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We propose a curve-free random-effects meta-analysis approach to com-
bining data from multiple phase I clinical trials to identify an optimal dose.
Our method accounts for between-study heterogeneity that may stem from
different study designs, patient populations, or tumor types. We also develop
a meta-analytic-predictive (MAP) method, based on a power prior, that incor-
porates data from multiple historical studies into the design and conduct of
a new phase I trial. Performances of the proposed methods for data analysis
and trial design are evaluated by extensive simulation studies. The proposed
random-effects meta-analysis method provides more reliable dose selection
than comparators that rely on parametric assumptions. The MAP-based dose-
finding designs are generally more efficient than those that do not borrow in-
formation, especially when the current and historical studies are similar. The
proposed methodologies are illustrated by a meta-analysis of five historical
phase I studies of Sorafenib and design of a new phase I trial.

1. Introduction. The aims of a phase I clinical trial of a new drug are to investigate
its dose-limiting toxicity (DLT) and identify a recommended phase II dose, such as the
maximum tolerated dose (MTD) from a set of candidate doses. We define the MTD as
the dose having probability of DLT closest to a prespecified fixed target. Existing dose-
finding designs include various versions of the algorithmic 3 + 3 design (Storer (1989)),
the up-and-down design (Gezmu and Flournoy (2006)), the model-based continual reassess-
ment method (CRM) (O’Quigley, Pepe and Fisher (1990)), escalation with overdose con-
trol (EWOC) (Babb, Rogatko and Zacks (1998)), the Bayesian logistic regression method
(BLRM) (Neuenschwander, Branson and Gsponer (2008)), the Bayesian optimal interval de-
sign (BOIN) (Liu and Yuan (2015), Yuan et al. (2016)), and a nonparametric overdose con-
trol (NOC) design (Lin and Yin (2017)), among others. A major practical problem is that
differences between designs, biological mechanisms of the agent, or objectives may produce
different choices of an MTD.

Because the sample size of a phase I trial is typically small, the probability of correctly
identifying the MTD tends to be low. To address this problem, one may take advantage of
the fact that, for a new agent, quite often several clinical centers conduct independent phase I
trials (Zohar, Katsahian and O’Quigley (2011)). A meta-analysis of data from multiple inde-
pendent phase I trials of the same agent may improve estimation of the dose–toxicity curve
and thus identification of the MTD (García et al. (2014)). This must be done carefully, how-
ever, due to between-study variability arising from the use of different dose-finding designs
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as well as differences in patient prognostic characteristics, tumor types, supportive care, and
treatment administration schedules.

In most settings, compared with inferences that rely on a single study, a meta-analysis can
achieve higher reliability, more accurate estimation, and greater reproducibility while also
accounting for between-study variability. Research on methods for meta-analysis of phase
I dose-finding studies is quite limited. Zohar, Katsahian and O’Quigley (2011) proposed a
parametric CRM-based fixed-effect meta-analysis approach, but it requires the strong as-
sumption that the selected studies are homogeneous. This is at odds with the fact that sub-
stantial between-study heterogeneity should be expected in multiple phase I studies of the
same agent, due to the sources noted above. Another limitation of this parametric model
based approach is that its performance is sensitive to model misspecification. For example,
antineoplastic agents typically have a steep dose–toxicity curve (García et al. (2014)), which
the power model used by the CRM often cannot reliably quantify. This may lead to poor
performance of the meta-analysis. In other meta-analysis approaches, random-effects models
are employed routinely to account for between-study heterogeneity (Higgins, Thompson and
Spiegelhalter (2009)). We take this approach for meta-analysis of multiple phase I trials by as-
suming a random-effects model which provides more reliable results than using a model that
assumes homogeneity. Recently, Ursino et al. (2021) also proposed a Bayesian meta-analysis
method where the random-effects structure was modeled by the Ornstein–Uhlenbeck Gaus-
sian process. Our approach differs from their method in the model structure, prior distribution,
and the amount of information shared across dose levels.

To address the pervasive problem that the small sample sizes of most phase I studies lead
to a low probability of correctly identifying the MTD, we also consider the problem of how to
use available historical information when designing a new dose-finding trial. If the new and
historical trials are similar, then it is natural to borrow information from the historical studies
to achieve more efficient interim adaptive dose selection and greater accuracy in MTD iden-
tification. A naïve approach would adopt a “one-size-fits-all” model that incorporates all of
the historical information. However, this approach is problematic if the difference between
the current and historical trials is substantial (Huang and Temple (2008), Yasuda, Zhang and
Huang (2008)). To address this issue, several adaptive information-borrowing designs have
been proposed, particularly for bridging trials, which evaluate the effect of a treatment in
a certain population, for example, pediatric patients, by using data from historical trials of
the same treatment in a different population, for example, adults. For example, Morita (2011)
used informative priors to incorporate historical data into a bridging study based on the CRM.
Liu et al. (2015) introduced a bridging CRM to facilitate dose finding for follow-up bridg-
ing trials. More generally, several authors have proposed bridging methods for incorporating
historical data in a variety of settings when planning or conducting a phase II or phase III
clinical trial (Chen et al. (2011), Chow et al. (2012), Gould et al. (2012), Hobbs, Carlin and
Sargent (2013), Schmidli et al. (2014)).

In practice, two important differences between a current trial and historical trials should be
considered. On one hand, the information observed from the current trial may be inconsistent
(i.e., nonexchangeable) with that from the historical trials. This might be caused by differ-
ences in disease types, treatment schedules, or other factors. When these differences are large,
the data are not exchangeable between trials, and it is best to not borrow information from the
historical trials. Some existing methods, such as the bridging CRM of Liu et al. (2015), do
not take potential inconsistency into consideration appropriately, and thus their performance
tends to be unsatisfactory. On the other hand, even if the new and historical trials are similar,
one still must account for the intrinsic heterogeneity between studies. The methods of Morita
(2011) and Liu et al. (2015), while useful, are limited by the fact that they only borrow infor-
mation from one historical study, and they do not account for heterogeneity between multiple
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historical studies. Existing methods also fail to agree on how much information to borrow
from historical data. Ideally, a method that does this should strike a compromise between
simply combining the historical and current trial data and completely ignoring the historical
data.

In this paper we propose a Bayesian hierarchical random-effects meta-analysis approach to
exploiting data from multiple phase I dose-finding studies when estimating the MTD in a new
phase I trial. We also apply the proposed meta-analysis method to the problem of designing
a new dose-finding trial. Our contributions are twofold:

(i) In a Bayesian hierarchical framework, we extend the standard logistic-normal dis-
tribution for the probability of DLT as a curve-free monotonic function of the dose level.
Under the proposed model, independent and identically distributed (i.i.d.) study-specific pa-
rameters are assumed to follow a normal distribution, mimicking a standard random-effects
meta-analysis. Our curve-free approach accounts for heterogeneity while also flexibly ac-
commodating a wide range of possible shapes for the dose–toxicity curves.

(ii) We facilitate more informative dose-finding by assuming a power prior in the con-
text of the proposed model and develop meta-analytic-predictive (MAP) versions of both the
CRM and BOIN (Schmidli et al. (2014)). In this sense we combine standard dose-finding
methods with MAP approaches. Our model may be considered an extension of the meta-
analytic-predictive prior (Neuenschwander et al. (2010), Schmidli et al. (2014), Spiegelhalter,
Abrams and Myles (2004)) to phase I trials. The proposed MAP-based dose-finding methods
account for heterogeneity across studies and the difference between the current and historical
studies.

Extensive simulation studies, reported below, show that, when current and historical tri-
als are similar, the proposed methods are more efficient than existing dose-finding meth-
ods. When the trials are different, the proposed methods quickly move to a no-information-
borrowing mode with negligible deterioration in performance. Our approach is conceptually
similar to that of Ibrahim et al. (2012), with the key differences that we consider more compli-
cated dose-finding trials with smaller sample sizes and monotone dose-response constraints.
Major advantages of the proposed designs are that they adaptively borrow historical infor-
mation to reduce sample sizes and achieve higher efficiency in selecting the MTD, and they
accommodate different numbers and sample sizes of multiple historical trials.

The remainder of the paper is organized as follows. In Section 2 we present the real meta-
analysis that motivated the proposed method. In Section 3 we develop a curve-free random-
effects meta-analysis method to synthesize multiple heterogeneous dose-finding studies. In
Section 4 we develop two MAP dose-finding designs based on the proposed random-effects
meta-analysis model using a power prior. As an illustration, we apply the proposed methods
to the motivating example in Section 5. The performance of our methods is examined by
extensive simulation studies which are summarized in Sections 6 and 7. We conclude with a
brief discussion in Section 8.

