Wavelet-Based Functional Mixed Models

Jeffrey S. Morris UT M.D. Anderson Cancer Center Raymond J. Carroll Texas A&M University

http://biostatistics.mdanderson.org/Morris

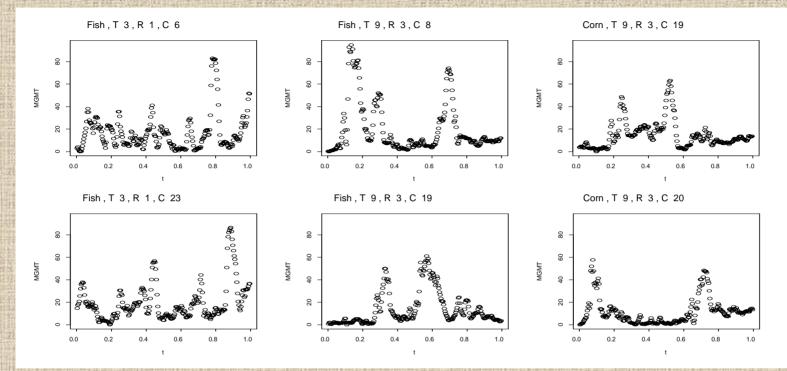
Functional Data Analysis

- Functional Data:
 - Ideal units of observation (atoms): curves
 - Observed data: curves sampled on fine grid
- Increasingly encountered in scientific research
- Our Concern Here:
 - Functional responses, would like to model relationship with non-functional covariates
 - Primary interest: irregular functions with many local features, like peaks.

8/7/2005

Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

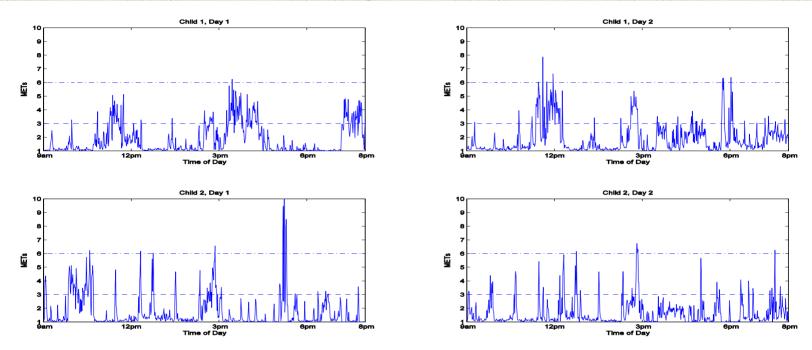
Colon Carcinogenesis Data



Analyzed in Morris, Vannucci, Brown, and Carroll (2003)
30 rats from 2 diets x 5 times, 15 crypts/rat, ~250 obs/crypt
MGMT: Repair enzyme

8/7/2005

Planet Health Study: Accelerometer Data

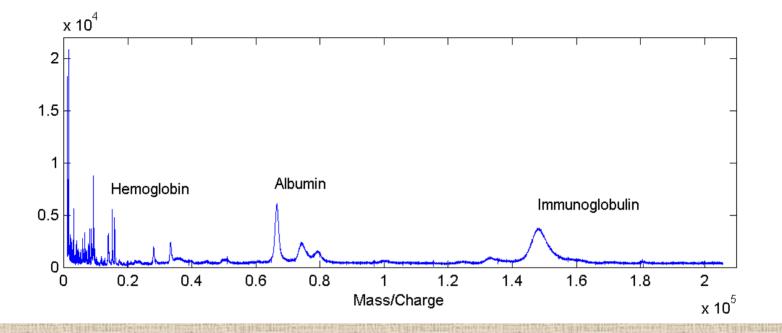


 Accelerometer: objectively quantify minute-byminute activity levels
 256 children, 4-8 days/child, 660 obs/day (9am-8pm)

8/7/2005

Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

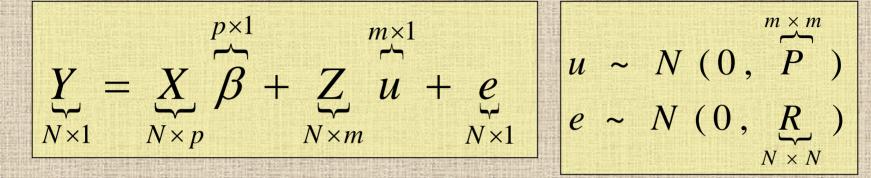
MALDI-TOF Proteomics Data



 g(t) = intensity of peak at m/z value t roughly estimates relative abundance of protein with molecular weight of t Daltons.

