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Functional Data Analysis

• Functional Data:
– Ideal units of observation: curves
– Observed data:  curves sampled on fine grid

• Increasingly encountered in scientific research
• FDA (Ramsay & Silverman, 1997)  

2 issues with functional data
1. Regularization: exploiting the assumed smoothness or 

regularity between measurements within a curve
2. Replication: combining information across N curves



Example: Mass Spectrometry 
Proteomics

• Central dogma: DNA mRNA protein
• Microarrays: measure expression levels of 10,000s of 

genes in sample (amount of mRNA) 
• Proteomics: look at proteins in sample. 

– Gaining increased attention in research
• Proteins more biologically relevant than mRNA 
• Can use readily available fluids (e.g. blood, urine)

– MALDI-TOF: mass spectrometry instrument that 
can see 100s or 1000s of proteins in sample



Sample MALDI-TOF Spectrum

• MALDI-TOF Spectrum: observed function
• g(t) = intensity of spectrum at m/z value t 
• Intensity at peak (roughly) estimates the abundance 

of some protein with molecular weight of t Daltons



Example: Mouse proteomics study

• 16 nude mice had 1 of 2 cancer cell lines 
injected into 1 of 2 organs (lung or brain)

• Cell lines:
– A375P: human melanoma, low metastatic potential
– PC3MM2: human prostate, highly metastatic

• Blood Serum extracted from each mouse – placed on 2 
MALDI plates

• Samples run at 2 different laser intensities (low/ high)
• Total of 32 spectra (observed functions),  2 per mouse
• Sampled on equally-spaced grid of roughly 24,000

– Downsampled to grid of size 2000 



Example: Mouse proteomics study
• Goal:

Find proteins differentially expressed by:
– Host organ site (lung/brain)
– Donor cell line (A375P/PC3MM2)
– Organ-by-cell line interaction

• Combine information across laser intensities:
Requires us to include in modeling:
– Functional laser intensity effect
– Random effect functions to account for 

correlation between spectra from same mouse



Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.

• Marginally, Y~N(Xβ, ZPZ’+R)



Functional Mixed Model (FMM)
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Suppose we observe a sample of N curves, 
Y (t), i=1, …, N, on a compact set Ti

• DEFN: U(t)~MGP(P,Q) implies the rows of P-1/2U(t) are ind. 
mean zero Gaussian Processes with covariance surface Q(t1,t2). 
– Functional generalization of Matrix Normal (Dawid, 1981).
– Implies Cov{Ui(t1),Uj(t2)}=Pij * Q(t1,t2)

• P and R are covariance matrices (between-curve)
• Q(t1,t2) and S(t1,t2) are covariance surfaces on  T ×T



Discrete Version of FMM
Suppose each observed curve is sampled on a common 
equally-spaced grid of length T.
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• U and E follow the Matrix Normal distn.
– U~MN(P,Q) implies Cov{Uij, Ui’j’}=Pii’*Qjj’

• P and R are covariance matrices  (m × m & N × N)
• Q and S are within-curve covariance matrices (T × T)



Functional Mixed Models
• Key feature of FMM: Does not require 

specification of parametric form for 
curves

• Most existing literature for 
nonparametrically modeling functional 
data is based on kernels or splines.

• Kernels/splines may not work well for 
spatially heterogeneous data



Introduction to Wavelets
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Daubechies Basis Function

• Wavelets: families of orthonormal basis functions
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)} 
for obtaining empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.



Wavelet Regression
• Useful properties of wavelets:

– Whitening property
– Compact support 
– Parsimonious representation

• Wavelet Regression – 3 step process
1. Project data into wavelet space 
2. Threshold/shrink coefficients
3. Project back to data space

• Yields adaptively regularized nonparametric 
estimates



Adaptive Regularization



Wavelet-Based Hierarchical 
Functional Models

• Most existing wavelet regression methods for single 
function case

• Morris, Vannucci, Brown, and Carroll (2003)
– Bayesian wavelet-based method for estimating mean 

function for functional data from nested design.
– Extends wavelet regression to hierarchical functional 

context.
• Goal: Develop Bayesian wavelet-based methodology 

for much more general setting of functional mixed 
models.



Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.



Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.



Wavelet-Based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.



Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.



Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Wavelet Space FMM
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D : empirical wavelet coefficients for observed curves
Row i contains wavelet coefficients for observed curve i
Each column double-indexed by wavelet scale j and location k

• B*=BW’ & U*=UW’ : Rows contain wavelet 
coefficients for the fixed and random effect functions, 

• E*=EW’ is the matrix of residuals
• Q*=WQW’ and S*=WSW’ model the covariance structure 

between wavelet coefficients for a given function.
• P, Q*, R and S* are typically too large to estimate in an

unstructured fashion.



Covariance Assumptions
• We choose parametric structures for P and R to 

model the covariance structure between the curves. 
– Based on the experimental design
– As in linear mixed models.

• We assume the between-wavelet covariance matrices 
Q* and S* are diagonal.
– Assume wavelet coefficients within given function 

independent
– Heuristically justified by whitening property of DWT
– Common assumption in wavelet regression
– Is parsimonious in wavelet space (T parameters), yet leads 

to flexible class of covariance structures in data space



Wavelet Space Model
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Model Each Column Separately
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Single Wavelet Coefficient Model

• Independence assumption allows us to fit wavelet-
space model one column at a time.
– i.e., we have a series of T (scalar) mixed models, with the 

only shared parameters being the between-curve 
covariance parameters in P and R.

