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Functional Data
• Functional Data:

– Ideal units of observation: curves
– Observed data:  curves sampled on fine grid

• Increasingly encountered in biomedical research with 
new technologies taking automated measurements

• Present unique challenges:
– Extremely large data sets (>100s-1000s per curve)
– Curves may be complex and irregular, spatially 

heterogeneous with many local features
• Our focus: Functional regression with 

functional response and scalar predictors.
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Example: Colon Carcinogenesis
• Stem Cells:

Mother cells 
need crypt base

• Depth in crypt ~ 
age of cells

• Relative Cell 
Position: depth 
within crypts

t ∈ (0,1)

Lumen

crypts
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Colon Carcinogenesis Data

• 30 rats fed 1 of 2 diets, exposed to carcinogen, euthanized after 1 
of 5 times after carcinogen exposure (0h,3h,6h,9h,12h) 

• MGMT measured via IHCS for 15 crypts/rat, ~250 obs/crypt
• Diet effect? Vary by time and/or crypt depth?  Related to other 

covariates (DNA adduct/apoptosis)? Relative variability from 
rat-to-rat vs. crypt-to-crypt?
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Example: Mass Spectrometry 
Proteomics

• Central dogma: DNA mRNA protein
• Microarrays: measure expression levels of 10,000s of 

genes in sample (amount of mRNA) 
• Proteomics: look at proteins in sample. 

– Gaining increased attention in research
• Proteins more biologically relevant than mRNA 
• Can use readily available fluids (e.g. blood, urine)

• MALDI-TOF: mass spectrometry instrument 
that can see 100s or 1000s of proteins in 
sample
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Sample MALDI-TOF Spectrum

• MALDI-TOF Spectrum: observed function
• g(t) = intensity of spectrum at m/z value t 
• Intensity at peak (roughly) estimates the abundance 

of some protein with molecular weight of t Daltons
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Example: Mouse proteomics study
• 16 mice had 1 of 2 cancer cell lines injected into 

1 of 2 organs (lung or brain)
• Cell lines:

– A375P: human melanoma, low metastatic potential
– PC3MM2: human prostate, highly metastatic

• Blood serum extracted and placed on SELDI chip
• Run at 2 different laser intensities (low/ high)
• Total of 32 spectra (observed functions),  2 per mouse
• Observations on equally-spaced grid of 7985
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Example: Mouse proteomics study
• Goal: Find proteins differentially expressed by:

– Host organ site (lung/brain)
– Donor cell line (A375P/PC3MM2)
– Organ-by-cell line interaction

• Combine information across laser intensities: 
Requires us to include in modeling:
– Functional laser intensity effect
– Random effect functions to account for 

correlation between spectra from same mouse
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Example: Accelerometer Data

• Accelerometers: small motion sensors that 
digitally record minute-by-minute activity levels
– Increasingly used in surveillance and intervention studies 

• TriTrac-R3D: sensor worn on hip
– Minute-by-minute record of motion in 3 planes
– Condensed into single activity level 

measurement/minute
– Activity “profile” for each day
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Accelerometer Data
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Accelerometer Data
• Planet Health Study (Harvard University):

– Intervention study investigating activity levels of 
middle school children in Boston area schools

– Children’s activity levels objectively monitored 
using TriTrac-R3D activity monitor for one or 
two 4-day sessions

– Data considered:  292 daily profiles/103 
children/5 schools, 660 measurements/profile 
(every minute from 9am-8pm)

• Primary Goal: Assess how activity levels vary 
across child-level and other covariates, and assess 
whether these effects vary by time-of-day.
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Heatmap of Missingness
(Black=missing)

Return
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Linear Mixed Models
Linear Mixed Model (Laird and Ware, 1982):
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• Fixed effects part, Xβ, accommodate a broad class of 
mean structures, including main effects, 
interactions, and linear coefficients.