 256 samples (pancreatic cancer/normal), 4 blocks, 8/20k observations/curve Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

Linear Mixed Models Linear Mixed Model (Laird and Ware, 1982):



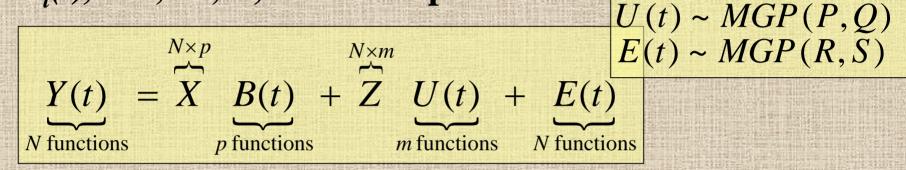
Fixed effects part, Xß, accommodate a broad class of mean structures, including main effects, interactions, and linear coefficients.
Random effects part, Zu, provide a convenient mechanism for modeling correlation among the N observations.

8/7/2005

Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

Functional Mixed Model (FMM)

Suppose we observe a sample of N curves, $Y_i(t)$, i=1, ..., N, on a compact interval \mathcal{T}



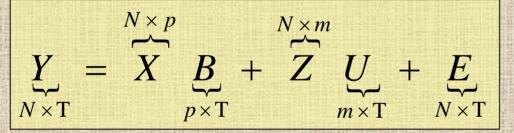
• **DEFN**: $U(t) \sim MGP(P,Q)$ implies the rows of $P^{-1/2}U(t)$ are ind. mean zero Gaussian Processes with covariance surface $Q(t_1, t_2)$.

- Functional generalization of Matrix Normal (Dawid, 1981).
- Implies $Cov{U_i(t_1), U_j(t_2)}=P_{ij} * Q(t_1, t_2)$

P and R are covariance matrices (between-curve)
 Q(t₁,t₂) and S(t₁,t₂) are covariance surfaces on T×T
 8/7/2005 Jeffrey S: Morris

Discrete Version of FMM

Suppose each observed curve is sampled on a common equally-spaced grid of length *T*.



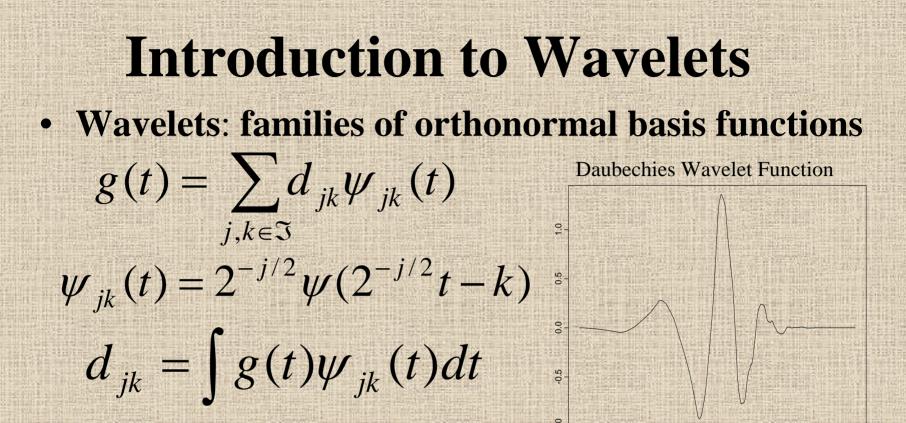
U and E follow the Matrix Normal distn.
U~MN(P,Q) implies Cov{U_{ij}, U_{i'j'}}=P_{ii'}*Q_{jj},
P and R are covariance matrices (m × m & N × N)
Q and S are within-curve covariance matrices (T × T)
^{8/7/2005} Jeffrey S. Morris

http://biostatistics.mdanderson.org/Morris

Functional Mixed Models

- Key feature of FMM: Does not require specification of parametric form for curves
- Much existing literature for nonparametrically modeling functional data is based on kernels or splines.
- These methods may not work well for spatially heterogeneous data

