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Functional Data Analysis
• Functional Data:

– Ideal units of observation (atoms): curves
– Observed data:  curves sampled on fine grid

• Increasingly encountered in scientific 
research

• Our Concern Here: 
• Functional responses, would like to model 

relationship with non-functional covariates
• Primary interest: irregular functions with many 

local features, like peaks.
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Colon Carcinogenesis Data
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• Analyzed in Morris, Vannucci, Brown, and Carroll (2003)
• 30 rats from 2 diets x 5 times, 15 crypts/rat, ~250 obs/crypt
• MGMT: Repair enzyme
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Planet Health Study: Accelerometer Data

• Accelerometer: objectively quantify minute-by-
minute activity levels

• 256 children, 4-8 days/child, 660 obs/day (9am-8pm)



8/7/2005 Jeffrey S. Morris  
http://biostatistics.mdanderson.org/Morris

5

MALDI-TOF Proteomics Data

• g(t) = intensity of peak at m/z value t roughly 
estimates relative abundance of protein with 
molecular weight of t Daltons.

• 256 samples (pancreatic cancer/normal), 4 blocks, 
20k observations/curve
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Functional Mixed Model (FMM)
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Suppose we observe a sample of N curves, 
Y (t), i=1, …, N, on a compact interval Ti

• DEFN: U(t)~MGP(P,Q) implies the rows of P-1/2U(t) are ind. 
mean zero Gaussian Processes with covariance surface Q(t1,t2). 
– Functional generalization of Matrix Normal (Dawid, 1981).
– Implies Cov{Ui(t1),Uj(t2)}=Pij * Q(t1,t2)

• P and R are covariance matrices (between-curve)
• Q(t1,t2) and S(t1,t2) are covariance surfaces on  T ×T
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Discrete Version of FMM
Suppose each observed curve is sampled on a common 
equally-spaced grid of length T.
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• U and E follow the Matrix Normal distn.
– U~MN(P,Q) implies Cov{Uij, Ui’j’}=Pii’*Qjj’

• P and R are covariance matrices  (m × m & N × N)
• Q and S are within-curve covariance matrices (T × T)
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Functional Mixed Models
• Key feature of FMM: Does not require 

specification of parametric form for 
curves

• Much existing literature for 
nonparametrically modeling functional 
data is based on kernels or splines.

• These methods may not work well for 
spatially heterogeneous data
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Introduction to Wavelets
• Wavelets: families of orthonormal basis functions
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)}

for obtaining T empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.

• Linear Representation: d = y W’
– W’ =T-by-T orthogonal projection matrix
– Inverse DWT (IDWT): y = d W
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Wavelet Regression
• Useful properties of wavelets:

– Whitening property
– Compact support 
– Parsimonious representation

• Wavelet Regression – 3 step process
1. Project data into wavelet space 
2. Threshold/shrink coefficients
3. Project back to data space

• Yields adaptively regularized nonparametric 
estimates
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Adaptive Regularization



8/7/2005 Jeffrey S. Morris  
http://biostatistics.mdanderson.org/Morris

13

Adaptive Regularization
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Adaptive Regularization
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM
1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Wavelet Space FMM
D : empirical wavelet coefficients for observed curves

Row i contains wavelet coefficients for observed curve i
Each column double-indexed by wavelet scale j and location k

• B*=BW’ & U*=UW’ : Rows contain wavelet 
coefficients for the fixed and random effect functions, 

• E*=EW’ is the matrix of wavelet-space residuals
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• Q*=WQW’ and S*=WSW’ model the covariance structure 
between wavelet coefficients for a given function.

• P, Q*, R and S* are typically too large to estimate in an
unstructured fashion.
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Covariance Assumptions
• We choose parametric structures for P and R to 

model the covariance structure between the curves. 
– Based on the experimental design
– As in linear mixed models.

• We assume the between-wavelet covariance matrices 
Q* and S* are diagonal (working model).
– Wavelet coefficients within given function independent
– Heuristically justified by whitening property of DWT
– Common assumption in wavelet regression
– Is parsimonious in wavelet space (T parameters), yet leads 

to flexible class of covariance structures in data space
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Simulation: Covariance Structure

• True mean: line plus peak
• True variance: increasing in t, with extra var at peak
• True autocorrelation: Strong autocorrelation (0.9) at 

left, weak autocorrelation (0.1) right, extra at peak
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Simulation: Covariance Structure

• Independence in wavelet space accommodates 
varying degrees of autocorrelation in data space

• Allowing variance components to vary across scale j
and location k accommodates nonstationarities
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Prior Assumptions
Mixture prior on Bijk

*:

0
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• Nonlinearly shrinks Bijk
* towards 0, leading to

adaptively regularized estimates of Bi(t).
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model
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Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integrated out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. for P, Q*, R, and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*):
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normal
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Wavelet-Based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.

• Apply IDWT to posterior samples of B* to get 
posterior samples of fixed effect functions Bi(t) for 
i=1,…, p, on grid t. 

– B=B*W
• Posterior samples of U(t), P, Q, R, and S are also

available, if desired.
• Can be used for Bayesian inference/prediction
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Discussion
• Introduced unified modeling approach for FDA 

– Can accommodate very irregular functions

• Method based on mixed models; is FLEXIBLE
– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions for future sampled curves
– Predictive probabilities for classification of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability in the model propagated throughout inference.
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Discussion
• Approach is Bayesian.  The only informative priors to 

elicit are regularization parameters, which can be 
estimated from data using empirical Bayes.

• Developed general-use code – reasonably fast and 
straightforward to use  minimum information to 
specify is Y, X, Z matrices.

• Can be extended to deal with missing data (partially 
observed functions) or covariate measurement error

• Method generalizes to higher dimensional functions, 
e.g. image data, space/time (fixed domain) data.
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