• Random effects part, Zu, provide a convenient 
mechanism for modeling correlation among the N 
observations.
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Functional Mixed Model (FMM)
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Suppose we observe a sample of N curves, 
Y (t), i=1, …, N, on a closed interval Ti

• DEFN: U(t)~MGP(P,Q) implies the rows of P-1/2U(t) are ind. 
mean zero Gaussian Processes with covariance surface Q(t1,t2). 
– Functional generalization of Matrix Normal (Dawid, 1981).
– Implies Cov{Ui(t1),Uj(t2)}=Pij * Q(t1,t2)

• P and R are covariance matrices (between-curve)
• Q(t1,t2) and S(t1,t2) are covariance surfaces on  T ×T
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Model: SELDI Example
Let Yi(t) be the SELDI spectrum i

• Xi1=1 for lung, -1 brain.  Xi2=1 for A375P, -1 for PC3MM2

Xi3= X1 * X2 Xi4=1 for low laser intensity, -1 high.
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• B0(t) = overall mean spectrum B1(t) = organ main effect function

B2(t) = cell-line main effect B3(t) = org x cell-line int function

B4(t) = laser intensity effect function

• Zik=1 if spectrum i is from mouse k (k=1, …, 16)

• Uk(t) is random effect function for mouse k.
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Discrete Version of FMM
Suppose each observed curve is sampled on a common 
equally-spaced grid of length T.
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• U and E follow the Matrix Normal distn.
– U~MN(P,Q) implies Cov{Uij, Ui’j’}=Pii’*Qjj’

• P and R are covariance matrices  (m × m & N × N)
• Q and S are within-curve covariance matrices (T × T)
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Functional Mixed Models
• Key feature of FMM: Does not require 

specification of parametric form for curves
• Kernels/fixed-knot splines may not work well 

for spatially heterogeneous or irregular 
functional data – inherent smoothness 
assumptions attenuate local features

• Wavelet Regression: nonparametric 
regression technique that better preserves 
local features present in the curves.
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Introduction to Wavelets
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• Discrete Wavelet Transform (DWT): fast algorithm {O(T)}

for obtaining T empirical wavelet coefficients for curves 
sampled on equally-spaced grid of length T.

• Linear Representation: d = y W’
– W’ =T-by-T orthogonal projection matrix

• Inverse DWT (IDWT): y = d W
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Wavelet Regression
• Useful properties of wavelets:

– Whitening property
– Compact support 
– Parsimonious representation

• Wavelet Regression – 3 step process
1. Project data into wavelet space 
2. Threshold/shrink coefficients
3. Project back to data space

• Yields adaptively regularized nonparametric 
estimates
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Adaptive Regularization
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Adaptive Regularization
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Adaptive Regularization
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
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2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM

1. Project observed functions Y to wavelet space

• Apply DWT to rows of Y to get wavelet coefficients 
corresponding to each observed function
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• Projects the observed curves into the space 
spanned by the wavelet bases.
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Wavelet-Based FMM: 
General Approach

1. Project observed functions Y into 
wavelet  space.

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet Space FMM
D : empirical wavelet coefficients for observed curves

Row i contains wavelet coefficients for observed curve i
Each column double-indexed by wavelet scale j and location k

• B*=BW’ & U*=UW’ : Rows contain wavelet 
coefficients for the fixed and random effect functions, 

• E*=EW’ is the matrix of wavelet-space residuals
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• Q*=WQW’ and S*=WSW’ model the covariance structure 
between wavelet coefficients for a given function.

• P, Q*, R and S* are typically too large to estimate in an
unstructured fashion.
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Covariance Assumptions
• We choose parametric structures for P and R to 

model the covariance structure between the curves. 
– Based on the experimental design
– As in linear mixed models.

• We assume the between-wavelet covariance matrices 
Q* and S* are diagonal ( Q*=diag{qjk}, S*=diag{sjk} ).
– Wavelet coefficients within given function independent
– Heuristically justified by whitening property of DWT
– Common working assumption in wavelet regression
– Is parsimonious in wavelet space (T parameters), yet leads 

to flexible class of covariance structures in data space
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Simulation: Covariance Structure

• True mean: line plus peak
• True variance: increasing in t, with extra var at peak
• True autocorrelation: Strong autocorrelation (0.9) at 

left, weak autocorrelation (0.1) right, extra at peak
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Simulation: Covariance Structure

• Independence in wavelet space accommodates 
varying degrees of autocorrelation in data space

• Allowing variance components to vary across scale j
and location k accommodates nonstationarities
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Simulation: Covariance Structure

• Most wavelet regression methods (Fan and Lin 1998, Morris, 
et al. 2003, Abramovich and Angelini 2006, Antoniadis and 
Sapatinas) only index variances by scale j, but not location k.