8/7/2005



- Discrete Wavelet Transform (DWT): fast algorithm {O(T)} for obtaining T empirical wavelet coefficients for curves sampled on equally-spaced grid of length T.
- Linear Representation: d = y W' - W' =T-by-T orthogonal projection matrix - Inverse DWT (IDWT): y = d W

8/7/2005

Wavelet Regression

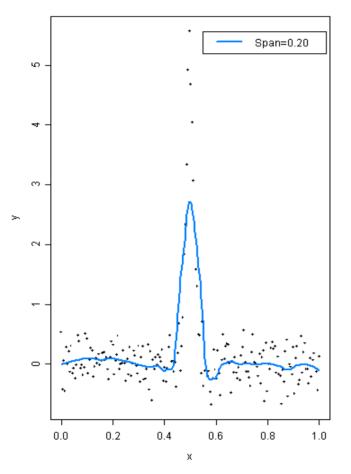
- Useful properties of wavelets:
 - Whitening property
 - Compact support

8/7/2005

- Parsimonious representation
- Wavelet Regression 3 step process
 - 1. Project data into wavelet space
 - 2. Threshold/shrink coefficients
 - 3. Project back to data space
 - Yields *adaptively regularized* nonparametric estimates

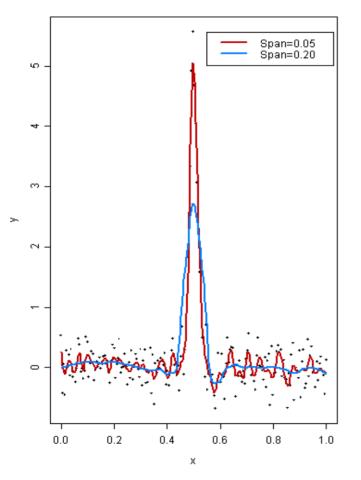
Adaptive Regularization

Regularization by Local Linear Smoothing

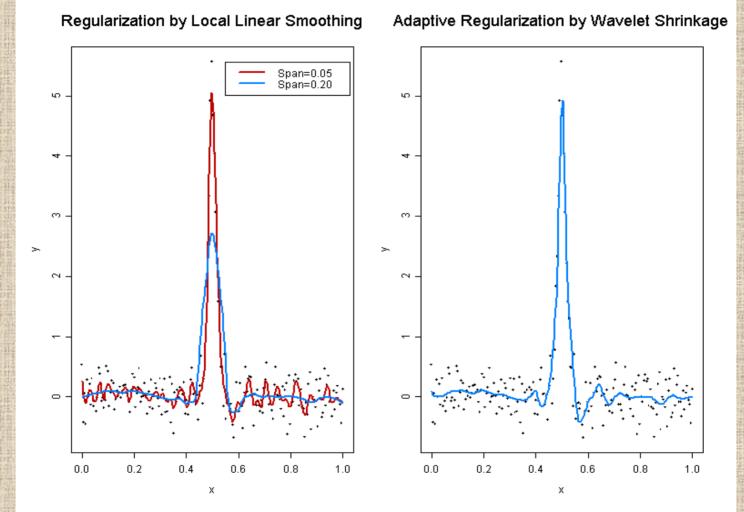


Adaptive Regularization

Regularization by Local Linear Smoothing



Adaptive Regularization



8/7/2005

Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

Wavelet-Based FMM:

General Approach

1. Project observed functions Y into wavelet space. 2. Fit FMM in wavelet space. (Use MCMC to get posterior samples) **3. Project** wavelet-space estimates (posterior samples) back to data space.

