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Abstract

Early detection is critical in disease control and prevention. Molecular
biomarkers provide valuable information about the status of a cell at any
given time point. Biomarker research has benefited from recent advances
in technologies such as gene expression microarrays, and more recently, pro-
teomics. Motivated by specific problems involving proteomic profiles gener-
ated using Matrix-Assisted Laser Desorption and Ionization (MALDI-TOF)
mass spectrometry, we propose model-based inference with mixtures of beta
distributions for real-time discrimination in the context of protein biomarker
discovery. Most biomarker discovery projects aim at identifying features in the
biological proteomic profiles that distinguish cancers from normals, between
different stages of disease development, or between experimental conditions
(such as different treatment arms). The key to our approach is the use of a
fully model-based approach, with coherent joint inference across most steps
of the analysis. The end product of the proposed approach is a probability
model over a list of protein masses corresponding to peaks in the observed
spectra, and a probability model on indicators of differential expression for
these proteins. The probability model provides a single coherent summary
of the uncertainties in multiple steps of the data analysis, including baseline
subtraction, smoothing and peak identification. Some ad-hoc choices remain,
including some pre-processing and the solution of the label switching problem
when summarizing the simulation output.
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Nonparametric Bayes; Proteomics; Spectra.

1.1 Introduction

We propose a model-based approach to analyze data from Matrix-Assisted
Laser Desorption and Ionization — Time of Flight (MALDI-TOF) experiments.
We construct a mixture of Beta model to represent protein peaks in the spec-
tra. An important feature of the proposed model is a hierarchical prior with
indicators for differential expression for each protein peak. The posterior dis-
tribution on the number of peaks, the locations of the peaks and the indicators
for differential expression summarizes (almost) all relevant uncertainty related
to the experiment. This is made possible by using one coherent model to im-
plement joint inference for multiple steps in the inference, including baseline
subtraction, noise removal, peak detection and comparison across biologic
conditions.

Molecular biologists and geneticists have been guided by the central dogma
that DNA produces RNA, which makes proteins, the actual agents that per-
form the cellular biologic functions (Alberts et al., 1994). Researchers are in-
terested in seeking both genetic and protein biomarkers of disease. Advances
in genomics have given scientists the ability to assess the simultaneous expres-
sion of thousands of genes commonly collected from ¢cDNA microarrays and
oligonucleotide gene chips. More recent advances in mass spectrometry have
generated new data analytic challenges in proteomics, similar to those created
by gene expression array technologies. Proteomics is valuable in the discov-
ery of biomarkers because the proteome reflects both the intrinsic genetic
program of the cell and the impact of its immediate environment (Srinivas
et al., 2001). Specifically, in the context of medical and cancer research, the
clinician’s ultimate aim of finding new targets for diagnosis and therapeutic
strategies can benefit from a better understanding of the molecular circuitry.
Valuable information can be obtained by investigating protein profiles over a
wide range of molecular weights in small biological specimens collected from
different pathological groups, such as different disease stages, different treat-
ment arms, or normal versus cancer subjects. See, for example, Baggerly
et al. (2006) for a review of the experimental setup. In this paper, motivated
by specific cancer research challenges involving Matrix-Assisted Laser Des-
orption and Ionization (MALDI) proteomic spectra, we suggest techniques
based on density estimation for purposes of discrimination, classification, and
prediction.



1.1.1 Background

Proteomics was originally defined to represent the analysis of the entire
protein component of a cell or tissue. Proteomics now encompasses the study
of expressed proteins; specifically, this refers to a group of technologies that
attempt to separate, identify and characterize a global set of proteins, as dis-
cussed in Arthur (2003). Proteomic methods may be used to simultaneously
quantify the expression levels of many proteins, thus providing information
on biological cell activity such as the structure-function relationship under
healthy conditions and disease conditions, for example cancer. Proteomic
technologies can be employed to identify markers for cancer diagnosis, to
monitor disease progression, and to identify therapeutic targets. These meth-
ods may be applied to easily obtained samples from the body (blood serum,
saliva, urine, breast nipple aspirate fluid) in order to measure the distribution
of proteins in that sample. Among the most important proteomic methods
are 2D gel electrophoresis, and mass spectrometry. Mass spectrometry (MS)
measures the relative amounts of individual molecules in a sample, converted
to ions. The quantity that is actually measured is the mass-to-charge, or
the m/z ratio. Masses of atoms and molecules are usually measured in a unit
called the Dalton, which is defined as 1/12 the mass of *>C. The unit of charge
z is that present on an electron or a proton. The m/z ratio therefore refers
to the number of Daltons per unit charge. In the case of singly charged ions,
such as (most of) those generated in MALDI, this ratio is numerically equal
to the ionic mass of the ions (in Daltons), plus one, due to the added mass
of the unbalanced proton. In general, MS works by converting molecules to
ions and measuring the proportions of the resulting ions in the mixture, after
sorting them by the m/z ratio. This results in a histogram of m/z values,
usually termed as a mass spectrum. Two common MS technologies are the
Surface Enhanced Laser Desorption and Ionization (SELDI) technique and
the MALDI method. MS, especially using the MALDI technique, has been
very successfully applied to determine the molecular weight of both peptides
and proteins, as well as to obtain structural information. This procedure has
the advantages of rapid setup, high sensitivity, and tolerance for heteroge-
neous samples. Details of the experimental setup are described, for example,
in Baggerly et al. (2003) or Baggerly et al. (2006). Briefly, the biological sam-
ple for which we wish to determine protein abundance is fixed in a matrix. A
laser beam is used to break free and ionize individual protein molecules. The
experiment is arranged such that ionized proteins are exposed to an electric
field that accelerates molecules along a flight tube. On the other end of the
flight tube molecules hit a detector that records a histogram of the number of
molecules that hit over time. Assumig that all ionized molecules carry a unit
charge, the time of flight is deterministically related to the molecule mass.
The histogram of detector events over time can therefore be be changed to
a histogram of detector events over protein masses. Allowing for multiple
charges, the mass scale is replaced by a scale of mass/charge ratios. The
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FIGURE 1.1: Raw data. The left panel shows the recorded spectra for
normal samples. The right panel shows the spectra for tumor samples. The
X axis are the m/z values.