• Not flexible enough to capture nonstat. covariance features
• Unnecessary restriction in multiple function case, since 

replicate functions allow estimation of VC by (j,k)
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Prior Assumptions
Mixture prior on βijk

*:

0
*** )1(),0( δγτγ ijkijijkijk NB −+=

)(Bernoulli*
ijijk πγ =

• Nonlinearly shrinks Bijk
* towards 0, leading to

adaptively regularized estimates of Bi(t).
• τij & πij are regularization parameters

– Can be elicited, or estimated from the data using empirical 
Bayes approach (extend Clyde&George 1999 to FMM)
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Model Fitting
• MCMC to obtain posterior samples of model quantities

– Work with marginal likelihood; U* integrated out; 
• Let Ω be a vector containing ALL covariance 

parameters (i.e. Q* and S*).  
MCMC Steps

1. Sample from f(B*|D,Ω):
Mixture of normals and point masses at 0 for each i,j,k.

2. Sample from f(Ω|D,B*): 
Metropolis-Hastings steps for each j,k

3. If desired, sample from f(U*|D,B*,Ω):
Multivariate normals
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Wavelet-Based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1. Project observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data space.
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Wavelet-Based FMM
3. Project wavelet-space estimates 

(posterior samples) back to data space.

• Apply IDWT to posterior samples of B* to 
get posterior samples of fixed effect functions 
Bj(t) for i=1,…, p, on grid t. 

– B=B*W
• Posterior samples of Uk(t), Q, and S are also

available, if desired.
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Adaptive Regularization
• Posterior samples/estimates of fixed effect functions 

Bi(t) adaptively regularized from shrinkage prior
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• Able to preserve 
dominant spikes 
in mean curves, 
if present
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Adaptive Regularization
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Adaptive Regularization
• Posterior samples/estimates of random effect functions Uj(t) are 

also adaptively regularized from Gaussian prior, since each 
wavelet coefficient has its own random effect & residual variance

• Able to preserve 
spikes in random 
effect functions, 
as well

• Important for 
estimation of 
random effect 
functions AND for 
valid inference on 
fixed effect 
functions.
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Adaptive Regularization
• While adaptive to irregularity, this framework can also 

yield relatively smooth effect functions when the data 
supports smooth representations. 
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Bayesian Inference
Given posterior samples of all model quantities, we can 

perform any desired Bayesian inference or prediction:
1. Pointwise posterior credible intervals for funct. effects
2. Posterior probabilities of interest – either pointwise, 

joint, or aggregating across locations within the curve.
3. Can account for multiple testing in identifying 

significant regions of curves by controlling the expected
Bayesian FDR

4. Can compute posterior predictive distributions, which 
can be used for model-checking or other purposes.
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Bayesian Inference:
Identifying Significant Regions of Curves

Procedure (desired effect size ≥δ, FDR α)
1. Compute pointwise posterior probabilities of effect 

size of interest being at least δ
pil=Pr{|Bj(tl)|>δ|Y} for l=1, …, T

2. Sort peaks in descending order of pil {pi(l), l=1, …, T}
3. Identify cutpoint ϕα on posterior probabilities that 

controls expected Bayesian FDR to be ≤ α
ϕα=pi(λ), where
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4. Flag the set of locations {tl : pil ≤ ϕα} as significant 
(According to model, expect only α to be false pos.)
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Results: SELDI Example

• Using α=0.05, δ=1 (2-fold expression on log2 scale), 
we flag a number of spectral regions.
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Results: SELDI Example

• 3900 D (CGRP-II): dilates blood vessels in brain
• 7620 D (nerogranin): active in synaptic modeling in brain 

(Not detected as peak)
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Results: SELDI Example

• Inclusion of nonparametric functional laser intensity 
effect is able to adjust for systematic differences in 
the x and y axes between laser intensity scans
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Results: SELDI Example

• Draws of spectra from posterior predictive 
distribution yield data that looks like real SELDI 
data (3rd column), indicating reasonable model fit.
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Incomplete Profiles
• Lots of missing data (Missing Data)

Example of incomplete profile
• WFMM can only be applied to complete 

profiles (with no missing regions)
– 95 of the 292 profiles complete from 9am-8pm

• How do we incorporate information from 
other 197 incomplete profiles ?  
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Approach: Incomplete Profiles
1. First fit model to complete profiles, get posterior 

distribution samples for model parameters.
2. Use these to estimate predictive distributions for the 

the incomplete profiles  (fig)
• Borrow information about what the curves in these regions look like.
• Account for child-specific and day-specific covariates.