2. Motivating example. Sorafenib is an orally administered multikinase inhibitor that
slows tumor growth by disrupting tumor microvasculature through antiproliferative, antian-
giogenic, and/or proapoptotic effects. Several phase I and pharmacokinetic studies of So-
rafenib have been conducted in patients with various advanced solid tumors. Zohar, Katsahian
and O’Quigley (2011) analyzed five dose-finding trials of Sorafenib. Table 1 summarizes the
numbers of patients treated and numbers of observed DLTs at each dose level in these trials.
Combining the five trials, a total of 154 patients were treated at one of six doses: 100, 200,
300, 400, 600, or 800 mg. The trials differed in study design, patient population, tumor type,
and other factors. Based on these data, Figure 1 illustrates study-specific and pooled estimates
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TABLE 1
Historical data from five phase I dose-finding studies of Sorafenib. Each entry is ykj /nkj , where ykj is the

number of DLTs observed and nkj is the number of patients treated at dose level j in study k

Dose (mg)

No. Study 100 200 300 400 600 800

1 Clark et al. 0/3 0/3 – 1/4 1/6 3/3
2 Awada et al. 0/4 0/3 1/5 1/10 7/12 1/3
3 Moore et al. 0/3 1/6 – 0/8 3/7 –
4 Strumberg et al. 1/5 1/6 – 0/15 4/14 2/7
5 Minami et al. 0/3 1/12 – 0/6 1/6 –

Overall data 1/18 3/30 1/5 2/43 16/45 6/13
Empirical Pr(toxicity) 0.06 0.10 0.20 0.05 0.36 0.46

of dose–response curves, obtained by isotonic regression (Bril et al. (1984)). Methodological
details of the isotonic regression are described in the Appendix.

The five trials have two important features. First, the estimated dose-toxicity curves have
a variety of different shapes (upper panel of Figure 1) which strongly suggests that it is
not appropriate to assume a fixed-effect model. Second, the estimated curves have irregular
patterns. Based on the pooled data, the empirical toxicity rates for the six doses are 0.06,
0.10, 0.20, 0.05, 0.36, and 0.46. The pooled toxicity probability estimate at dose level 4 is
anomalous in that it is lower than the estimates at the lower dose levels 1, 2, and 3 which
violates the assumption that the dose–toxicity curves are monotone increasing. As shown in
the lower panel of Figure 1, when monotonicity is imposed on the toxicity estimates, using
isotonic regression (Bril et al. (1984), Yuan and Chappell (2004)), the resulting estimated
dose–response curve is flat from dose level 2 to dose level 4, followed by a steep increase at
dose level 5. These results suggest that parametric models, such as a simple logistic model
(dashed line), might not be suitable to capture such irregularities. This suggests that a more
flexible model is needed to account for heterogeneity between studies and steep or irregular
dose-toxicity curves.

After completion of these five studies, several more dose-finding trials of Sorafenib were
conducted with different objectives or types of patients. Some of the newer trials had esti-
mated dose-toxicity curves similar to those of the five historical trials, while others did not.
For example, Borthakur et al. (2011) conducted a phase I study of Sorafenib in 16 patients
with refractory or relapsed acute leukemia and studied three doses: 200, 400, and 600 mg.
The empirical toxicity rates at these doses were 0/3 = 0.00, 1/7 = 0.14, and 3/6 = 0.50. Us-
ing 0.33 as the target toxicity probability, 400 mg was declared as the MTD. Due to the small
sample size, this conclusion is unreliable. For example, if one less DLT had been observed at
600 mg, with 2/6 rather than 3/6 DLTs, then 600 mg would have been declared the MTD, so
the final conclusion would be over turned on the outcome of a single patient. From a Bayesian
viewpoint, if a Beta(0.5, 0.5) prior is assumed for the probability of toxicity at 400 mg, then
the posterior would be Beta(1.5, 6.5) with 95% posterior credible interval [0.016, 0.501].
A similar computation shows that a 95% posterior credible interval for the probability of
toxicity at 600 mg is [0.167, 0.833]. Since the overlap between these two posterior credible
intervals is [0.167, 0.501], very little is known inferentially about the dose-toxicity curve or
whether the MTD using any fixed target between 0.20 and 0.40 should be 400 mg or 600 mg.
These numerical results illustrate the general problem that sample sizes of conventional phase
I trials are far too small to obtain reliable inferences. When analyzing the results obtained by
Borthakur et al. (2011), if historical data from the previous five trials had been incorporated
in a meta-analysis, it might have led to more reliable conclusions.
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FIG. 1. Estimated dose–toxicity curves based on the historical Sorafenib clinical trial data. The upper panel
gives individual estimates of the study-specific dose–response curves, based on isotonic regression to force each
estimated curve to be nondecreasing with the dose level. The lower panel gives a pooled estimate of the dose–re-
sponse curve based on isotonic regression (solid line) and the estimate based on a logistic model (dashed line).
The area of the circle at each dose level is proportional to the sample size.

3. Combining multiple phase I studies.

3.1. Probability models. Suppose that a new agent has been studied in K historical
phase I dose-finding trials with a total of J dose levels tested. In study k, let nkj denote
the number of patients treated at dose level j , and let ykj denote the corresponding num-
ber of DLTs, for k = 1, . . .K and j = 1, . . . , J . If some dose level j is not considered in
trial k, we set nkj = 0 and ykj = 0. Denote pkj = Pr(DLT | dose level j in study k), with
pk = (pk1, . . . , pkJ )T . For each dose j the probabilities {pkj , k = 1, . . . ,K} may vary across



2486 R. LIN ET AL.

studies due to between-study heterogeneity. In most settings, sources of between-trial hetero-
geneity cannot be quantified accurately, fully observed, and often are unknown. The goal of
a meta-analysis of K phase I studies is to obtain a reliable estimate of the average toxicity
probability p̃ = (p̃1, . . . , p̃J ) across the studies for use to identify a more accurate MTD.

A random-effects model can be described as a Bayesian hierarchical model, where an as-
sumed common distribution of random effects associated with trials is used to characterize
between-trial heterogeneity (Stangl and Berry (2000)). For each dose j and study k, we as-
sume that the DLT counts follow Binomial distributions with ykj | pkj ∼ Bin(nkj ,pkj ). To
ensure monotone increasing dose-toxicity curves, with pk1 < pk2 < · · · < pkJ , and to allow
the observed data to be shared dynamically across dose levels for each study, we reparame-
terize pkj as

(1) pkj =
∑j

i=1 exp(φki)

1 + ∑j
i=1 exp(φki)

,

where each φki is real-valued. The vectors φk = (φk1, . . . , φkJ )T and pk = (pk1, . . . , pkJ )T

have a one-to-one correspondence, given by the equations

(2) φk1 = log
(

pk1

1 − pk1

)
and φkj = log

(
pkj

1 − pkj

− pk(j−1)

1 − pk(j−1)

)
, j = 2, . . . , J.

Thus, φk determines pk and vice versa. For a single dose-finding study, similar dynamic
models have been considered by Gasparini and Eisele (2000), Yin, Li and Ji (2006), and Liu
and Johnson (2016). The reparameterization (1) facilitates exchanging information across
dose levels, and it also provides a flexible curve-free model for the dose-toxicity relationship,
since no parametric assumption is imposed on the toxicity probability pkj as a function of the
dose level j . Because the J real-valued parameters φk determine pk , the curve-free model
(2) is very flexible and can accommodate a wide range of dose–response relationships.

To account for heterogeneity between trials, we assume the following hierarchical model:

Level 1 : ykj | φk ∼ Bin
(
nkj ,

∑j
i=1 exp(φki)

1 + ∑j
i=1 exp(φki)

)
,

Level 2 : φk | φ̃, σ 2 ∼ NJ

(
φk | φ̃, σ 2IJ

)
,(3)

Level 3 : φ̃ ∼ π(φ̃), σ 2 ∼ π
(
σ 2)

,

for each k = 1, . . . ,K and j = 1, . . . , J . Level 1 gives the likelihood, Level 2 gives the priors
on the φk’s, and Level 3 specifies the hyperpriors on the prior mean vector φ̃ = (φ̃1, . . . , φ̃J )T

and variance σ 2. Here, NJ (φk | φ̃, σ 2IJ ) denotes a J -variate normal distribution with mean
vector φ̃ and J × J covariance matrix �J = σ 2IJ , where IJ is a J × J identity matrix. We
assume that φ̃ and σ 2 are independent, with σ 2 following a half-t prior distribution with one
degree of freedom (i.e., a half-Cauchy distribution) and scale parameter 25 (Gelman (2006)),
and that φ̃ follows a prior that is the product of J independent normal distributions with zero
means and large variances, such as 10.