histogram of detector events is known as mass/charge spectrum. More tech-
nical details are available, for example, in Siuzdak (2003) or de Hoffman and
Stroobant (2002). Our motivating data set was generated using the MALDI
technique.

Figure 1.1 shows typical mass spectra, plotted against mass/charge ratios.
Ideally, one would expect a mass spectrum to be mostly flat, with spikes
at the masses of proteins in the mixture. However, that is not the case.
Firstly, each charged particle, on being energized by the laser, has a random
initial velocity, before being accelerated by the electromagnetic field. These
phenomena lead to the existence of a fairly smooth peak around the mass of
the protein concerned. For lower m/z molecules, the peak is very narrow, and
it gets broader with increasing m/z. Moreover, the ions generated may have
slightly different masses, due to addition or removal of charged particles. In
order to improve the resolution of the mass spectrometer, the sample is usually
fractionated. This is achieved, for example, by running the sample through a
gel, which separates out different molecules according to their pH values. The
gel is then divided into pieces or fractions. Ideally, each fraction should contain
a definite and distinct subset of proteins in the sample. The portion of the
sample from each fraction is isolated and analyzed by the mass spectrometer.
In practice, however, we find that the fractions do not separate as cleanly as
expected. In some cases, the same protein may be found in multiple fractions,
and the fractions may not be consistent across samples. This is the case, for
example, for the motivating data set described later. Various other sources
of noise exist in mass spectrometry. In MALDI, noise may arise from ionized



molecules from the underlying matrix. This usually occurs at the lower end
of the m/z spectrum. Also, electrical noise may interfere, particularly if the
sensitivity is low or extremely small proportions of samples are used. This
noise may give rise to spurious peaks. At very low m/z values, large numbers
of particles can saturate the detector and introduce additional artifacts.

1.1.2 Statistical methods for classification of mass spectrom-
etry data

Recent literature in the cancer classification arena that used MS generated
data focused mainly on identifying biomarkers in serum to discriminate can-
cer from normal samples. Often the process involves a split of the data into
a training set and a validation set. The training set is used to identify a sub-
set of interesting biomarkers; the validation set is used to assess the selected
biomarkers either individually or simultaneously by their ability to classify
samples accurately in the separate test set. A number of statistical methods
have been discussed for biomarker selection, including t—statistics by Chen
et al. (2002), tree-based classification methods by Adam et al. (2002), genetic
algorithms and self-organizing maps by Petricoin et al. (2002) and Baggerly
et al. (2003), and artificial neural networks by Ball et al. (2002). The common
classification methods used include the classical approaches such as linear dis-
criminant analysis, quadratic discriminant analysis and k-nearest neighbors.
More recent publications have discussed the use of bagging and boosting to
the construction of a classifier, see Yasui et al. (2003) and Wu et al. (2003).
Moreover, Wu et al. (2003) also compared the performance of random forest
to other methods of classification and variable selection.

1.2 The Data

We consider the data set used as part of the First Annual Conference on
Proteomics and Data Mining at Duke University. The ultimate goal is to
identify protein biomarkers that distinguish between lung cancer and normal
subjects. Assuming that the up- (or down-) regulation of certain proteins is
the consequence of a transformed cancerous cell and its clonal expansion, an
early detection research project may focus on the identification of such early
molecular signs of lung cancer via the assessment of protein profiles from
specific biological specimens. Researchers can thus analyze the collected pro-
tein profiles and identify signature fingerprints for the classification between
lung cancer and normal samples. Based on the identified signature profiles,
researchers can ultimately study the biological significance of those specific
proteins or peptides. Such advances can potentially lead to clinical detection



tools. Different research groups have attempted to develop techniques to clas-
sify or cluster this data set. Our analysis initially employs the preprocessing
steps described in Baggerly et al. (2003). This motivating data set consists
of MALDI-MS spectra of serum for 24 individuals with lung cancer and 17
normal individuals (without cancer). For each subject (sample), the raw data
contained recordings of 20 fractions. Each such spectrum had readings for
60831 m/z values.

