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Functional Data Analysis

• Functional data:
– Ideal units of observation: curves
– Observed data:  curves sampled on fine grid

• Increasingly encountered in scientific research
• FDA (Ramsay & Silverman, 1997)  

2 issues with functional data
1. Regularization: exploiting the assumed smoothness or 

regularity between measurements within a curve
2. Replication: combining information across N curves
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Example: Mass Spectrometry 
Proteomics

• Central dogma: DNA mRNA protein
• Microarrays: measure expression levels of 10,000s of 

genes in sample (amount of mRNA) 
• Proteomics: look at proteins in sample. 

– Gaining increased attention in research
• Proteins more biologically relevant than mRNA 
• Can use readily available fluids (e.G. Blood, urine)

• MALDI-TOF: mass spectrometry instrument 
that can see 100s or 1000s of proteins in 
sample



MALDI-TOF Schematic

Vestal and Juhasz.  J. Am. Soc. Mass Spectrom. 1998, 9, 892.
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Sample MALDI-TOF Spectrum

• MALDI-TOF: Spectrum is “observed function”
• g(t) = intensity of spectrum at m/z value t 
• Intensity at peak (roughly) estimates the abundance 

of some protein with molecular weight of t Daltons
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Example: Mouse Proteomics Study
• 16 nude mice had 1 of 2 cancer cell lines 

injected into 1 of 2 organs (lung or brain)
• Cell lines:

– A375P: human melanoma, low metastatic potential
– PC3MM2: human prostate, highly metastatic

• Blood Serum extracted from each mouse – placed on 2 
MALDI plates

• Samples run at 2 different laser intensities (low/ high)
• Total of 32 spectra (observed functions),  2 per mouse
• Sampled on equally-spaced grid of roughly 24,000

– Downsampled to grid of size 2000 
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Example: Mouse Proteomics Study
• Goal:

Find proteins differentially expressed by:
– Host organ site (lung/brain)
– Donor cell line (A375P/PC3MM2)
– Organ-by-cell line interaction

• Combine information across laser intensities:
Requires us to include in modeling:
– Functional laser intensity effect
– Random effect functions to account for 

correlation between spectra from same mouse
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Functional Mixed Model (FMM)
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Suppose we observe a sample of N curves, 
Yi(t), i=1, …, N, on a compact set T

• DEFN: U(t)~MGP(P,Q) implies the rows of P-1/2U(t) are ind. 
mean zero Gaussian Processes with covariance surface Q(t1,t2). 
– Functional generalization of Matrix Normal (Dawid, 1981).
– Implies Cov{Ui(t1),Uj(t2)}=Pij * Q(t1,t2)

• P and R are covariance matrices (between-curve)
• Q(t1,t2) and S(t1,t2) are covariance surfaces on  T ×T
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Discrete Version of FMM
Suppose each observed curve is sampled on a common 
equally-spaced grid of length T.
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• U and E follow the Matrix Normal distn.
– U~MN(P,Q) implies Cov{Uij, Ui’j’}=Pii’*Qjj’

• P and R are covariance matrices  (m × m & N × N)
• Q and S are within-curve covariance matrices (T × T)
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Functional Mixed Models
• Key feature of FMM: Does not require 

specification of parametric form for curves
• Most existing literature for nonparametrically 

modeling functional data is based on kernels or 
splines (Guo 2002).

• Kernels/fixed-knot splines may not work well 
for spatially heterogeneous data

• Wavelet Regression: nonparametric regression 
technique that better preserves local features 
present in the curves.
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Introduction to Wavelets
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Daubechies (4) Basis Function

• Wavelets: families of orthonormal basis functions
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)}

for obtaining T empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.