This hierarchical model has the following desirable features:

(i) The study-specific φk’s are modeled as random effects sampled from a common dis-
tribution which is a standard approach in random-effects meta-analysis. In the J -variate nor-
mal distribution for φk , the parameter σ 2 accounts for heterogeneity between the K trials. If
σ 2 = 0, the model reduces to a fixed-effect model in which all study-specific toxicity prob-
abilities at each dose are homogeneous. The random-effects model (3) borrows information
across all trials, facilitates estimation of trial-specific dose-toxicity curves, and provides an
average toxicity probability p̃j over the K trials, obtained by plugging φ̃ into equation (1).
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(ii) When J = 1, the distribution of pk1 based on the hierarchical model (3) reduces to
the so-called logistic-normal distribution which is a popular choice for dealing with hier-
archically exchangeable data (Aitchison and Shen (1980), Lenk (1988)). Our hierarchical
random-effects model thus extends the logistic-normal distribution for a single-dose DLT
probability to accommodate a vector of J monotonically increasing DLT probabilities.

Here, we use a simple structure of the covariance matrix for �J (i.e., �J = σ 2IJ ) so that
the latent variables φk1, . . . , φkJ are modeled independently. Ursino et al. (2021) proposed
to use the Ornstein–Uhlenbeck process for �J which allows more information sharing when
doses are closer. Such an Ornstein–Uhlenbeck process can also be applied to our hierarchical
model. Since the sample sizes for phase I clinical trials are typically limited, however, we
find that this more sophisticated covariance structure does not offer much performance gain
to our approach.

Let DK denote the observed data from the K historical studies. Denoting the JK-
dimensional real-valued vector � = (φ1, . . . ,φK), the full likelihood is

L(� | DK) ∝
K∏

k=1

J∏
j=1

p
ykj

kj (1 − pkj )
nkj−ykj =

K∏
k=1

J∏
j=1

{∑j
i=1 exp(φki)}ykj

{1 + ∑j
i=1 exp(φki)}nkj

.

The joint posterior distribution based on DK is

(4) π
(
�, φ̃, σ 2 | DK

) ∝ L(� | DK)f
(
� | φ̃, σ 2)

π(φ̃)π
(
σ 2)

,

where f (� | φ̃, σ 2) is the density of the multivariate normal distribution given in (3). We
compute the posterior distribution (4) using Markov chain Monte Carlo with a Gibbs sampler.

3.2. Incorporating data from an ongoing trial. During conduct of an ongoing trial of
the agent, our framework adaptively incorporates newly collected data for making real-
time statistical inferences about the dose–toxicity curve. Indexing the current trial by k = 0,
let D0 = {(y01, n01), . . . , (y0J , n0J )} denote the current data, and let p0 = (p01, . . . , p0J )T

denote the dose–toxicity probabilities of the current trial. We reparameterize p0 through
φ0 = (φ01, . . . , φ0J )T using equation (1).

We exploit the historical data DK to obtain more efficient inferences for φ0. The degree to
which the historical data are informative for an ongoing trial depends on the similarity of the
design and study characteristics between the current and historical trials. This is determined
by the degree to which the historical data and the current trial data agree. If the historical and
current trial data are not exchangeable, then borrowing too much from the historical data may
lead to an inaccurate MTD estimate. In contrast, if there is good agreement between the his-
torical and current trial data, then information borrowing in real time can lead to a much more
efficient trial. To quantify and estimate the degree of agreement between the historical and
current trials, we use the ideas of a power prior (Ibrahim and Chen (2000)), a commensurate
prior (Hobbs et al. (2011)), and a meta-analytic-predictive prior (Schmidli et al. (2014)). For
hierarchical modeling, Chen and Ibrahim (2006) established a formal analytic connection be-
tween the power parameter and the variance component of the hierarchical model. Intuitively,
the power prior adaptively inflates the variances of the historical studies. To apply this, we
replace the Level 2 and Level 3 components in the hierarchical model (3) as follows:

Level 2 : φk | α, φ̃, σ 2 ∼
{
π0(φ0)NJ

(
φ0 | φ̃, ασ 2IJ

)
, k = 0,

NJ

(
φk | φ̃, σ 2IJ

)
, k = 1, . . . ,K,

Level 3 : φ̃ ∼ π(φ̃), σ 2 ∼ π
(
σ 2)

, α ∼ π(α),
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where π0(φ0) denotes a noninformative prior on φ0 and α ∈ [1,∞) is the power (or com-
mensurate) parameter that controls the degree of borrowing (Hobbs et al. (2011), Ibrahim and
Chen (2000)). A key property of this model is that α corresponds to a multiplicative rescaling
by

√
α, that is, the variance of φ0 in the multivariate normal prior distribution is inflated by

the power parameter α. In Level 3 we use independent priors for (α, φ̃, σ 2). For brevity, we
abuse the notation slightly by using π generically to denote the marginal priors of the ele-
ments of (α, φ̃, σ 2). The Level 3 priors π(φ̃) and π(σ 2) were described in Section 3.1, and
we will describe the prior π(α) below in Section 4.3.

To show how the model connects the historical and current trial data, given a value of α, the
marginal power prior distribution for φ0, based on the historical data DK , can be computed
as

π(φ0 | DK,α) ∝
∫

π0(φ0)f
(
φ0 | φ̃, ασ 2IJ

)
π

(
φ̃, σ 2 | DK

)
dφ̃ dσ 2,

where f (φ0 | φ̃, ασ 2IJ ) is the multivariate normal distribution of φ0 and π(φ̃, σ 2 | DK) is the
posterior distribution of (φ̃, σ 2) based on the historical data DK . The posterior distribution
of φ0 based on the combined datasets D0 ∪DK can be represented as

π(φ0 | D0,DK) ∝
∫

π
(
φ0, α, φ̃, σ 2 | D0,DK

)
dα dφ̃ dσ 2

∝
∫

L(φ0 | D0)L(� | DK)π0(φ0)f
(
φ0 | φ̃, ασ 2IJ

)
× f

(
� | φ̃, σ 2IJ

)
π

(
α, φ̃, σ 2)

dα dφ̃ dσ 2,

where L(φ0 | D0) is the likelihood function based on the current trial data.
Although the power prior parameter originally proposed by Ibrahim and Chen (2000) has

domain [0,1], here we use the parameterization where α ∈ [1,∞) is the inverse of the orig-
inal power parameter. For example, for the five numerical values {5,25,45,65,85} of α, the
corresponding power parameters, based on the definition of Ibrahim and Chen (2000), are
the inverses {0.20, 0.04, 0.022, 0.015, 0.011}, and the scale inflation factors are the square
roots {2.2, 5.0, 6.7, 8.1, 9.2}. Note that π0(φ0) is noninformative, with α = 1 correspond-
ing to full information borrowing by simply pooling the samples. In this case the current trial
data fall into the random-effects structure of the historical data, and the power prior distri-
bution of φ0 is determined mainly by the distribution of φ0 based on DK . The amount of
cross-study borrowing decreases as α increases, and this corresponds to greater heterogene-
ity between the historical and current data. When the power parameter α is sufficiently large,
the historical data will have negligible impact on φ0. The impact of the historical data on
the current trial also depends on the posterior of the heterogeneity parameter σ 2. If there are
large differences among historical studies, when σ 2 is large, then the degree of borrowing
from the historical data is small. If the differences are small, then more information will be
borrowed. While we consider a single α for the entire model, it is also possible to specify a
different α for each historical trial. However, this is feasible only if the sample sizes and the
number of historical studies are large.

In the prior specification, α can be assumed to be either known or unknown, depending on
whether the exchangeability between the historical and current trials can be defined clearly
based on the available information or input from clinical investigators. For example, if the
historical and current trials have exactly the same study characteristics and patient population,
then α can be assumed to equal 1. For random α a prior distribution π(α) can be used which
is independent of φ̃ and σ 2, and in this case the data can adaptively choose the amount of
information borrowed from the historical studies. However, a caveat with this approach is that
α may be identified weakly in the model due to overly sparse data in phase I clinical trials
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so that estimation is sensitive to the choice of the prior for the proposed models, as noted by
Hobbs, Sargent and Carlin (2012). This instability can be mitigated by assuming a discrete
uniform prior with finite support for α ∈ [1,∞) (Yin and Ibrahim (2005)). For example, one
may specify M fixed values 1 ≤ α1 < α2 < · · · < αM and assume Pr(α = αm) = 1/M , a priori
for m = 1, . . . ,M . This prior may help to compensate for a small amount of empirical data
from the current phase I trial and may be constructed to optimize the operating characteristics
of the planned dose-finding design. We will discuss the choice of π(α) in more detail in
Section 4.