Traditional inference for mass/charge spectra proceeds in a step-wise fash-
ion, often ignoring uncertainties involved in each step of the process. For
example, Baggerly et al. (2003) analyzed this data set using the following
steps.

First, a baseline, computed using a windowed local minimum technique,
is subtracted from the data. This baseline correction has to be performed
separately for each spectrum in each sample. It is a crucial step in the pre-
processing, as we cannot combine the spectra otherwise in a meaningful man-
ner. Next, using a Fourier transform, periodic noise most likely associated
with electrical activity is removed. Next, the spectra are scaled by dividing
by the total current over all the readings. Next, exploratory data analysis
showed that several peaks were scattered across fractions, appearing in differ-
ent fractions for different samples. Therefore, the normalized fractions were
combined to generate one spectrum per sample. In a final pre-processing step,
the dimensionality of the data was drastically reduced by carrying out a win-
dowed peak identification. Taking the maximum intensity in each window (of
200 readings) and taking windows in which at least 8 of the samples contained
a peak, using an ad-hoc definition of peaks, the dimensionality was reduced
from 60381 to 506. The combined result of these pre-processing steps is a
506 x 41 peak matrix.

Baggerly et al. (2003) combined a genetic algorithm and an exhaustive
search to extract a small subset of peaks which were good discriminators
between cancers and normals. Perfect classification was achieved with a set
of 5 peaks with intensities at the following M/Z values: 3077, 12886, 74263,
2476, and 6966 Dalton.

1.3 Likelihood based inference for proteomic spectra

A common feature of currently used methods is the use of some form of
smoothing to separate the observed mass/charge spectrum into noise and sig-
nal, by directly smoothing the raw spectrum, by considering principal com-
ponents, or by using reasonable exploratory data analysis tools like the win-
dowing of the raw data described before. Also, most methods involve multiple
steps, including separate steps related to noise removal, baseline subtraction,



peak identification, and finally identification of differentially expressed peaks.
Such methods are highly appropriate when the focus of inference is the search
for peaks corresponding to specific proteins and the identification of peaks
that are correlated with the biologic condition of interest. A critical limita-
tion, however, is the lack of a joint probability model that characterizes the
combined uncertainty across all steps, and can be the basis for probability
statements related to the desired inference. As an alternative we propose a
likelihood-based approach that allow us to implement joint inference across
all steps. The estimated peaks differ little from what is obtained with other
methods. The main difference is in the full probabilistic description of all rele-
vant uncertainties. Instead of a point estimate we report a posterior distribu-
tion on the unknown true spectrum of mass/charge ratios. All uncertainties
related to denoising and baseline substraction are appropriately propagated
and accounted for. The proposed approach proceeds as follows. We treat the
spectrum as a histogram of observed detector events. We assume that the
original time-of-flight scale has been transformed to counts on a mass/charge
scale. Let pr(m) denote the frequency of mass/charge ratios m in the k-th
sample. We treat the recorded data as an i.i.d. sample of draws from py.
This naturally turns the inference problem into a density estimation problem
of inference on the unknown distribution pg, conditional on a random sample
summarized by the observed spectrum. The problem differs from traditional
density estimation problems due to the nature of the prior information. The
spectrum pg is known to be multimodal with sharp peaks corresponding to
different proteins, plus a smooth baseline. We are thus lead to consider models
for random distributions pg on a compact interval, allowing for relatively nar-
row peaks corresponding to different proteins. Without loss of generality we
assume that the range of mass/charge ratios is rescaled to the interval [0, 1].
A convenient model for random distributions on the unit interval that allows
for the desired features is a mixture of Beta distributions. Restricting the
Beta distributions in the mixture to integer parameters over a certain range
leads to Bernstein priors discussed in Petrone (1999a) We follow Robert and
Rousseau (2003) who argue for the use of Beta mixtures with unconstrained
parameters to achieve more parsimonious models. We introduce an addi-
tional level of mixture to deconvolve the random distribution into one part,
fr, corresponding to the peaks arising from specific proteins and one part,
By, corresponding to a non-zero baseline arising from background noise in
the detector, the matrix used to fix the probe on the sample plate and other
unspecified sources unrelated to the biologic effects of interest. A hierarchical
prior distribution completes the model. In words, the hierarchical prior proba-
bility model is described as follows. We start with a distribution for a random
numbers J of peaks, continue with a prior for the location and scale of the
J peaks, and weights for each peak in each of the biologic samples. Samples
collected under different biologic conditions, for example, tumor and normal,
might require different weights, corresponding to different abundance of the
respective protein in the samples. In addition to the peaks related to specific



proteins in the probes the mixture also includes terms to represent a smooth
baseline. Inference about the baseline is usually not of interest in itself. It is
a nuisance parameter. We use Ji to denote the number of Beta terms that
constitute the baseline, allowing for a different size mixture for each sample
k. Details of the prior are described below. In the context of this hierarchical
Beta mixture the desired inference about relative abundance of proteins in
the probes reduces to inference about the weights in the Beta mixtures. We
implement inference with a reasonably straightforward Markov chain Monte
Carlo (MCMC) posterior simulation. The random number J and Jj of terms
in the mixtures complicates inference by introducing a variable dimension pa-
rameter space. We use a reversible jump MCMC implementation to achieve
the desired posterior simulation.

