

This suggests a polymer. No Amino Acid dimers fit.
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Cleaning Redux

• Baseline Correction and Normalization

• Inconsistent Fractionation

• Computer Buffers

• Polymers in some Normal Spectra

• Peak Finding (Use Theirs)

Data reduced to 1 spectrum/patient, with 506 peaks per
spectrum.
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Find the Best Separators

Peaks MD P-Value Wrong LOOCV
12886 2.547 ≤ 0.005 11 11
8840, 12886 5.679 ≤ 0.01 5 6
3077, 12886 9.019 ≤ 0.01 3 4
74263
5863, 8143 12.585 ≤ 0.01 3 3
8840, 12886
4125, 7000 23.108 ≤ 0.01 1 1
9010, 12886
74263

There are 9 values that recur frequently, at masses of 3077,
4069, 5825, 6955, 8840, 12886, 17318, 61000, and 74263.

P-values are not from table lookups!
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Testing Reality (Significance)

Generate a bunch of ’random noise’ data matrices, each 41× 506
in size.

For each matrix, split the 41 noise ’samples’ into groups of 24
and 17.

Repeat our search procedure on the random data, and see how
well we can separate things.
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The Eyeball Test

We applied one last filtering step and actually looked at the
regions identified. All 9 peaks listed above passed the eye test.

Blue lines = Cancers

Red lines = Controls
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Punchlines
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Other Stuff

We were the only ones to notice the sinusoidal noise.
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Other Stuff

We were the only ones to notice the sinusoidal noise.

and the clock tick.

and we also won the competition...
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Important Lessons

• Experimental Design Issues are Crucial

? Randomization
? Uniform handling of samples
? Blinding

• Careful Pre-Processing of Data is Essential

? Calibration
? Baseline Correction
? Normalization

• Exploratory Data Analysis is Important: Look at the Data!

? Search for anomalies
? Confirm numerical results
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The Deluge

Bladder Cancer

Pancreatic Cancer

Leukemia

Colorectal Cancer

Brain Cancer

Several show real structure, several show processing effects.

’If you’re not working on a proteomics project, you will be soon!’
Kevin Coombes to Bioinf section, 3/25/03



TAMU: PROTEOMICS SPECTRA 50

Collaborators

Keith Baggerly

Kevin Coombes

Jing Wang

David Gold

Lian-Chun Xiao

*********************

Ryuji Kobayashi

David Hawke

John Koomen