• Linear Representation: d = y W’
– W’ =T-by-T orthogonal projection matrix

• Inverse DWT (IDWT): y = d W



Wavelet Regression
• Wavelet Regression:

– Row vector y: response on equally-spaced grid t (length T)
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1. Project data into wavelet space using DWT.
d=y W’ where W’ is the orthogonal DWT matrix



Wavelet Regression
• Wavelet Regression:

– Row vector y: response on equally-spaced grid t (length T)
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1. Project data into wavelet space using DWT.
d=y W’ where W’ is the orthogonal DWT matrix



Wavelet Regression
• Wavelet Regression:
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1. Project data into wavelet space using DWT.
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Wavelet Regression
• Wavelet Regression:

– Row vector y: response on equally-spaced grid t (length T)
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1. Project data into wavelet space using DWT.
d=y W’ where W’ is the orthogonal DWT matrix



Wavelet Regression
• Wavelet Regression:

– Row vector y: response on equally-spaced grid t (length T)

1. Project data into wavelet space using DWT.
d=y W’ where W’ is the orthogonal DWT matrix
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2. Estimate θ by thresholding (or placing mixture prior on θ)
3. Project back to data space using IDWT 

• Yields adaptive regularized nonparametric estimate of g(t).

Wtg  ˆ)(ˆ θ=



Adaptive Regularization



Adaptive Regularization
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Adaptive Regularization
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Wavelet-based Hierarchical 
Functional Models

• Most existing wavelet regression methods for single 
function case

• Morris, Vannucci, Brown, and Carroll (2003)
– Bayesian wavelet-based method for estimating mean 

function for functional data from nested design.
– Extended wavelet regression to hierarchical functional 

context.
• Goal: Develop Bayesian wavelet-based methodology 

for functional mixed model setting.
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Wavelet-based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Wavelet-based FMM: 
General Approach

1. Project observed functions Y into 
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2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Wavelet Space FMM
D : empirical wavelet coefficients for observed curves

Row i contains wavelet coefficients for observed curve i
Each column double-indexed by wavelet scale j and location k
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• B*=BW’ & U*=UW’ : Rows contain wavelet 
coefficients for the fixed and random effect functions, 

• E*=EW’ is the matrix of residuals

• Q*=WQW’ and S*=WSW’ model the covariance 
structure between wavelet coefficients for  function.
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Covariance Assumptions
• We choose parametric structures for P and R to 

model the covariance structure between the curves. 
– Based on the experimental design
– As in linear mixed models.

• We assume the between-wavelet covariance matrices 
Q* and S* are diagonal.
– Assume wavelet coefficients within given random effect 

function or residual error process are independent
– Heuristically justified by whitening property of DWT
– Common assumption in wavelet regression
– Is parsimonious in wavelet space (T parameters), yet leads 

to flexible class of covariance structures in data space
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Wavelet Space Model

{

}

{

}

{ {
T

*

T

*

T

*

T ××

×

×

×

×

++=
Nm

mN

p

pN

N
EUZBXD

),(~
 ),(~

**

**

SRMNE
QPMNU



8/4/2005 UTMDACC Department of BAM 34

Model Each Column Separately
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Single Wavelet Coefficient Model

• Independence assumption allows us to fit wavelet-
space model one column at a time.
– i.e., we have a series of T (scalar) mixed models, with the 

only shared parameters being the between-curve 
covariance parameters in P and R.

• In principal, we could fit this model using standard 
mixed models software. 

• However, fitting this model without additional 
mechanism for regularization would result in rough, 
noisy estimates of the p fixed effects functions Bi(t)
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Prior Assumptions
Mixture prior on βijk

*:

0
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• Nonlinearly shrinks βijk
* towards 0, leading to

adaptively regularized estimates of βi(t).
• τij & πij are regularization parameters

– Can be estimated from the data using empirical Bayes
– Extend Clyde&George (1999) to functional mixed model
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Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integrated out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. for P, Q*, R, and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normals
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Wavelet-based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.



8/4/2005 UTMDACC Department of BAM 39

Wavelet-based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.
• Apply IDWT to posterior samples of B* to get 

posterior samples of fixed effect functions Bi(t) for 
i=1,…, p, on grid t. 

– B=B*W
• Posterior samples of U(t), P, Q, R, and S are also

available, if desired
• Can be used for Bayesian inference/prediction

Posterior probabilities, Bayes Factors, posterior 
predictive probabilities easy to compute.
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Example: Model

• X={1,Xorgan, Xcell-line, Xint, Xlaser} , where
Xorgan=1 for lung, -1 brain. Xcell-line=1 for A375P, -1 for PC3MM2
Xint= Xorgan * Xcell-line Xlaser=1 for low laser intensity, -1 high.