1.4 A hierarchical beta mixture model

We assume that the mass/charge spectrum is recorded on a grid m;, i =
1,...,I. For convenience we rescale to m; € [0,1]. Let yp(m;), k=1,..., K
denote the observed count in sample k for mass/charge ratio m;. Due to the
nonlinear nature of the transformation from time-of-flight to mass/charge,
the grid on the mass/charge scale is not equally spaced. Sample k is observed
under biologic condition zj. For example, z; € {0,1} for a comparison of
normal versus tumor tissue samples. We write yr = (yx(m1),...,yx(my)) for
the data from the k-th sample, y = (y1,...,yx) for the entire data set, and
0 to generically indicate all unknown parameters in the model. We use an
unconventional parametrization of Beta distributions, letting Be(m, s) denote
a Beta distribution with mean m and standard deviation s (with an appro-
priate constraint on the variance). This notation simplifies the description of
reversible jump moves and other technical details below. Finally, we generi-
cally use p(a) and p(a | b) to denote the distribution of a random variable a
and the conditional distribution of a given b. We use notation like Be(x; m, s)
to denote a Beta distribution with parameters (m, s) for the random variable
x. We assume the following sampling model:

I
plyr | 0) = Hpk(mi)y’“(mi), pr(m) = pox Br.(m) + (1 — pox) fe(m). (1.1)

In words, we assume i.i.d. sampling from an unknown distribution pg. The
distribution py is assumed to arise as a convolution of a baseline By (m) and
a spectrum fi(m). We refer to the data y, as the empirical spectrum, fi
as the unknown true spectrum, Bj as the baseline, and p; as baseline plus
spectrum, or the unknown distribution of mass/charge ratios. Both baseline
and spectrum, are represented as mixtures of beta distributions. The means
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of the Beta kernels in the mixture for fj are the mass/charge ratios of the
detected proteins. Specifically we define

J
fr(m) = waj Be(m; €5, a;), (1.2)

j=1

where © = z, denotes the biologic condition of sample k. We assume that
6o = (J,€j,05, 5 =1,...,J), the number and location and scale of the Beta
terms, is common across all samples. The weights w,; are specific to each
biologic condition. This is consistent with the interpretation of the peaks in
the spectrum as arising from proteins in the sample. The weights are the
abundance of protein j in the k-th sample. For the baseline we use a similar
mixture of Beta model:

T
By(m) = kaj Be(m; 1k, Brj)- (1.3)

j=1

Here Jj, is the size of the mixture, vi; are the weights, and (7}, Ox;) are the
parameters of the j-th term in the mixture for the baseline of sample k. The
parameters 0, = (Ji, Vkj, Mkj, Brjs § = 1,..., i) describe the Beta mixture
model for the baseline in the k-th sample. The choice of the mixture of Beta
representation for the baseline is for convenience of the implementation. Any
alternative non-linear regression model, such as regression splines, could be
used with little change in the remaining discussion.

The likelihood (1.1) describes the assumed sampling model, conditional on
the unknown parameters 6 = (6g, O, wg, k= 1,..., K), with (1.2) and (1.3)
defining how the paramters determine the sampling model. The model is
completed with a hierarchical prior. Let Poi™()\) denote a Poisson distribu-
tion with parameter A, constrained to non-zero values, let Ga(a,b) denote a
Gamma distribution with expectation a/b, and let U(a,b) denote a uniform
distribution on [a,b]. For the baseline mixture we assume

Ji ~ Poi™ (Ro),nej ~ U(0,1), Brj ~U(B,B), and vy ~ Dir(1,...,1). (1.4)

Here Ry, 3 and 3 are fixed hyperparameters. For the peaks in the spectra we
assume

J ~Poit(Ry),e; ~U(0,1), aj ~ U(a, @), (1.5)

with fixed hyperparameters Ri,a and @. A constraint @ < (§ ensures identi-
fiability by uniquely identifying any given Beta kernel as a term in either the
baseline mixture (1.4) or a peak in (1.5).

Finally, for the weights w,; we assume common values for all samples un-
der the same biologic condition. Thus the weights are indexed by biologic
condition z and peak j. The prior model includes positive prior probability
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for ties wo; = wy;. Let A\j = I(wp; = wq;) be an indicator for a tie and let
I'={j: A\j =1} and L = ) \; denote the set of indices and the number of
peaks with \; =1 and W; = Zjer wo;. Let w*! and w’, z = 0,1, denote

the (standardized) subvectors of the weights w,; defined by A, as follows:

1
'LU*l E (w{l’ 7wzl) = 71(’11}0]7 VRS F) and
1 .
w;O = (w::?> )w;’ojfL) = 1, (’LUIJ‘; jgn).