3. Regress missing data on the observed data to obtain 
imputation distribution for missing regions (fig)

• Borrow information from nearby times in incomplete profiles.
• Makes predictions for missing regions “connected” with observed.

4. Supplement WFMM with step to stochastically 
impute values for missing data.

• Inference appropriately accounts for uncertainty in 
imputation
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Incomplete Profile

Return
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Predictive Distribution
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Imputation distribution
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Incomplete Profiles
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Missing Data in the WFMM
• Problem: Imputation distribution in data space, 

modeling done in wavelet space
• Solution: Project imputation distributions into 

wavelet space
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• Add step to MCMC whereby “missing” wavelet 
coefficients Dijk~N(M*ijk,V*ijk)
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Discussion
• Introduced unified modeling approach for FDA 

– Adaptive enough to handle irregularities in both mean 
structures and random effects (covariances) 

• Method based on mixed models; is FLEXIBLE
– Accommodates a wide range of experimental designs
– Addresses large number of research questions

• Posterior samples allow Bayesian inference and prediction
– Posterior credible intervals; pointwise or joint
– Predictive distributions for future sampled curves
– Predictive probabilities for classification of new curves
– Bayesian functional inference can be done via Bayes Factors

• Since a unified modeling approach is used, all sources of 
variability in the model propagated throughout inference.
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Discussion
• Approach is Bayesian.  The only informative priors to 

elicit are regularization parameters, which can be 
estimated from data using empirical Bayes.

• Developed general-use code – reasonably fast and 
straightforward to use  minimum information to 
specify is Y, X, Z matrices.

• Can deal with missing data, i.e. partially observed 
functions 

• Method generalizes to higher dimensional functions, 
e.g. image data, space/time (fixed domain) data

• The Gaussian assumptions can be robustified
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space
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Projecting FMM to Wavelet Space

{

}

{

}

{ {
TTTT ××

×

×

×

×

++=
Nm

mN

p

pN

N
ZX *** EUBD

),0(~

 ),0(~
**

**

SE

QU

MVN

MVN

i

i


	Bayesian Mixed Models for Functional Data
	Functional Data
	Example: Colon Carcinogenesis
	Colon Carcinogenesis Data
	Example: Mass Spectrometry Proteomics
	Sample MALDI-TOF Spectrum
	Example: Mouse proteomics study
	Example: Mouse proteomics study
	Example: Accelerometer Data
	Accelerometer Data
	Accelerometer Data
	Heatmap of Missingness(Black=missing)
	Linear Mixed Models
	Functional Mixed Model (FMM)
	Model: SELDI Example
	Discrete Version of FMM
	Functional Mixed Models
	Introduction to Wavelets
	Wavelet Regression
	Adaptive Regularization
	Adaptive Regularization
	Adaptive Regularization
	Wavelet-Based FMM: General Approach
	Wavelet-Based FMM: General Approach
	Wavelet-Based FMM
	Wavelet-Based FMM: General Approach
	Wavelet Space FMM
	Covariance Assumptions
	Simulation: Covariance Structure
	Simulation: Covariance Structure
	Simulation: Covariance Structure
	Prior Assumptions
	Model Fitting
	Wavelet-Based FMM: General Approach
	Wavelet-Based FMM
	Adaptive Regularization
	Adaptive Regularization
	Adaptive Regularization
	Adaptive Regularization
	Bayesian Inference
	Bayesian Inference:Identifying Significant Regions of Curves
	Results: SELDI Example
	Results: SELDI Example
	Results: SELDI Example
	Results: SELDI Example
	Incomplete Profiles
	Approach: Incomplete Profiles
	Incomplete Profile
	Predictive Distribution
	Imputation distribution
	Incomplete Profiles
	Missing Data in the WFMM
	Discussion
	Discussion
	Acknowledgements
	Projecting FMM to Wavelet Space
	Projecting FMM to Wavelet Space
	Projecting FMM to Wavelet Space
	Projecting FMM to Wavelet Space
	Projecting FMM to Wavelet Space