4. Meta-analytic-predictive (MAP) dose finding. In this section, we explain how the
random-effects meta-analysis model given in Section 3 and its predictive framework can
be incorporated into an existing model-based dose-finding design. We extend the CRM and
BOIN designs, calling these extensions the meta-analytic-predictive CRM (MAP-CRM) and
meta-analytic-predictive BOIN (MAP-BOIN). Both MAP-based dose-finding designs are ca-
pable of adaptively borrowing information. If the data from the current and historical trials
disagree, the current trial data play a dominant role in adaptively choosing the dose levels. If
the data are similar, then the MAP-based design adaptively borrows strength from the histor-
ical studies for sequential decision making.

4.1. An MAP-CRM design. The basic idea of the CRM is that a dose–toxicity model is
fit repeatedly to the accumulating data with each new patient cohort assigned the dose that
has the estimated toxicity probability, based on the most recent data, closest to a prespecified
fixed target probability, θ . In practice, this is typically done for successive cohorts of three or
possibly two patients. Let D0(n) denote the data from the first n patients in the ongoing trial.
Under our model the posterior mean p̂0 = (p̂01, . . . , p̂0J ) of p0 is computed by averaging
over the posterior of φ0,

(5) p̂0j =
∫ ∑j

i=1 exp(φ0i )

1 + ∑j
i=1 exp(φ0i )

π
(
φ0 | D0(n),DK

)
dφ0, j = 1, . . . , J.

Thus, the MAP-CRM estimator p̂0 adaptively incorporates the current and historical trial
data across all dose levels. A trial using the MAP-CRM design is conducted as follows:

(i) For safety, the trial starts by treating the first cohort one dose level below the MTD
identified by a preliminary meta-analysis using the historical data.

(ii) At any point in the trial, let j curr denote the current dose level. To choose a dose
level for the next cohort, calculate p̂0 and identify the dose level j∗ having estimated toxicity
probability closest to θ ,

j∗ = arg min
j∈{1,...,J }

|p̂0j − θ |.

If j curr > j∗, the dose level is deescalated to j curr −1; if j curr < j∗, the dose level is escalated
to j curr + 1; otherwise, the dose level j curr is retained to treat the next cohort.

(iii) The trial is terminated early, due to excessive toxicity, with no MTD chosen, if the
lowest dose level is unsafe, formally if

Pr
(
p01 > θ | D0(n),DK

) =
∫ log{θ/(1−θ)}
−∞

π
(
φ01 | D0(n),DK

)
dφ01 > cU,

where

π
(
φ01 | D0(n),DK

) =
∫

π
(
φ0 | D0(n),DK

)
dφ02 . . . dφ0J ,

and cU is a fixed cut-off probability.
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(iv) If the trial is not stopped early and the maximum sample size is reached, then the dose
level j∗ with estimated toxicity probability closest to θ is selected as the MTD.

In practice, cU is a tuning parameter chosen via preliminary simulations to obtain a design
that stops with high probability if the lowest dose is truly unsafe with typical values in the
range 0.80 ≤ cU ≤ 0.95.

Cunanan and Koopmeiners (2018) also considered a hierarchical modeling approach for
phase I dose-finding studies. Their approach applies to the case of multiple studies conducted
simultaneously, however, where it is difficult for a hierarchical model to detect heterogeneity
early when the data are sparse. In contrast, our approach has only one ongoing trial and
multiple completed historical trials, providing rich information about heterogeneity at the
start of the new trial.

4.2. An MAP-BOIN design. BOIN is a model-assisted design that has simple and trans-
parent dose-finding rules yet provides satisfactory operating characteristics comparable to
other model-based designs, such as the CRM. The dose-assignment decision of BOIN is
guided by comparing the empirical toxicity probability y0j /n0j at the current dose level with
a pair of predetermined optimal dose escalation and deescalation boundaries (λ1, λ2). Thus,
BOIN is myopic in that it uses only the data at the current dose level for decision making,
while ignoring all other data.

Let Dj
0(n) = (y0j , n0j ) denote the current observed data at dose level j from the first n

patients. To combine the proposed meta-analysis model with BOIN, we estimate p0j using

the data Dj
0(n) as well as information adaptively borrowed from DK . The estimator is

p̄0j =
∫ ∑j

i=1 exp(φ0i )

1 + ∑j
i=1 exp(φ0i )

π
(
φ0 | Dj

0(n),DK

)
dφ0, j = 1, . . . , J.

The amount of information borrowed from the historical studies by the MAP-BOIN estima-
tor p̄0 = (p̄01, . . . , p̄0J ) reflects the degree of heterogeneity between Dj

0(n) and DK . The

rationale behind this estimator is that, when there is a conflict between Dj
0(n) and DK , the

posterior estimator p̄0j should be close to the empirical estimate y0j /n0j . Thus, if little in-
formation is borrowed from DK , the proposed MAP-BOIN design tends to coincide with the
standard BOIN design. On the other hand, if there is little conflict, then more information
from the historical data is borrowed, and the final posterior estimator will be more efficient.
Given current dose level j curr, to choose a dose for the next cohort we first calculate the
posterior mean estimate p̄0j curr . If p̄0j curr ≤ λ1, the dose level is escalated to j curr + 1; if
p̄0j curr ≥ λ2, the dose level is deescalated to j curr − 1; otherwise, j curr is retained for the next
cohort. The remaining rules are the same as those of the MAP-CRM design. At the end of
the trial, the MTD is estimated based on (5) by adaptively pooling the data from the current
and historical trials.

The MAP-BOIN design inherits the practical advantage of BOIN that dose escalation
and deescalation rules can be predetermined prior to the trial conduct and summarized in
a decision-making table (e.g., Table 2). This can be done because the decision of BOIN only
depends on the current dose level’s data. Enumerating all possible outcome combinations
Dj

0(n) and computing p̄0j allows one to determine the possible decisions. Unlike the BOIN
design, which applies the same dose escalation/de-escalation boundaries to all dose levels, the
decision boundaries for MAP-BOIN vary across dose levels, since information is borrowed
from the historical data.
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TABLE 2
Dose escalation and de-escalation boundaries of the BOIN and MAP-BOIN designs in the Sorafenib trial. The
boundaries of the MAP-BOIN design are calculated based on the historical data of the five studies in Table 1,

which vary with dose levels

Escalation boundary De-escalation boundary

MAP-BOIN MAP-BOIN
(Dose level) (Dose level)

nj BOIN 1 2 3 4 5 6 BOIN 1 2 3 4 5 6

3 0 0 0 0 0 0 0 2 2 2 2 2 1 1
6 1 1 1 0 0 0 0 3 3 3 3 3 3 2
9 2 2 2 2 2 1 1 4 4 4 4 4 4 4
12 3 3 3 3 3 2 2 5 6 6 6 6 5 5
15 3 4 4 4 4 3 2 6 7 7 7 7 6 6
18 4 5 5 5 4 4 3 8 8 8 8 8 8 7
21 5 5 5 5 5 4 4 9 9 9 9 9 9 8

If the number of DLTs at the current dose level is less than or equal to the escalation boundary, then the dose for
the new cohort is escalated to the next higher dose level; if the number of DLTs at the current dose level is greater
than or equal to the de-escalation boundary, then the dose for the new cohort is de-escalated to the next lower dose
level; otherwise, the dose stays at the same level for the new cohort.

4.3. Calibrating the power prior parameter. Because the amount of information bor-
rowed from the historical data is determined by the power parameter α, the choice of the
prior π(α) plays a critical role in the performance of the MAP dose-finding designs. It is
important to calibrate a suitable prior π(α) to strike a balance between “fully borrowing”
(α = 1) and “no borrowing” (α = ∞) from the historical data. If α is close to 1, then fully
borrowing the historical data may lead to inappropriate dose-assignments if there is disagree-
ment between the historical data and current trial data. If α is very large, then there is very
little borrowing from the historical data which may cause a loss of efficiency.