)()()()( tEtZUtXBtY ++=
Let Y(t) be the N=32 MALDI spectra, preprocessed.

• B(t)={B0(t), B1(t), B2(t), B3(t), B4(t)}, where
B0(t) = overall mean spectrum     B1(t) = organ main effect function

B2(t) = cell-line main effect B3(t) = org x cell-line int function

B4(t) = laser intensity effect function
• Z=12⊗I16, and U(t)={U1(t), …, U16(t)} are mouse 

random effect functions.
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Example: Model Fitting
• Daubechies 8 wavelet basis, J=11 levels
• Empirical Bayes procedure used to estimate   

regularization parameters πij andτij from data.
• Burn-in 1000; 20,000 MCMC samples; thin=10
• Took 7hr 53min on Win2000 P-IV 2.8GHz 2GB RAM

– That is Matlab code; C++ code takes ~2 hours.
• Trace plots indicated good convergence properties
• Metropolis Hastings acceptance probabilities good:

– Range of (0.04, 0.53)
– (10th,50th,90th) percentiles of (0.20, 0.29, 0.50)
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Example: Results
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Example: Peak Detection

• We first did “peak detection” 
Local maxima in posterior mean (denoised) estimate of B0(t) with
High posterior probability of nonzero mean; Pr{B0(t)>0|Y}≥0.95

• Using this criterion, we found 58 peaks
• We restrict inference to values of t at peaks
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Example: Flagged Peaks

m/z Effect p Comment
3412.6 int. <0.0005 PC3MM2>A375P for brain-injected only

3496.6 organ <0.0005 Only expressed in brain-injected mice

3886.3 organ <0.0005 Only expressed in brain-injected mice

11721 cell line <0.0005 PC3MM2>A375P

4168.2 int. 0.0005 PC3MM2>A375P in brain-injected only

4252.1 int. <0.0005 PC3MM2>A375P in brain-injected only

4270.1 cell line <0.0005 PC3MM2>A375P

5805.3 int. <0.0005 brain>lung only for mice given A375P cell-line

6015.2 cell line <0.0005 PC3MM2>A375P

11721 organ <0.0005 lung>brain

Detecting ‘significant’ peaks: (assoc. w/ organ,cl,int)
For each t at a peak, compute pi(t)=min[Pr{Bi(t)>0},Pr{Bi(t)<0}]
Flag any peak for which pi(t) is very small. 

Using this criterion, we flagged 9 peaks as interesting
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Example: Results
• Specific to brain-

injected mice
• May be CGRP-II

(3882.34 Dal), 
peptide in mouse 
proteome that 
dilates blood 
vessels in brain

• Host response to 
tumor implanted 
in brain?
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Example: Results
• Higher in mice 

injected with 
metastatic (PC3-
MM2) cell line

• May be MTS1 
(11721.43 Dalt), 
metastatic cell 
protein in mouse 
proteome.

• Also higher in lung-
injected mice than 
brain-injected mice
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Example: Results

• Laser intensity effect adjusts for:
– Shifts in intensities
– Offsets in m/z scale

• Important proof of principle that “linear” functional term can 
be used to adjust for functional effects of nuisance factors
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Discussion
• Introduced unified modeling approach for FDA 

– Applied here to MALDI-TOF, but method is general.

• Method based on mixed models; is FLEXIBLE
– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions for future sampled curves
– Predictive probabilities for group membership of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability in the model propagated throughout inference.
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Discussion
• Since functions adaptively regularized using wavelet shrinkage, 

the method is appropriate for spatially heterogeneous
functional data.

• Approach is Bayesian.  The only informative priors to elicit are 
regularization parameters, which can be estimated from data 
using empirical Bayes.

• Method complex, but code straightforward to implement.
• Method generalizes to higher dimensional functions, e.g. image 

data, space/time (fixed domain) data.
• We used wavelet bases, but approach can be generalized to 

other orthogonal basis functions.
• Major challenges in developing unified statistical modeling 

approach for replicated functional data, but worth the effort.
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