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Summary: This paper proposes a two-stage phase I-II clinical trial design to optimize dose–schedule regimes of an

experimental agent within ordered disease subgroups in terms of toxicity–efficacy tradeoff. The design is motivated

by settings where prior biological information indicates it is certain that efficacy will improve with ordinal subgroup

level. We formulate a flexible Bayesian hierarchical model to account for associations among subgroups and regimes,

and to characterize ordered subgroup effects. Sequentially adaptive decision making is complicated by the problem,

arising from the motivating application, that efficacy is scored on day 90 and toxicity is evaluated within 30 days from

the start of therapy, while the patient accrual rate is fast relative to these outcome evaluation intervals. To deal with

this in a practical way, we take a likelihood-based approach that treats unobserved toxicity and efficacy outcomes as

missing values, and use elicited utilities that quantify the efficacy-toxicity trade-off as a decision criterion. Adaptive

randomization is used to assign patients to regimes while accounting for subgroups, with randomization probabilities

depending on the posterior predictive distributions of utilities. A simulation study is presented to evaluate the design’s

performance under a variety of scenarios, and to assess its sensitivity to the amount of missing data, the prior, and

model misspecification.
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1. Introduction

The primary objective of a phase I clinical trial is to estimate a maximum tolerable dose

(MTD) based on a toxicity variable defined in terms of one or more adverse events. Numerous

phase I designs have been proposed, such as the algorithm-based 3+3 design (Storer, 1989),

many model-based methods including the continual reassessment method (CRM) (O’Quigley,

et al., 1990), escalation with overdose control (EWOC) (Babb et al., 1998), Bayesian model

averaging CRM (Yin and Yuan, 2009), and model-assisted methods (Liu and Yuan, 2015;

Zhou et al., 2018). For a comprehensive review on existing phase I designs, see Zhou et al.

(2018). Some Bayesian model-based methods have been extended to deal with late-onset

toxicity (Cheung and Chappell, 2000; Yuan and Yin, 2011a).

For molecularly targeted agents and immunotherapies, a toxicity-based MTD is not neces-

sarily the optimal dose. Many phase I-II trial designs have been proposed to use both efficacy

and toxicity for decision making. Thall and Cook (2004) proposed a Bayesian phase I-II

design based on toxicity–efficacy probability trade-offs. Bekele and Shen (2005) introduced a

Bayesian approach to jointly modeling toxicity and biomarker expression. Zhang et al. (2006)

utilized a continuation-ratio model to adaptively estimate a biologically optimal dose. Houede

et al. (2010) optimized the dose pair of a two-agent combination using ordinal toxicity and

efficacy, by maximizing posterior mean utility. This approach was extended by using adaptive

randomization (AR) to reduce the chance of getting stuck at a suboptimal dose pair (Thall

and Nguyen, 2012). Yuan and Yin (2011b) considered phase I-II drug-combination trials with

late-onset efficacy. Guo and Yuan (2016) proposed a Bayesian phase I-II design for precision

medicine that incorporates biomarker subgroups. Liu, et al. (2018) developed a Bayesian

utility-based phase I-II design for immunotherapy trials. Reviews of phase I-II designs are

given by Yuan, Nguyen and Thall (2016).

In many settings, multiple administration schedules are considered, along with different
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doses. This motivates more complex phase I or I-II designs to optimize dose–schedule treat-

ment regimes (Braun et al., 2005, 2007; Zhang and Braun, 2013; Lee, et al., 2015; Guo

et al., 2016). This paper is motivated by a planned phase I-II trial for optimizing dose–

schedule of PGF Melphalan as a single agent preparative regimen for autologous stem cell

transplantation in patients with multiple myeloma (MM). This disease is heterogeneous,

dichotomized in terms of pathogenesis pathways determined by genetic and cytogenetic

abnormalities as hyperdiploid or not. Hyperdiploid patients are believed to have a better

response rate than non-hyperdiploid (Chng et al., 2006). A review is given by Fonseca, et al.

(2009). The trial considers three doses, 200, 225 and 250mg/m2, and three infusion schedules,

30 minutes, 12 hours, and 24 hours, yielding nine treatment regimes. Toxicity is defined as the

binary indicator of grade 3 mucositis lasting > 3 days or any grade 4 or 5 non-hematologic

or non-infectious toxicity within 30 days from start of infusion. Efficacy is defined as the

binary indicator of complete remission evaluated at day 90. Thus, while toxicity is observed

soon enough to apply a usual sequentially adaptive toxicity-based decision rule feasibly, the

efficacy outcome is evaluated much later. This greatly complicates making outcome-adaptive

decisions to optimize dose or dose–schedule based on both toxicity and efficacy.