We assume

P’/‘()\jzl):ﬂ', jZl,...,J
w*! ~ Dir(Cy,...,Cy), and w® ~ Dir(Cy,...,Cy), x = 0,1, (1.6)

and p(Wy | A) = Be(LCy, (J — L) Cy). In words, we assume that the weights
wo = (wo1,...,woey) and wy; = (wiy,...,wyy) are generated as product of
independent rescaled Dirichlet distributions on the subsets of differentially
and non-differentially expressed peaks, with positive prior probability 7 of
any of the peaks j = 1,...,J being identical across + = 0,1. The model
is completed with a hyper prior 7 ~ Be(A,, B;) (using the conventional
parametrization of a Beta distribution).

We recognize that the model specification includes several simplifying as-
sumptions. For example, we assume equal weights w,; across all samples
under the same biologic condition. A more realistic prior would require a hi-
erarchical extension with sample specific weights, centered at distinct means
under each biologic condition. Instead, we chose to use the simplified model
and subsume the model misspecification error in the multinomial sampling
model. Another simplification is the uniform prior on the peak locations ¢;
and peak widths a;. A more informative prior might formalize the fact that
peaks at higher masses tend to be wider, for reasons related to physics of the
experimental arrangment. Such dependent priors could easily be substituted
for (1.5).

1.5 Posterior inference

Inference in the proposed mixture of Beta model is implemented by Markov
chain Monte Carlo (MCMC) simulation. Most details of the implementation
are straightforward applications of standard MCMC algorithms. See, for ex-
ample Tierney (1994). We describe the outline of the algorithm by indicating
for each step the random variables that are updated, and the random quanti-
ties that are conditioned upon their currently imputed values. We use notation
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like [z | y, 2] to indicate that x is being updated, conditional on the known or
currently imputed values of y and z. We generically use #~ to indicate all pa-
rameters, except the parameter on the left side of the conditioning bar. Each
iteration of the MCMC simulation includes the following steps: [vy | 67, y*],
[0y ] W [ 07, y7), [w*t [ 07, y7), [wi® | 07,y%], [ [ 07, y7], [pox | y*],
[Jk | 877%, [J | eiay]v [ﬂk] | givy]v [nkj | 077y]a [aj | 077y]a and [Ej | aivy]‘

All steps except for the steps that update J and J are carried out with
Metropolis-Hastings transition probabilities. We considered the use of im-
puted latent variables to replace the mixtures with conditionally conjugate
hierarchical models, but found this to be computationally inferior. The tran-
sition probabilities used to update J and Jj require more attention. Changing
the size J and Jj, respectively, of the mixtures implies a change in dimension
of the parameter vector. We implement this by an application of reversible
jump MCMC (RJ) transitions (Green, 1995).

The reversible jump moves for changing J and Jj use split/merge and
birth/death proposals. The construction of the moves follows Richardson
and Green (1997) who define RJ for mixture of normal models. However,
the nature of the spectra with multipe highly peaked local modes requires a
careful implementation. Below we explain the moves to update J. The moves
for Ji are similar. The nature of By as relatively smooth baseline makes the
transition probabilities to change J;, computationally easier to carry out.

We introduce a matching pair of split and merge moves to propose incre-
ments and decrements in J. The split move implements a proposal to replace
a currently imputed peak j in fp by two daughter peaks j; and js, main-
taining the first two moments, and restricting the move such that the two
new peaks are each others’ nearest neighbors. The latter restriction simpli-
fies the matching merge move. To select the peak to be split we pick with
equal probabilty any of the current peaks. Without loss of generality as-
sume j = J, j3 = J and jo = J + 1, and we assume A\; = 0, i.e., the
selected peak is imputed to be differentially expressed across biologic con-
ditions x = 0,1. The modifications for A; = 1 are straightforward. Also,
in the following description we mark parameter values for the proposal with
tilde, as in . To propose new weights we generate two auxiliary variable
Uiz ~ Be(2,2), z = 0,1 and define W, ; = t15 Wey and Wy, j11 = (1—U1z) We.
To propose location and scale for the two new daughter peaks we generate
two auxiliary variables ua ~ Be(2,2) and ug ~ Ga(5,5) and define é; =

€7 + Ua\/ Wy g41/Wyy and €541 = €5 — U2/ Wy g /Wy, s+1 for the locations and
ay = /(1 —uz)(1 —ud)aqwyy /iy and a1 = Juz(l —u2)aZwyy /iy,
With the appropriate RIMCMC acceptance probabilty we accept the pro-
posal as the new state of the MCMC simulation. Otherwise we discard the
proposal. The matching merge proposal starts by selecting a pair of adjacent
peaks, (j1,j2) and uses the inverse transformation to propose a merge.

Another pair of transition probabilities to change J are birth and death
moves. To prepare a birth proposal it is important to slightly modify tradi-
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tional birth/death proposals as used, for example, in Richardson and Green
(1997). Because of the extremely narrow nature of the peaks in the spectrum,
a randomly proposed new peak would have practically zero chance of of being
accepted when evaluating the ratio of likelihood values in the RJ acceptance
probability. Instead we exploit the availability of reasonable ad-hoc solutions.
Let A={af,ep,wl,, 2 =0,1,77; h=1,...,H} denote a list of peaks identi-
fied by a preliminary data analysis step, using for example the approach out-
lined in Section 1.2. We refer to A as the reference solution. In words, the birth
move proceeds by proposing a new peak as a slightly jittered copy of one of the
reference peaks. The new peak is restricted to be, among all currently imputed
peaks, the closest neighbor to the identified reference peak. The additional
randomness and the restriction to nearest neighbors is important to facilitate
the matching death move. Specifically, we start by randomly selecting an in-
dex h € {1,..., H} to identify a peak in the reference solution. Then evaluate
A =min{|e) —¢l,j=1...J, 3|t —€2],g#h} and 0 = min{A,af} and
generate auxiliary variables u, s, vg, v1,7

U~ N(0,0’z) I(Ju| < A), s~ Galep,cp), Pr(r=1)=mp, v, ~ Be(cp,cp).