To formalize prior specification for α, we define a set of Mα equidistant values having
equal prior probability 1/Mα . Let α0 denote the minimum value in the discrete support and
dα the distance between the values in the support so that the support for α is the set {α0, α0 +
dα, . . . , α0 + (Mα − 1)dα}. To form a candidate set of prior distributions, A(α), we first fix
Mα and investigate various values of α0 and dα .

Our motivation for optimizing the prior of α is twofold: (a) to improve accuracy in selec-
tion of the MTD and (b) to have a low probability of allocating patients to overly toxic dose
levels. To do this, we consider two metrics: the correct selection (CS) percentage of the MTD
and the overdose allocation (OA) percentage, defined as the percentage of patients allocated
to dose levels higher than the underlying true MTD. As a criterion for selecting the optimal
candidate prior π(α), we use the rank of the weighted operating characteristics (RWOC).
The RWOC is based on a weighted statistic computed from J simulations, where the j th
simulation consists of a large number of random scenarios in which dose level j is the MTD
among J prespecified dose levels. The procedure for computing the RWOC requires a total
of J simulations, carried out as follows:

1. In the j th simulation, randomly generate a total of T (say, T = 10,000) toxicity
probability vectors, each satisfying the constraint that dose level j is the MTD. To generate a
toxicity probability vector satisfying this constraint, draw a vector of J i.i.d. uniform random
values from [0, 1] as the toxicity probabilities, sort the vector from smallest to largest, and
identify the MTD (i.e., the dose has probability of DLT closest to θ ) among the J values. If
the MTD is located at level j , accept the toxicity probability vector; otherwise, discard the
vector and repeat the process until the MTD is located at the j th dose level.
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2. Given a candidate prior π(α) and M underlying dose–response probabilities, com-
pute the proportion of trials, denoted by CSπ

j , which correctly select level j as the MTD,
and the proportion of patients allocated to dose levels higher than the true MTD, denoted by
OAπ

j .
3. Repeat this process for each j = 1, . . . , J , and compute the weighted averages of the

correct selection percentages, CS
π = ∑J

j=1 wj CSπ
j , and overdose allocation percentages,

OA
π = ∑J

j=1 wj OAπ
j , where wj > 0 is the weight for j = 1, . . . , J , with

∑J
j=1 wj = 1.

4. Repeat the above computations for each candidate prior, π(α) ∈ A(α), and compute
its RWOCπ as R(CS

π
) + R(1 − OA

π
), where R(·) is the rank among the candidate priors.

5. The optimal prior is chosen to minimize RWOCπ , formally π∗(α) =
arg minπ(α)∈A(α){RWOCπ }.

A key aspect of this approach is that CS
π

and OA
π

are average values obtained from
a large number of randomly chosen scenarios rather than a few scenarios that may have
been cherry picked to make a prior appear to have good properties. In practice, the weights
{w1, . . . ,wJ } may be elicited from the clinical investigators. For example, let j∗ denote the
estimated MTD from the meta-analysis of historical data. If the clinicians, based on their
understanding and judgment of the similarity between the historical and current trials, have
an a priori belief that there is, at least, an 80% chance that the MTD should not differ from
the historically estimated MTD j∗ by more than one level then, for example, one may assign
weights of 0.15, 0.50, and 0.15 to the simulation values j∗ − 1, j∗, and j∗ + 1, respectively,
and equal weights summing to 0.20 for the rest of the simulations.

When evaluating each candidate prior, its expected sample size (ESS) (Lee et al. (2015),
Morita, Thall and Müller (2008), Neuenschwander et al. (2020)) may be used to avoid as-
suming a prior having an ESS that is unacceptably large, compared with the trial sample size.
The ESS of π(α) may be approximated as follows. First, assume a vague prior on φ0, using

an improper prior, φ0j
i.i.d.∝ 1, j = 1, . . . , J , since the performance of the proposed methods

is not sensitive to the choice of π(φ0), provided that it is noninformative. Next, specify the
prior distribution for (φ̃, σ 2) which is the same as that used in the meta-analysis.

After specifying all priors, simulate 10,000 or more pseudo samples of p0 = (p01, . . . ,

p0J ), and use the method of moments to approximate the distribution of the simulated sam-
ples of p0j with a Beta(aj , bj ) distribution, for j = 1, . . . , J . Under a Beta-Binomial model,
a Beta(aj , bj ) distribution can be thought of as the posterior from an experiment in which,
in a sample of size aj + bj , one observes aj successes and bj failures, after assuming a very
vague Beta(cj , dj ) prior distribution with 0 < cj , dj < ε for arbitrarily small ε. Since the
Beta(aj + cj , bj +dj ) posterior is arbitrarily close to Beta(aj , bj ) for small ε, one may think
of aj + bj as the ESS (Morita, Thall and Müller (2008)). Consequently, for our dose-finding
designs at dose level j the approximate prior ESS is aj + bj . To approximate the ESS for the
overall prior across the J dose levels, we compute the average ESS = ∑J

j=1(aj +bj )/J . This
may be used to ensure that the prior ESS is not overly large, and it should be substantially
less than the sample size of the current trial.

5. Applications.

5.1. A meta-analysis of five sorafinib trials. For illustration, we apply the proposed meta-
analysis methods to the motivating example given in Section 2. For dose-finding studies
where a meta-analysis is practical, the number of historical trials and sample sizes are likely
to be moderate to relatively large (e.g., ≥ three historical trials, and ≥ 10 patients in each
trial), and thus vague priors for (φ̃, σ 2) are suitable. The historical Sorafenib trials have
sample sizes 18, 30, 5, 43, 45, and 13, respectively. We assume i.i.d. normal distributions
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FIG. 2. Posterior mean (solid line) and 95% credible bands (dot–dashed lines) of the average dose–response
curve in the retrospective analysis of the Sorafenib clinical trials. The gray dotted lines display the isotonic
regression estimates of the study-specific dose–response curves, with the numbers identifying the studies.

with mean 0 and variance 10 as the priors for φ1, . . . , φJ and a half-t distribution with one
degree of freedom and scale parameter 25 as the prior for σ 2. Figure 2 displays the poste-
rior mean estimates and 95% credible intervals for the dose-toxicity curves, together with
isotonic regression estimates of the study-specific dose-toxicity curves. It shows that the av-
erage dose-toxicity curve is relatively flat, for the first four doses, and then increases sharply
at dose level 5. This pattern is also observed in the study-specific curves of studies 2–5. The
shape of the average dose-toxicity curve thus reflects the individual curves. Most of the iso-
tonically adjusted estimates of the toxicity probabilities lie inside the 95% credible intervals
of the average dose-toxicity curve, indicating that the model offers sufficient flexibility to
accommodate the data from the individual studies.

The posterior means of the average toxicity probabilities (p̃1, . . . , p̃6) are (0.05, 0.08, 0.10,
0.12, 0.34, 0.47), based on the historical data in Table 1. Using the target toxicity probability
θ = 0.33, dose level 5 (600 mg) is chosen as the MTD in this retrospective analysis. In con-
trast, using the same target, the method of Zohar, Katsahian and O’Quigley (2011) chooses
dose level 4 (400 mg) as the MTD. However, the observed and estimated toxicity rates of
dose level 4 are 0.05 and 0.12, respectively, both of which are far below the target 0.33, so
the recommended dose level 4 appears to be suboptimal for this dataset. Another advantage
of our Bayesian hierarchical meta-analysis approach is that the credible interval bands for
the average dose–response curve can be readily computed based on the posterior samples. In
contrast, under the frequentist paradigm the confidence band for the dose-response curve can
only be obtained by applying a complicated asymptotic approximation.

5.2. Designing a new trial. Next, we apply the proposed method to designing a new
dose-finding trial for Sorafinib, using a target toxicity rate θ = 0.33, seven patient cohorts
with three patients per cohort, and J = 6 dose levels. The starting dose of the new trial is
level 4 which is one level below the estimated MTD j∗ = 5 from the meta-analysis of the
historical data.
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The prior specification is the same as in the meta-analysis model. For the prior of α, we
calibrate its value to maximize the RWOC under randomly chosen scenarios. Supposing that
the clinician believes that there is an 80% chance that the actual MTD should not differ from
the historically estimated MTD j∗ = 5 by more than one level, we use the weight vector
(0.067, 0.067, 0.067, 0.15, 0.50, 0.15).