Our proposed design optimizes the dose–schedule regime in terms of a toxicity–efficacy risk-

benefit trade-off quantified by a utility function, allowing the possibility that the optimal

regime may differ between disease subgroups. We formulate a Bayesian hierarchical model

to characterize associations among dose, schedule, subgroup, and the bivariate toxicity–

efficacy outcome. The design includes a two-stage adaptive randomization (AR) scheme that

randomizes each newly enrolled patient to a treatment regime using the posterior predictive

probability of the regime being the best with respect to the utility.

The rest of the paper is organized as follows. Section 2 presents the probability model,

likelihood, and priors. Section 3 gives the trial design, including the utility function, prior
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elicitation, and rules for trial conduct. In Section 4, we apply the proposed design to the

motivating example and conduct simulation studies to examine the design’s performance.

We close with a brief discussion in Section 5.

2. Probability Model

2.1 Bayesian hierarchical model

We consider a phase I-II trial with C ordered subgroups and a total of DS treatment regimes

obtained from D doses and S treatment schedules. Let n denote the number of patients

accrued at an interim point in the trial, and ci ∈ {1, . . . , C} be the subgroup of the ith

patient, i = 1, . . . , n. Denote the dose–schedule treatment regime assigned to patient i by

ri = (di, si), for di ∈ {1, . . . , D}, si ∈ {1, . . . , S}, and the joint toxicity and efficacy outcome

Yi = (Y T
i , Y

E
i ). Since Yi may depend on both ci and ri, the objective of the trial is to find

optimal subgroup-specific dose–schedule regimes that can maximize a given utility function.

Similarly to Albert and Chib (1993) and Lee, et al. (2015), to facilitate posterior computa-

tion we assume a latent normal vector to characterize the joint distribution of the observed

discrete outcome vector. Let ξi = (ξTi , ξ
E
i ) be real-valued bivariate normal latent variables

with means that vary with ci and ri. We define Yi by assuming that Y j
i = I(ξji > 0), j = T,E,

where I(·) is the indicator function, so the joint distribution of the latent vector [ξi|ci, ri]

induces that of the observed vector [Yi|ci, ri]. Each Y j
i is assumed to be a binary outcome.

Extension to ordinal outcomes is straightforward, but introduces additional complexity in

the likelihood and utility. We assume the following Bayesian hierarchical model for [ξi | ri]:

(a) Level 1 prior on ξi. Using patient-specific random effects εi = (εTi , ε
E
i ), we assume the

following conditional distribution for the latent variables:

ξji | ci, ri, εi, ξ̃jci,ri , σ
2
ξ ∼ N(ξ̃jci,ri + εji , σ

2
ξ ), j = E, T, i = 1, . . . , n (2.1)

with the variance σ2
ξ a hyperparameter and ξ̃i = (ξ̃Tci,ri , ξ̃

E
ci,ri

) the mean effects of regime
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ri = (di, si) in subgroup ci. The following second-level priors on εi and ξ̃ci,ri induce association

between ξTi and ξEi , which in turn induces association between Y T
i and Y E

i .

(b) Level 2 prior on εi. Assume

(εTi , ε
E
i )

i.i.d.∼ BN(02,Σε), i = 1, . . . , n, (2.2)

where “i.i.d.” represents independent and identically distributed, BN denotes a bivariate

normal distribution, 02 = (0, 0) and Σε is the 2 × 2 matrix with both diagonal elements ζ2

and both off-diagonal elements ρζ2. The fixed hyperparameters ρ ∈ (−1, 1) and ζ2 quantify

the association between Y T
i and Y E

i via the latent variable model.

(c) Level 2 prior on ξ̃c,r. To facilitate information sharing across subgroups, for each regime

r = (d, s) we assume that ξ̃c,r = ξ̄r +
∑C

c′=2 νc,rI(c
′ = c), c = 1, . . . , C, where ξ̄r = (ξ̄Tr , ξ̄

E
r )

can be treated as the baseline effects for regime r, and the baseline subgroup is c = 1 with ν1,r

= 02 for all r. The ordering constraint is imposed by choosing the support of νc,r = (νTc,r, ν
E
c,r)

to satisfy the corresponding order constraint. For example, if prior information indicates

that Pr(efficacy) in subgroup 1 is greater than Pr(efficacy) in subgroup 2, then we require

νE1,r > νE2,r. Thus, this model ensures that the efficacy probabilities are heterogenous across

subgroups. When νc,r → 02 for all (c, r), the model shrinks to the homogeneous case where

regime effects in different subgroups are the same.