Again we use 0, etc., to mark proposed parameter values. We propose €511 =
€ +u, dyy1 = af s and A J+1=1. We deﬁr~1e weights for the newly~pr0p0sed
peak as Wy, j4+1 = W, Vg, With x =0,11f Ay =0and z =0if A\j4q = 1.
Finally, we re-standardize the weights w,; to sum to Wy over {j : \; = 1}
and to (1 — W) over {j: A\; =0}.

The matching death move proceeds by identifying one one the reference
peaks, again by h ~ U{1,..., H}, and finding the currently imputed peak j
that is closest to €7. When evaluating the appropriate RJ acceptance prob-
ability we keep in mind that €; might be nearest neighbor to more than one
reference peak.

1.6 Results

We implemented the proposed algorithm to analyze the lung cancer data set
described in Section 1.2. We exclude the very low part of the m/z scale to avoid
saturation artifacts. Figures 1.2 through 1.8 summarize the inference. We use
Y to generically indicate the observed data. Figure 1.2 shows the estimated
size of the beta mixtures. The baseline is adequately modeled with mixtures
of between 1 and 4 beta kernels. Although the baseline is not of interest by
itself, appropriate modeling of the baseline is critical for meaningful inference
on the spectrum fj.. The number of distinct proteins seen in the spectrum is a
posteriori estimated between 15 and 29 (Figure 1.2). The raw spectra include
many more local peaks. But only a subset of these are a posteriori identified
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as protein peaks. Others are attributed to noise, or included in the estimated
baseline. Figure 1.3 shows the estimated mean spectra. The figure plots
E[frx(m) | Y,z = z] for a future, &k = (K + 1)-st sample of normal (z = 0)
and cancer (x = 1) tissue, respectively. The posterior mean is evaluated as

J
Elfx(m) | Y, ax] = E[Y_ we;Be(m; ¢, a;) | V).

j=1

The posterior expectation is approximated as the ergodic average over the
iterations of the MCMC simulation. The model includes the unknown distri-
butions fi; as random quantities, parametrized by 6y. Thus, in addition to
point estimates, posterior inference provides a full probabilistic description of
uncertainties. Figure 1.4 illustrates the posterior distribution p(f | Y) by
showing 10 random draws for the random distributions.

Posterior probabilities for any event of interest related to fi can be reported.
In particular, we find posterior probabilities for differential expression across
the two biologic conditions. This is shown in Figure 1.5 which summarizes
posterior inference on the indicators for differential expression, 1—\;. (Recall
that \; is defined as indicator for wy; = wy;, i.e., non-differential expression).
The figure shows estimated marginal probabilities of differential expression for
all distinct peaks. A minor complication arises in reporting and summariz-
ing posterior inference about distinct proteins. The mixture f; only includes
exchangeable indices j, leading to the complication that the Beta kernel corre-
sponding to a given protein might have different indices at different iterations
of the posterior MCMC simulation. In other words, the protein identity is
not part of the probability model. To report posterior inference on specific
proteins requires additional post-processing to match Beta kernels that corre-
spond to the same protein across iterations. We use an ad-hoc rule. Assume
two peaks, j and h are recorded in the MCMC simulations and assume that
the j-th peak occured first in the MCMC output. The two peaks j and h are
counted as arising from the same protein if the difference in masses is below
a certain threshold. Specifically, we use |e; — €| < 0.5c; to match peaks.
Alternatively to this ad-hoc choice one could use a threshold related to the
nominal mass accuracy of the instrument. The problem of reporting inference
related to the terms in a mixture is known as the label switching problem.
Figure 1.5 shows unique peaks using this rule. Also, only proteins that occur
in at least 5% of the MCMC simulations are reported. Different sets of peaks
appear in different iterations of the MCMC, i.e., the number of peaks shown
in Figure 1.5 does not match J. All proteins with Pr(A; =0 |Y) > 50% are
considered differentially expressed and are are marked as solid dots. Figure
1.6 shows the estimated relative abundance E(w,; | Y) for all detected pro-
teins. For peaks corresponding to differentially expressed proteins we plot the
estimated abundance for z = 0 and z = 1, connected by a short line segment.
Table 1.1 gives a brief description of known proteins with mass close to the
identified peaks.
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Inference on A allows evaluation of posterior expected false discovery rates
(FDR). The notion of FDRs is a useful generalization of frequentist type-
I error rates to multiple hypothesis testing, introduced in Benjamini and
Hochberg (1995). Let §; denote an indicator for rejecting the j-th compar-
ison in a multiple comparison problem, i.e., deciding A; = 0 (no tie), in
our example. FDR is defined as FDR = > \;6;/> " 9;, the fraction of false
rejections, relative to the total number of rejections. Applications of FDR
to high throughput gene expression data are discussed, among others, by
Storey and Tibshirani (2003). Posterior expectated FDR is easily evaluated
as FDR = E(FDR | Y) = . E(A\; | Y)§;]/>°6;. Let A; = E()\; | Y) denote
the marginal posterior probability of non-differential expression for peak j.
Consider now decision rules that classify a protein as differentially expressed
if 1 — Xj > ~*. In analogy to classical hypothesis testing, we fix v* as the
minimum value that achieves a certain pre-set false discovery rate, FDR < a.
It can be shown (Miiller et al., 2004) that under several loss functions that
combine false negative and false discovery counts and/or rates the optimal
decision rule is of this form. Newton et al. (2004) comment on the dual role
of A in decision rules like §; = I(1 — X; > v*). It determines the decision,
and at the same time already reports the probability of a false discovery as
A; for §; = 1 and the probability of a false negative as 1 — \; for §; = 0.