The search range for the smallest value α0 in the α’s discrete support is {1,5,10,15,20,

30}. The search range for the distance dα between points on the support is {5,10,20,30,40,

50}. The value of Mα should not be too small, since this would give an inflexible prior; nor
should it be too large, since this would easily give an overly dispersed prior. We found that
setting Mα in the range of five to 10 leads to reasonably good simulation performance, and
we set Mα = 5. A more refined search is possible, but this simple search is sufficient for the
purpose of illustration, and it should work well in most applications.

We apply the procedure for both the MAP-CRM and MAP-BOIN designs. The optimal
parameters are chosen as α0 = 5 and dα = 20, that is, A= {5,25,45,65,85} with equal prior
probabilities 0.2, for both MAP-CRM and MAP-BOIN, corresponding to a prior expected
sample size of roughly one observation per dose level. Other values of α0 and dα may sep-
arately yield a better RWOC for the MAP-CRM and MAP-BOIN designs. To simplify the
presentation, we choose the same α0 and dα parameters for both designs. These parameters
give nearly identical operating characteristics as those selected separately as optimal for the
MAP-CRM and MAP-BOIN designs.

5.3. Illustration of the MAP-CRM in the homogeneous case. We first illustrate how
MAP-CRM may be applied in order to design and conduct a dose-finding trial when the
historical and the current trial data agree, that is, the homogeneous case. For this case, we
simulated data for a single illustrative trial using the estimated dose-response curve based on
the historical data. Figure 3 (upper panel) presents the entire dose-assignment history of one
trial conducted using MAP-CRM.

The trial starts by treating the first cohort at dose level 4, and none of the three patients
experience DLT. According to the updated estimate of p0, using (5), dose level 5 has the es-
timated toxicity probability closest to θ = 0.33, and thus the second cohort is treated at dose
level 5. In the second cohort, one patient experiences DLT, and MAP-CRM recommends
the same dose level for the third cohort. For the fourth cohort, the observed data in the trial
are (y01, . . . , y06) = (0,0,0,0,1,0) and (n01, . . . , n06) = (0,0,0,3,6,0). Although the ob-
served toxicity data at dose level 5 are (y05, n05) = (1,6), which is smaller than θ = 0.33,
because it borrows strength from the historical data the MAP-CRM design yields the esti-
mates (p̂01, . . . , p̂06) = (0.04,0.08,0.10,0.11,0.24,0.43) which leads to the fourth cohort
being assigned to dose level 5. In contrast, both the CRM using a noninformative prior and
the BOIN design would escalate to dose level 6 for the fourth cohort. In this case the MAP-
CRM finds the current and the historical data to be partially similar, and thus it borrows
some historical information in the decision making. The fourth cohort has no DLT, so the
observed data at dose level 5 are (y05, n05) = (1,9). At this point the MAP-CRM design
identifies a difference between the current and historical trials and makes adaptive decisions
on that basis, that is, dose escalation for the fifth cohort. The subsequent treatment assign-
ments in this trial are displayed in Figure 3 (upper panel). At the end of the trial, the observed
data are (y01, . . . , y06) = (0,0,0,0,4,2) and (n01, . . . , n06) = (0,0,0,3,15,3), leading to
the posterior estimates (p̂01, . . . , p̂06) = (0.05,0.09,0.11,0.13,0.30,0.49). As a result, the
MAP-CRM design selects dose level 5 as the MTD.

5.4. Illustration of the MAP-CRM in the heterogeneous case. We next consider the
MAP-CRM in the case of heterogeneous trials. For illustration we mimic the trial conducted
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FIG. 3. Single trial illustrations of the proposed MAP-CRM design. The upper panel shows the case where
the current and historical trials are similar, while the lower panel shows the case of heterogeneity between the
current and historical trials. Open circles indicate patients without toxicity, and solid circles indicate patients
with toxicity. A dashed box represents a patient cohort.

by Borthakur et al. (2011), introduced in Section 2, with the three doses 200, 400, and 600 mg
studied in the new trial. For the simulations we embed these three doses in the larger set {100,
200, 300, 400, 600, 800}, as shown in Table 1, indexed by 1, . . . ,6. Thus, while only three
doses are studied in the new trial, by using historical information, data from all six doses are
used for decision making by MAP-CRM. The dose–toxicity data were simulated based on
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the observed toxicity rates reported by Borthakur et al. (2011) with the dose escalation/de-
escalation decided by MAP-CRM, as shown in Figure 3 (lower panel).

In the new trial the first cohort is treated at 400 mg, and one patient experiences DLT. The
MAP-CRM design gives the estimates (p̂01, . . . , p̂06) = (0.12,0.19,0.26,0.29,0.53,0.62),
and thus it retains dose level 4 (400 mg) for the second cohort. In contrast, if the information
from the historical trials were borrowed fully, the dose would be escalated to dose level 5
for the second cohort which would be overly aggressive. Since only one patient in the first
two cohorts experiences DLT at dose level 4, the dose is escalated to level 5 for the third
cohort. One DLT is observed at this dose level, and thus this level is retained for the fourth
cohort. However, all three patients in the fourth cohort have DLTs at dose level 5, so the next
cohort’s dose is deescalated to dose level 4. The MAP-CRM assigns all remaining patients to
dose level 4, and it identifies dose level 4 (400 mg) as the MTD at the end of the trial. This
differs from the historical trials for which the MTD is dose level 5 (600 mg).

5.5. Illustration of the MAP-BOIN design. We apply MAP-BOIN to designing a new
trial of Sorafenib. As previously discussed, the dose escalation and deescalation rules of
MAP-BOIN can be pretabulated before the trial, similarly to algorithm-based designs. We
summarize the decision rules of MAP-BOIN in Table 2 which shows that the interval bound-
aries of the MAP-BOIN design vary with the dose levels. Because the historical data show
substantial evidence that the target dose is level 5, the escalation boundaries of the MAP-
BOIN design at dose levels 1–3 for nj = 15 or 18 are greater than those of the BOIN design.
In other words, when the dose levels for cohorts 5 or 6 are 1, 2, or 3, MAP-BOIN has a larger
chance of escalating than the BOIN design. On the other hand, at dose level 5, MAP-BOIN
tends to prevent dose escalation because the historical data indicate this dose as the MTD;
thus, its escalation boundaries are no greater than those of BOIN for all nj ’s. Similarly, be-
cause dose level 6 is overly toxic according to the historical data, the MAP-BOIN has a larger
probability of deescalating from dose level 6 than the BOIN. In summary, the dose-specific
escalation and deescalation boundaries of the MAP-BOIN design indicate that it can partly
reflect the information contained in the historical data yet assign a dominant role to the cur-
rent data in decision making. The dose-finding procedure of the new Sorafenib trial using the
MAP-BOIN design follows exactly the same decisions in Table 2, so we omit implementation
details.

6. Simulation studies of the meta-analysis methods.

6.1. Comparison of models. We conducted simulation studies to assess the finite-sample
performance of our proposed random-effects meta-analysis model. We compared the pro-
posed curve-free random-effects meta-analysis method (CF-RMA) with the CRM-based
fixed-effect meta-analysis approach (CRM-FMA) of Zohar, Katsahian and O’Quigley (2011)
and also with a parametric random-effects meta-analysis (P-RMA) method. Prior specifica-
tion of the proposed method is the same as in Section 5. For the CRM-FMA we pool all
the historical data together and adopt monotonicity assumptions, based on a power model
(O’Quigley, Pepe and Fisher (1990)), pkj = a

exp(β)
j , where (a1, . . . , a6) denote prespecified

fixed toxicity probabilities, that is, the model’s skeleton, and β is an unknown parameter to
be estimated. Applying the model calibration method of Lee and Cheung (2009), we obtain
the skeleton values (a1, . . . , a6) = (0.02,0.05,0.12,0.21,0.33,0.45).

For the P-RMA model we assume the power model but allow the parameter β to vary
across trials, following a hierarchical structure, given by

pkj = a
exp(βk)
j , βk ∼ N

(
β,σ 2)

, β, σ 2 ∼ π
(
β,σ 2)

.
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For the prior π(β,σ 2), we assume that β and σ 2 are independent with β ∼ N(0,2) and σ 2

following a half-t distribution with one degree of freedom and scale parameter of 25 (Gelman
(2006)).

6.2. Configuration for fixed scenarios. Following the setup of the motivating example,
we consider six fixed dose-toxicity scenarios, each with six dose levels, and target θ = 0.33.
The goal in setting these scenarios is to examine the method’s performance in terms of the
random effects, location of the MTD, and the underlying data generation scheme. Table S.1
in the Supplementary Material (Lin et al. (2022)) summarizes the configuration of the simu-
lation scenarios.