8/7/2005

Wavelet-Based FMM:

General Approach

1. Project observed functions Y into wavelet space.

Fit FMM in wavelet space

 (Use MCMC to get posterior samples)

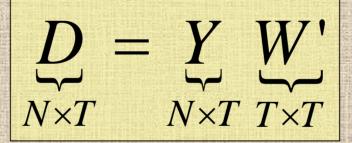
 Project wavelet-space estimates

 (posterior samples) back to data space.

8/7/2005

Wavelet-Based FMM

- **1. Project observed functions Y to wavelet space**
 - Apply DWT to rows of Y to get wavelet coefficients corresponding to each observed function



Projects the observed curves into the space spanned by the wavelet bases.

8/7/2005

Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

Wavelet-Based FMM: General Approach

1. Project observed functions Y into wavelet space.

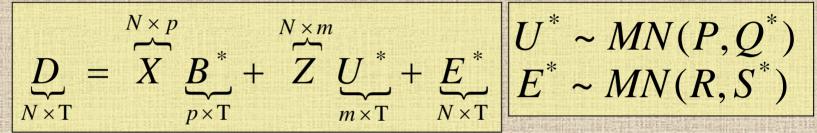
2. Fit FMM in wavelet space (Use MCMC to get posterior samples)

3. Project wavelet-space estimates (posterior samples) back to data space.

8/7/2005

Wavelet Space FMM

D : empirical wavelet coefficients for observed curves Row *i* contains wavelet coefficients for observed curve *i* Each column double-indexed by wavelet scale *j* and location *k*



B*=BW' & U*=UW': Rows contain wavelet coefficients for the fixed and random effect functions,
E*=EW' is the matrix of wavelet-space residuals
Q*=WQW' and S*=WSW' model the covariance structure between wavelet coefficients for a given function.
P, Q*, R and S* are typically too large to estimate in an unstructured fashion.

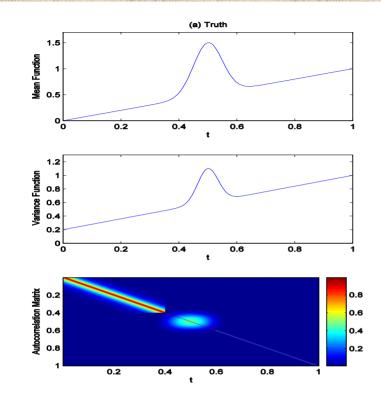
8/7/2005

Covariance Assumptions

- We choose parametric structures for *P* and *R* to model the covariance structure between the curves.
 Based on the experimental design
 - As in linear mixed models.
- We assume the between-wavelet covariance matrices *Q** and *S** are diagonal (working model).
 - Wavelet coefficients within given function independent
 - Heuristically justified by whitening property of DWT
 - Common assumption in wavelet regression
 - Is parsimonious in wavelet space (*T* parameters), yet leads to flexible class of covariance structures in data space

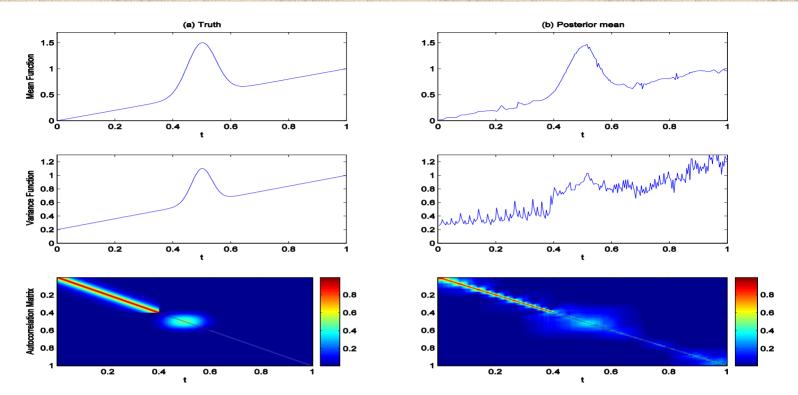
8/7/2005

Simulation: Covariance Structure



 True mean: line plus peak
 True variance: increasing in t, with extra var at peak
 True autocorrelation: Strong autocorrelation (0.9) at left, weak autocorrelation (0.1) right, extra at peak