An important feature of the proposed model is the multilevel nature of the
hierarchical probability model defined in (1.1) through (1.6). The posterior
on the indicators \; contains all relevant information about differential levels
of protein expression. Thus any inference about patterns of protein expression
across different biologic conditions can be derived from p(A | Y) only. The
discussed inference for the multiple comparison is one example. Another im-
portant decision problem related to the A; indicators is the identification of a
minimal set of of proteins to classify samples according to biologic condition.
In contrast to the multiple comparison decision the goal now is to select a
small number of differentially expressed proteins. A convenient formalization
of this question is to find locations m; with maximum posterior probability
P(A\; = 1Y) for peaks located at m;. Figure 1.7 shows the optimal sets of
peak locations as a function of the desired size of the set.

Finally, Figure 1.8 shows some aspects of the posterior MCMC, plotting
the trajectory of imputed values for J, and for the unique peak locations ¢;
against iterations.

1.7 Discussion

We have proposed a likelihood-based approach to inference about differ-
ential expression of proteins in mass/charge spectra from SELDI or MALDI
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FIGURE 1.1:

Detected proteins. The table reports all human proteins

within 0.1% of the reported masses €; and with Swissprot entries reporting
terms ”tumor, cancer, lung,” or “carcinoma.”

Mass name description
11662 S10AE  Expressed at moderate level in lung
13016 MAGAS5 Expressed in many tumors of several types, such as melanoma,
head and neck squamous cell carcinoma, lung carcinoma and
breast carcinoma, but not in normal tissues except for testes
13018 MAGB5 Expressed in testis. Not expressed in other normal tissues,
but is expressed in tumors of different histological origins
15126 HBA Involved in oxygen transport from the lung;
Defects cause thalassemia
15864 ERG28  Ubiquitous; strongly expressed in testis and some cancer cell lines
15867 HBB Involved in oxygen transport from the lung; Defects cause
sickle-cell anemia
15989 PA2GE  Present in lung
29383 FA57A  Not detected in normal lung
29937 LAPMS5 High levels in lymphoid and myeloid tissues. Highly
expressed in peripheral blood leokocytes, thymus,
spleen and lung
35010 GPR3 Expressed in lung at low level
35049 PLS1 Expressed in lung
35055 MAGA2 Expressed in many tumors of several types, such as melanoma,
head and neck squamous cell carcinoma, lung carcinoma and
breast carcinoma, but not in normal tissues except for testes
35844 SPON2  Expressed in normal lung tissues but not in lung carcinoma
cell lines
65369 SEPT9  Chromosomal aberration involving SEPT9/MSF is found
in therapy-related acute myeloid leukemia
65418 IL1AP  Detected in lung
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experiments. We argued that the appropriate likelihood is based on random
sampling. The usual approach of smoothing the raw spectrum is reasonable
and leads to almost identical point estimates.

An important advantage of the proposed model is the easy generalization
to more complicated experimental setups. Conditional on the A indicators the
rest of the model is independent of the biologic conditions for each sample.
Consider, for example, an experiment with more than two biologic conditions
(more than two tumor types, etc.). For more than two conditions it is con-
venient to describe ties by configuration indicators s;, € {1,...,S5;}. For
example, for four conditions a configuration of s; = (1,1, 1, 2) would indicate
that the first three conditions share the same peak, whereas expression is
different under the fourth condition.

Our approach allows added flexibility in addressing a number of statistical
challenges presented by MALDI-TOF mass spectra, including the interpreta-
tion of multiple tests, modelling and overfitting, and inadequate covariance
in estimation, as well as substantial autocorrelation within a spectrum. In
particular, a typical characteristic of MS data is that variance (and higher
moments) appear to be related to mean intensity, resulting in measured in-
tensities at the highest protein ”peaks” exhibiting greater variability than do
less abundant species. This property makes the magnitude of high intensity
peaks less reliable for ensuing in ference.