For each scenario, six true study-specific dose-response curves are simulated, leading to
a total of six historical trials. To mimic reality, for each trial we randomly select four to six
dose levels with equal probabilities from the six dose levels being considered. As a result,
some dose levels are not included in some trials, and thus those trials have missing data for
the absent dose levels. To generate data of the historical trials, we first specify a mean toxicity
probability vector ptrue. A true study-specific latent vector for each historical trial is generated
from a multivariate normal distribution with mean φ̃true and covariance matrix σ 2

trueI6, and
we back-solve for the value of φ̃true from ptrue, based on the link function, for example, in
(2). For the kth historical trial, k = 1, . . . ,6, given the study-specific latent vector φk,true that
is generated from N6(φk,true | φ̃true, σ

2
trueI6), the toxicity probability pkj,true at dose j can be

derived using a link function, for example, the logistic function in (2).
For each set of six simulated dose-response curves, we conduct a trial using the 3 + 3

design, up and down design, even allocation of patients to the dose levels, BOIN, CRM, and
EWOC, respectively. The total sample size of the 3 + 3 design is random. For each of the
other five designs, we randomly choose seven to 15 cohorts of size three each which gives the
maximum sample size of 21 to 45. A total of 10,000 historical datasets are simulated under
each scenario.

In scenarios 1 and 2, we assume ptrue = (0.03,0.07,0.14,0.23,0.34,0.47), so the MTD is
dose level 5. The link function for back-solving for the true study-specific latent vector φ̃true
from ptrue is the same as (2). For the covariance matrix σ 2

trueI6, we set σtrue = 0 for scenario
1, yielding a fixed-effect scenario. In scenario 2, we set σtrue = 0.3, leading to approximately
15% of the simulated study-specific dose–toxicity curves having an MTD different from dose
level 5. In scenarios 3 and 4, the configurations are similar to those of scenarios 1 and 2. We
take ptrue = (0.05,0.09,0.32,0.46,0.59,0.67), so dose level 3 is the MTD. We set σtrue = 0
in scenario 3, and σtrue = 0.3 in scenario 4.

In scenarios 5 and 6, we use a different link function in the data-generating procedures.
We set ptrue = (0.02,0.03,0.09,0.33,0.40,0.42) with dose level 4 as the MTD and use a
probit link function, φ̃true = 
−1(ptrue), where 
−1(·) is the inverse cumulative distribution
function (CDF) of the standard normal distribution. Under the probit link the true study-
specific latent vector φk,true is generated from a multivariate normal distribution with mean
φ̃true and covariance matrix σ 2

trueI6. The true study-specific dose-toxicity probabilities are
calculated as pkj,true = 1−
(φk(j),true), where φk(j),true is the j th smallest element of φk,true.
We set σtrue = 0 in scenario 5, and σtrue = 0.2 in scenario 6 which implies that approximately
35% of the simulated dose-toxicity curves have an MTD different from dose level 4.

6.3. Configuration for random scenarios. To avoid cherry-picking scenarios, we also
consider scenarios where ptrue is generated randomly with each of the six dose levels having
an equal probability of being the MTD. For each simulated study we first randomly generate
the average dose-toxicity curve ptrue and then compute φ̃true using the logistic link function
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in (2) or the probit link. The true study-specific latent vector φk,true is generated from a
multivariate normal distribution with mean φ̃true and covariance matrix σ 2

trueI6. The study-
specific dose-response curve is calculated from φk,true based on the link function. Given ptrue,
generation of the study-specific dose-response curves and the historical trial results are the
same as in Section 6.2.

In scenario 7 we set σtrue = 0, so the study-specific dose–toxicity curves are the same
across all studies. In scenario 8 we take σtrue = 0.3, thus introducing random effects into
the studies. In scenario 9 the setup is the same as in scenario 8, but the link function in the
data-generating procedure is the probit function.

6.4. Results for fixed scenarios. The simulation results for the fixed scenarios are sum-
marized in Table S.2 in the Supplementary Material which gives the percentages of trials
that correctly identify the MTD and that identify overly toxic doses. In scenarios 1 and 2
the P-RMA method performs best, essentially because the prior guess of the dose-toxicity
curve is close to the truth. In scenarios 3–6 the CF-RMA performs best in terms of both the
highest percentage of correct selection (PCS) and the lowest chance of selecting an overly
toxic dose. Because the P-RMA method suffers from model misspecification, it has the worst
performance among the three methods. In contrast, our CF-RMA method flexibly accommo-
dates a wide variety of dose-response curves and true data-generating procedures. In most
scenarios the advantages of CF-RMA over the parametric P-RMA and fixed-effect CRM-
FMA are substantial. In terms of the percentage of overdose selection (POS), our proposed
method is the safest in four of the six scenarios.

6.5. Results for random scenarios. In scenarios 7–9, where the true dose–response
curves are randomly generated, CF-RMA is the best performer with the highest PCS and
lowest POS. The CF-RMA has, on average, 10 and five higher percentage points of correct
identification, compared with P-RMA and CRM-FMA, respectively. These may be consid-
ered substantial advantages, given the small sample sizes of the phase I studies. In terms
of POS, our proposed method is the safest in all random scenarios. Overall, the simulations
show that the proposed method is superior in both MTD identification and safety compared
with the other two meta-analysis methods.

7. Simulation studies for dose-finding designs.

7.1. Design comparisons. We conducted a simulation study of the MAP-CRM and
MAP-BOIN designs with existing methods included for comparison, including two no-
information-borrowing designs and two information-borrowing designs. The no-information-
borrowing designs are the CRM and BOIN. For the information-borrowing designs we exam-
ine the CRM using an informative prior (IP-CRM) (Morita (2011)), and the bridging CRM
(B-CRM) (Liu and Yuan (2015)). To ensure a fair comparison, the starting dose for all dose-
finding designs considered is dose level 4, one dose level below the estimated MTD from the
historical data.

In the CRM design, the model with the skeleton (a1, . . . , a6) = (0.02,0.05,0.12,0.21,

0.33,0.45) is used, and the prior distribution of the unknown variable follows a normal dis-
tribution with a mean of 0 and a variance of 2. In the BOIN design, the default setting is
used. In the IP-CRM design, a logistic regression model is used by fixing the intercept at
3 and treating the dose as the covariate that is obtained using the “backward fitting” pro-
cedure based on the historical data. The unknown slope parameter of the IP-CRM follows
a Gamma(6,6) prior. In the B-CRM design, the design parameters are set at default values.
The IP-CRM and B-CRM designs cannot account for heterogeneity across multiple historical
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studies. Instead, these two designs are implemented by pooling the multiple historical studies
into a single study. For the proposed method the prior specifications are the same as those in
Section 5.

7.2. Configuration for fixed s. Following the motivating example, 21 patients in cohorts
of size three are enrolled and assigned adaptively to one of the six dose levels. The historical
data include the information from the five dose-finding trials of Sorafenib.

The performance of each design is examined under six scenarios. The goal is to examine
performance under varying degrees of similarity between the true dose-toxicity profile and
the historical data, ranging from highly similar to vastly different, for example, whether the
locations of MTDs are the same. Recall that dose level 5 was identified as the MTD by apply-
ing the proposed MAP-CRM meta-analysis to the historical data. Scenarios 1 and 2 assume
toxicity profiles most commensurate to historical data, that is, the same location of the MTD
and similar shape of the dose–response curve. Under scenarios 1 and 2 it is expected that
the information-borrowing designs would perform better than the no-information-borrowing
designs. On the other hand, Scenarios 5 and 6 have the most different toxicity profiles from
the historical estimate, that is, the MTD locates far from the one estimated from the historical
trial. Under scenarios 5 and 6, it is expected that the information-borrowing designs would
not perform as well as the case where the toxicity profiles are highly similar to the histori-
cal estimates. Scenarios 3 and 4 have toxicity profiles where the MTD locations differ from
the historically estimated location by one level. Figure S.1 in the Supplementary Material
shows the dose-response curves under the six scenarios alongside the curve estimated from
the historical trials for comparison.

7.3. Configuration for random scenarios. To establish random dose–response scenarios,
we simulate two sets of dose–response curves. The first set, which we refer to as the homo-
geneous case, fixes the MTD at dose level 5, while the second set, which we refer to as the
heterogeneous case, selects one of the dose levels, excluding dose level 5, with equal proba-
bilities of being the MTD. The first set represents the case in which the current trial has the
same MTD as the one in the historical trials, but the dose–response curve may take various
shapes. The second set represents the case where there are substantial differences between
the current and historical trials. It may be expected that the information-borrowing designs
would perform better than the no-information-borrowing designs in the homogeneous and
worse in the heterogeneous case.