Simulation: Covariance Structure



 Independence in wavelet space accommodates varying degrees of autocorrelation in data space
 Allowing variance components to vary across scale *j* and location *k* accommodates nonstationarities Jeffrey S. Morris

Prior Assumptions

Mixture prior on B_{ijk}^* :

$$B_{ijk}^{*} = \gamma_{ijk}^{*} N(0, \tau_{ij}) + (1 - \gamma_{ijk}^{*}) \delta_{0}$$

 $\gamma_{ijk}^* = \text{Bernoulli}(\pi_{ij})$

- Nonlinearly shrinks B_{ijk}^* towards 0, leading to adaptively regularized estimates of $B_i(t)$.
- τ_{ij} & π_{ij} are regularization parameters

 Can be estimated from the data using empirical Bayes
 Extend Clyde&George (1999) to functional mixed model

8/7/2005

Model Fitting

- MCMC to obtain posterior samples of model quantities

 Work with marginal likelihood; U* integrated out;

 Let Ω be a vector containing ALL covariance parameters (i.e. for P, Q*, R, and S*).

 MCMC Steps
- 1. Sample from $f(B^*|D,\Omega)$:

Mixture of normals and point masses at 0 for each *i*,*j*,*k*.

2. Sample from *f*(*Ω*/*D*,*B**):

Metropolis-Hastings steps for each j,k

3. If desired, sample from *f*(*U**/*D*,*B**,*Ω*): Multivariate normal

8/7/2005

Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

Wavelet-Based FMM: General Approach

- Project observed functions Y into wavelet space.
 Fit FMM in wavelet space (Use MCMC to get posterior samples)
- **3. Project** wavelet-space estimates (posterior samples) back to data space.

8/7/2005

Wavelet-Based FMM

- **3. Project** wavelet-space estimates (posterior samples) back to data space.
 - Apply IDWT to posterior samples of B^* to get posterior samples of fixed effect functions $B_i(t)$ for i=1,..., p, on grid t.

B=B*W

- Posterior samples of *U(t)*, *P*, *Q*, *R*, and *S* are also available, if desired.
 - Can be used for Bayesian inference/prediction

8/7/2005

Jeffrey S. Morris http://biostatistics.mdanderson.org/Morris

Discussion

- Introduced unified modeling approach for FDA
 - Can accommodate very irregular functions
- Method based on mixed models; is FLEXIBLE
 - Accommodates a wide range of experimental designs
 - Addresses large number of research questions
- Posterior samples allow Bayesian inference and prediction
 - Posterior credible intervals; pointwise or joint
 - Predictive distributions for future sampled curves
 - Predictive probabilities for classification of new curves
 - Bayesian functional inference can be done via Bayes Factors
- Since a unified modeling approach is used, all sources of variability in the model propagated throughout inference.

8/7/2005

Discussion

- Approach is Bayesian. The only informative priors to elicit are regularization parameters, which can be estimated from data using empirical Bayes.
- Developed general-use code reasonably fast and straightforward to use → minimum information to specify is Y, X, Z matrices.
- Can be extended to deal with missing data (partially observed functions) or covariate measurement error
- Method generalizes to higher dimensional functions, e.g. image data, space/time (fixed domain) data.

8/7/2005

Acknowledgements

- Co-author: Raymond J. Carroll
- Other statistical collaborators on work related to functional mixed models: Phil Brown, Marina Vannucci, Louise Ryan, Brent Coull, Kevin Coombes, Keith Baggerly.
- Thanks to Dick Herrick for assistance in optimizing the code for the method, and for converting the Matlab code to C++.
- Papers/code/slides can be found on website: http://biostatistics.mdanderson.org/Morris

8/7/2005