21






References

Adam, B., Qu, Y., Davis, J. W., Ward, M. D., Clements, M. A., Cazares,
L. H., Semmes, O. J., Schellhammer, P. F., Yaui, Y., Feng, Z., and
Wright Jr., G. L. (2002), “Serum protein fingerprinting coupled with
a pattern-matching algorithm distinguishes prostate cacner from benign
prostate hyperplasia and healthy men,” Cancer Research, 62, 3609-3614.

Alberts, B., Bray, D., Lewis, J., Ra, M., Roberts, K., and Watson, J. D.
(1994), Molecular biology of the cell (3rd ed.), New York, NY: Garland.

Arthur, J. M. (2003), “Proteomics,” Current opinion in nephrology and hy-
pertension, 12, 423-430.

Baggerly, K. A., Coombes, K. R., and Morris, J. S. (2006), “Bayesian Inference
for Gene Expression and Proteomics,” Cambridge University Press, chap.
An Introduction to High-Throughput Bioinformatics Data, pp. xxx—xxx.

Baggerly, K. A., Morris, J. S., Wang, J., Gold, D., Xiao, L. C., and Coombes,
K. R. (2003), “A comprehensive approach to analysis of MALDI-TOF pro-
teomics spectra from serum samples,” Proteomics, 9, 1667-1672.

Ball, G. S.,; Mian, F., Holding, F., Allibone, R. O., Lowe, J., Ali, S., G.,
L., McCardle, S., Ellis, I. O., Creaser, C., and Rees, R. C. (2002), “An
integrated approach utilizing artificial neural networks and SELDI mass
spectrometry for the classification of human tumors and rapid identification
of potential biomarkers,” Bioinformatics, 18, 395-404.

Benjamini, Y. and Hochberg, Y. (1995), “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the Royal
Statistical Society B, 57, 289-300.

Chen, G., Gharib, T. G., Huang, C.-C., Thomas, D. G., Shedden, K. A.,
Taylor, J. M. G., Kardia, S. L. R., Misek, D. E., Giordano, T. J., lannettoni,
M. D., Orringer, M. B., Hanash, S. M., and Beer, D. G. (2002), “Proteomic
analysis of lung adenocarcinoma: identification of a highly expressed set of
proteins in tumors,” Clinical Cancer Research, 8, 2298-2305.

de Hoffman, E. and Stroobant, V. (2002), Mass Spectrometry: Principles and
Applications, John Wiley.

Green, P. J. (1995), “Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination,” Biometrika, 82, 711-732.
o

0-8493-0052-5/00/%$0.00+8$.50
@© 2001 by CRC Press LLC



Miiller, P., Parmigiani, G., Robert, C., and Rousseau, J. (2004), “Optimal
Sample Size for Multiple Testing: the Case of Gene Expression Microar-
rays,” Journal of the American Statistical Association, 99.

Newton, M., Noueriry, A., Sarkar, D., and Ahlquist, P. (2004), “Detect-
ing differential gene expression with a semiparametric heirarchical mixture
model,” Biostatistics, 5, 155-176.

Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A.,
Steinberg, S. M., Mill, G. B., Simone, C., Fishman, D. A., Kohn, E. C.,
and Liotta, L. A. (2002), “Use of proteomic patterns in serum to identify
ovarian cancer,” The Lancet, 359, 572-577.

Petrone, S. (1999a), “Bayesian density estimation using Bernstein polynomi-
als,” Canadian Journal of Statistics, 27, 105—126.

Richardson, S. and Green, P. J. (1997), “On Bayesian Analysis of Mixtures
with an Unknown Number of Components,” Journal of the Royal Statistical
Society B, 59, 731-792.

Robert, C. and Rousseau, J. (2003), “A mixture approach to Bayesian good-
ness of fit,” Tech. rep., CREST/INSEE, Paris.

Siuzdak, G. (2003), The Ezxpanding Role of Mass Spectrometry in Biotechnol-
ogy, MCC Press.

Srinivas, P. R., Srivastava, S., Hanash, S., and Wright, Jr., G. L. (2001),
“Proteomics in early detection of cancer,” Clinical Chemistry, 47, 1901—
1911.

Storey, J. S. and Tibshirani, R. (2003), “SAM Thresholding and False Dis-
covery Rates for Detecting Differential Gene Expression in DNA Microar-
rays,” in The analysis of gene expression data: methods and software, eds.
Parmigiani, G., Garrett, E. S., Irizarry, R. A., and Zeger, S. L., New York:

Springer.

Tierney, L. (1994), “Markov chains for exploring posterior distributions,” The
Annals of Statistics, 22, 1701-1762.

Wu, B., Abbott, T., Fishman, D., McMurray, W., More, G., Stone, K., Ward,
D., Williams, K., and Zhao, H. (2003), “Comparison of statistical methods
for classification of ovarian cancer using mass spectrometry data,” Bioin-
formatics, 13, September.

Yasui, Y., Pepe, M., Thompson, M. L., Adam, B. L., Wright Jr., G. L.,
Qu, Y., Potter, J. D., Winget, M., Thornquist, M., and FEng, Z. (2003),
“A data-analytic strategy for protein biomarker discovery: profiling of high-
dimensional proteomic data for cancer detection,” Biostatistics, 4, 449-463.

24