7.4. Results for fixed scenarios. Table S.3 in the Supplementary Material summarizes the
percentage of dose selections and the average number of patients treated at each dose based on
10,000 simulated trials for each scenario and method. In scenario 1 the specified dose-toxicity
probabilities are very close to the estimates from the historical data, and thus the generated
current trial data tend to be similar to the historical data. All of the information-borrowing
designs outperform the no-information-borrowing designs in terms of PCS. Compared with
CRM, MAP-CRM assigns approximately three more patients to the MTD. Compared with
BOIN, MAP-BOIN assigns nearly one more patient to the MTD. Both the MAP-CRM and
MAP-BOIN designs are less likely to select overly toxic dose levels than the other methods.

Scenario 2 is a case where the current trial MTD is the same as that in the historical
trials, but the shape of the dose–toxicity curve is different. All information-borrowing designs
outperform the no-information-borrowing designs. Compared with the other methods, the
MAP-CRM and MAP-BOIN have better performances in terms of PCS.

In scenario 3 the ongoing trial’s MTD is one level below the identified MTD from the his-
torical trials, and MAP-CRM outperforms the no-information-borrowing designs. The PCS of
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MAP-CRM is 3.8 percentage points higher than that of CRM. Patient allocation to the MTD
under MAP-CRM and MAP-BOIN is also slightly better compared with other methods.

When the MTD is the highest dose level, as in scenario 4, the MAP-CRM and MAP-BOIN
designs are relatively conservative, since the historical data indicate that the highest dose is
likely to be excessively toxic. This information has a large impact on the decision of whether
to escalate above dose level 5. As a result, the PCS of MAP-CRM is not as good as that of
CRM, and for MAP-BOIN its PCS is slightly lower than that of the BOIN design.

In scenarios 5 and 6, the MTD locations and dose-response curves differ dramatically from
those in the historical studies. As expected, because the MAP-CRM and MAP-BOIN designs
adaptively examine the degree of agreement between the current and historical studies, this
determines the amount of information they borrow from the historical data. The MAP-CRM
and MAP-BOIN designs still achieve reasonably good performances, outperforming the no-
information-borrowing designs. Since the IP-CRM and B-CRM do not account for hetero-
geneity between the current and historical data, their performances in scenarios 5 and 6 are
unstable or undesirable.

In summary, these simulations reveal several appealing features of the MAP-CRM and
MAP-BOIN designs. They reliably identify similarity between the current and historical
studies and adaptively determine the amount of information borrowing. When the studies
are similar, the proposed designs tend to be more efficient, and when the studies differ sub-
stantially, the proposed designs can quickly switch to the no-information-borrowing mode
and still achieve a reasonably good performance.

Furthermore, we quantify the sample size saving of the MAP-CRM design, compared
with the CRM design, by increasing the number of cohorts under the CRM design until its
PCS is no less than that of the MAP-based methods. In the first three scenarios, the CRM
design would, respectively, require additional five, seven, and two cohorts (or 15, 21, and
six patients) to achieve similar performances of the MAP-CRM design. Considering that the
original number of cohorts is only seven (or 21 patients), in this sense the MAP-CRM design
achieves substantial sample size saving percentages of 41.7%, 50%, and 22.2% in comparison
with the no-information-borrowing CRM design.

We illustrate the model’s ability to determine the degree of information borrowing by
evaluating the average posterior distribution of α under the six scenarios. As shown in Figure
S.2 in the Supplementary Material, under scenarios 1 and 2, where the historical data tend
to agree with the current toxicity estimates, the posterior distribution of α is concentrated on
the left, indicating strong information borrowing. On the other hand, under scenarios 5 and 6,
where the true toxicity probabilities differ sharply from those implied by the historical data,
the posterior distribution of α is concentrated more to the right side. The posterior means of
α in scenarios 1–6 are 33.6, 35.5, 40.6, 36.5, 49.0, and 50.2, respectively. The results indicate
that model can reliably detect the degree of similarity between historical and current data and
make adaptive decisions accordingly.

7.5. Results for random scenarios. Under the random scenarios, we evaluated the PCS
and the percentage of overdose allocation (POA), based on 10,000 data replications. Figure
S.3 in the Supplementary Material summarizes the performances of the designs for the homo-
geneous and heterogeneous cases. For each case, six distinct plotting symbols representing
the six designs are aligned vertically, the horizontal position of the vertical line corresponds
to the mean of the current set of six bars, and the vertical position of the plotting symbol rep-
resents the difference in percentage points from the center. For example, in the homogeneous
case, the PCS is centered around 46%, and the PCS of the MAP-CRM design is roughly three
percentage points higher than the center, that is, around 49%.

In terms of PCS, in both the homogeneous and heterogeneous cases, the MAP-CRM and
MAP-BOIN designs are among the best performers. While the B-CRM attains the highest
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PCS in the homogeneous case, it performs worst under the heterogeneous case. The CRM
and IP-CRM designs achieve PCS similar to or slightly better than the proposed methods in
the heterogeneous case but perform worse in the homogeneous case.

In terms of POA, in the homogeneous case the MAP-CRM and MAP-BOIN designs
achieve the lowest percentages. In the heterogeneous case, the POA of the MAP-CRM and
MAP-BOIN are neither best nor worst. The CRM design has the highest POA in both the
homogeneous and heterogeneous cases. The center POA in the homogeneous case is much
lower than that of the heterogeneous case. This is because dose level 5 is chosen as the MTD
in the homogeneous case, that is, only one dose level is higher than the MTD, whereas in the
heterogeneous case, for example, dose levels 1–4 chosen as the MTD, more dose levels are
defined as overdoses.

8. Concluding remarks. We have proposed a novel random-effects model for the meta-
analysis of multiple historical phase I dose-finding studies. The proposed model is an ex-
tension of the standard logistic-normal distribution for a single-dose DLT probability, and it
leads to a monotonically increasing vector of DLT probabilities with the random effects quan-
tifying between-trial heterogeneity. Our simulation studies show that the proposed random-
effects meta-analysis method generally has superior performance, compared with a large set
of other methods. We also incorporate the proposed random-effects model and power prior
into several existing dose-finding methods to obtain new MAP-based dose-finding meth-
ods that adaptively borrow information from multiple previous studies. Their performance
is shown to be superior by extensive simulation studies. In some senses, dose-finding studies
with multiple dose levels may be treated as multiarm trials, where some arms may be sub-
ject to missingness in certain studies. Since network meta-analysis is an approach tailored
for dealing with such a problem of mixed treatment comparisons (Lu and Ades (2004)), it
might be interesting to adapt the meta-analysis of multiple dose-finding studies to the frame-
work of network meta-analysis. Additionally, our approach can be framed as an extension of
model-based meta-analysis (Mould (2012), Boucher and Bennetts (2015)) to analyze phase
I clinical trials. This suggests that the meta-analytic-predictive approach might be applied to
other problems in a more general setting under the framework of model-based meta-analysis.

APPENDIX

Illustration of isotonic regression: Isotonic regression is commonly adopted for estimat-
ing a dose-response curve when it is desired to enforce a monotonicity assumption of the
dose-toxicity relationship, p1 ≤ p2 ≤ · · · ≤ pJ (Yuan and Chappell (2004)). For dose find-
ing, when the observed DLT proportions at some dose levels do not follow a monotoni-
cally increasing pattern, isotonic regression replaces the empirical proportions of any ad-
jacent levels that violate the monotonicity assumption by their weighted average. To illus-
trate the idea, suppose that the observed [number of DLTs]/[number of patients] at dose
levels 1 and 2 are 1/3 and 0/6, respectively. Since the monotonicity assumption is vio-
lated in this case, a pooled estimate, to enforce monotonicity, for these two levels could be
(1/3×3+0/6×6)/(3+6) = 0.11, that is, averaging the DLT proportions using the numbers
of patients as the weights.

For more general problems where J doses are involved, isotonic regression can be done
using the pool-adjacent-violators (PAVA) algorithm (Bril et al. (1984)) which repeatedly
replaces the adjacent violators with their weighted average until a monotonic ordering is
achieved. The resulting estimates p̃i are those that, among all the isotonic candidate esti-
mates p′

i , minimize the weighted sum of squares,

J∑
j=1

wj

(
pi − p′

i

)2
,



2502 R. LIN ET AL.

where wj is the weight, which, in the dose-finding problem, is specified as the number of
patients at each dose wj = nj .
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