• In principal, we could fit this model using standard 
mixed models software. 

• However, fitting this model without additional 
mechanism for regularization would result in rough, 
noisy estimates of the p fixed effects functions Bi(t)



Prior Assumptions
Mixture prior on βijk

*:
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• Nonlinearly shrinks βijk
* towards 0, leading to

adaptively regularized estimates of Bi(t).
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model



Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integrated out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. for P, Q*, R, and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normal



Wavelet-Based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.



Wavelet-Based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.

• Apply IDWT to posterior samples of B* to 
get posterior samples of fixed effect functions 
Bi(t) for i=1,…, p, on grid t. 

– B=B*W
• Posterior samples of U(t), P, Q, R, and S are 

also available, if desired.
• Can be used for Bayesian inference/prediction



Example: Model
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Let Y(t) be the N=32 MALDI spectra, preprocessed.

• X={1,Xorgan, Xcell-line, Xint, Xlaser} , where
Xorgan=1 for lung, -1 brain. Xcell-line=1 for A375P, -1 for PC3MM2
Xint= Xorgan * Xcell-line Xlaser=1 for low laser intensity, -1 high.

• B(t)={B0(t), B1(t), B2(t), B3(t), B4(t)}, where
B0(t) = overall mean spectrum B1(t) = organ main effect function
B2(t) = cell-line main effect B3(t) = org x cell-line int function
B4(t) = laser intensity effect function

• Z=12⊗I16, and U(t)={U1(t), …, U16(t)} are mouse random 
effect functions.



Example: Model Fitting
• Daubechies 8 wavelet basis, J=11 levels
• Empirical Bayes procedure used to estimate   

regularization parameters πij andτij from data.
• Burn-in 1000; 20,000 MCMC samples; thin=10
• Took 7hr 53min on Win2000 P-IV 2.8GHz 2GB RAM

– That is Matlab code; C++ code takes ~2 hours.
• Trace plots indicated good convergence properties
• Metropolis Hastings acceptance probabilities good:

– Range of (0.04, 0.53)
– (10th,50th,90th) percentiles of (0.20, 0.29, 0.50)



Example: Results



Example: Peak detection

• We first did “peak detection” 
Local maxima in posterior mean (denoised) estimate of B0(t) with
High posterior probability of nonzero mean; Pr{B0(t)>0|Y}≥0.95

• Using this criterion, we found 58 peaks
• We restrict inference to values of t at peaks



Example: Flagged peaks
Detecting ‘significant’ peaks: (assoc. w/ organ,cl,int)
For each t at a peak, compute pi(t)=min[Pr{Bi(t)>0},Pr{Bi(t)<0}]
Flag any peak for which pi(t) is very small.  (<0.05/58=0.00086)

Using this criterion, we flagged 9 peaks as interesting
m/z Effect p Comment

3412.6 int. <0.0005 PC3MM2>A375P for brain-injected only

3496.6 organ <0.0005 Only expressed in brain-injected mice

3886.3 organ <0.0005 Only expressed in brain-injected mice

11721 cell line <0.0005 PC3MM2>A375P

4168.2 int. 0.0005 PC3MM2>A375P in brain-injected only

4252.1 int. <0.0005 PC3MM2>A375P in brain-injected only

4270.1 cell line <0.0005 PC3MM2>A375P

5805.3 int. <0.0005 brain>lung only for mice given A375P cell-line

6015.2 cell line <0.0005 PC3MM2>A375P

11721 organ <0.0005 lung>brain



Example: Results
• Specific to 

brain-injected 
mice

• May be CGRP-
II (3882.34 
Dal), peptide in 
mouse 
proteome that 
dilates blood 
vessels in brain

• Host response 
to tumor 
implanted in 
brain?



Example: Results
• Higher in mice 

injected with 
metastatic (PC3-
MM2) cell line

• May be MTS1 
(11721.43 Dalt), 
metastatic cell 
protein in mouse 
proteome.

• Also higher in lung-
injected mice than 
brain-injected mice



Example: Results

• Laser intensity effect adjusts for:
– Offsets in m/z scale
– Shifts in intensities

• Important proof of principle that “linear” 
functional term can be used to adjust for 
functional effects of nuisance factors



Discussion
• Introduced unified modeling approach for FDA 

– Applied here to MALDI-TOF, but method is general.

• Method based on mixed models; is FLEXIBLE
– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions for future sampled curves
– Predictive probabilities for group membership of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability in the model propagated throughout inference.



Discussion
• Since functions adaptively regularized using wavelet 

shrinkage, the method is appropriate for spatially 
heterogeneous functional data.

• Approach is Bayesian.  The only informative priors to elicit 
are regularization parameters, which can be estimated 
from data using empirical Bayes.

• Method generalizes to higher dimensional functions, e.g. 
image data, space/time (fixed domain) data.

• We used wavelet bases, but approach can be generalized to 
other orthogonal basis functions.

• Difficult to develop unified statistical modeling approach 
for replicated functional data, but worth the effort.
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