To define the priors of ξ̄r, for schedule s and outcome j = T,E, we denote by ξ̄j−d,s the

subvector of ξ̄js = (ξ̄j1,s, . . . , ξ̄
j
D,s) with ξ̄jd,s deleted, for d = 1, . . . , D. Our model includes the

common assumption that the risk of toxicity increases monotonically with dose, which we

formalize as

ξ̄Td,s | ξ̄T−d,s ∼ N(ξT0 , σ
T,2
0 )I(ξ̄Td−1,s < ξ̄Td,s < ξ̄Td+1,s), (2.3)

where N(ξT0 , σ
T,2
0 ) denotes the hyper-prior normal distribution with mean ξT0 and variance

σT,20 , with the truncated support of ξ̄Td,s given by the indicator function. That is, the condi-

tional distribution of the mean ξ̄Td,s is restricted to the subset of the reals determined by the
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values of the other means, ξ̄T−d,s, through the order constraint. These order constraints induce

association among different dose levels, ensuring that the latent variable for toxicity increases

stochastically in dose d for each schedule s, hence the probability of toxicity increases

with d for each s. Such an order constraint can be achieved at each Markov chain Monte

Carlo (MCMC) step by generating the proposals of (ξ̄T1,s, ξ̄
T
D,s) from a multivariate normal

distribution, subject to ξ̄T1,s < · · · < ξ̄TD,s. In contrast, we do not impose any monotonicity

restriction on efficacy in d, and simply assume that

ξ̄Ed,s | ξ̄E−d,s ∼ N(ξE0 , σ
E,2
0 ), (2.4)

where N(ξE0 , σ
E,2
0 ) denotes the unconstrained hyper-prior normal distribution. Thus, for each

s and c, the dose-efficacy probability relationship can take a wide variety of possible forms.

The priors on νc,r should be elicited while accounting for prior order. Based on the MM trial

with C = 2 ordered subgroups, the toxicity distribution is homogeneous across subgroups, so

we assume νTc,r = 0 for each (c, r) combination. Since efficacy in the second subgroup (c = 2) is

greater than in the first group (c = 1), we estimate νE2,r by borrowing information across dose

levels, as follows: νE2,r = νE2,d,s
i.i.d.∼ N

+
(νE1,r, τ

2
0 ), d = 1, . . . , D, s = 1, . . . , S, where N+(νE1,r, τ

2
0 )

is a truncated normal distribution with support (νE1,r,∞), and the variance τ 2
0 is prespecified.

This ensures that, given r, the efficacy probability in subgroup 2 is strictly greater than that

in subgroup 1. For more general trials, if there is an ordering relationship among subgroups

in terms of toxicity, say, subgroup 2 has a higher toxicity probability than subgroup 1,

the design may account for this by assuming the prior, νT2,r = νT2,d,s
i.i.d.∼ N

+
(νT1,r, τ

2
0 ), d =

1, . . . , D, s = 1, . . . , S, with νT1,r = 0. However, since the MM trial considers a homogeneous

toxicity distribution across subgroups, we simply take νT2,r = νT1,r = 0 in this paper.

To specify the likelihood and posterior, we denote ξ̃ = {ξ̃c,r, c = 1 . . . , C, r = 1 . . . , DS}.

Combining equations (2.1) and (2.2), the joint distribution of (ξTi , ξ
E
i ) can be derived by
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integrating out εi, yielding

(ξTi , ξ
E
i ) | ci, ri, ξ̃

indep∼ BN(µci,ri ,Σξ), (2.5)

where the mean vector µci,ri depends on the ith patient’s subgroup ci and treatment regime

ri = (di, si). More precisely, µci,ri = (ξ̃Tci,ri , ξ̃
E
ci,ri

), and Σξ is the covariance matrix with the

diagonal elements being σ2
ξ + ζ2 and the off-diagonal elements being ρζ2. As a result, the

individual likelihood for the observations of a patient with outcome (yTi , y
E
i ) (yTi , y

E
i = 0, 1)

can be parameterized as

f(yTi , y
E
i | ci, ri, ξ̃) = Pr(γyTi 6 ξTi < γyTi +1, γyEi 6 ξEi < γyEi +1 | ci, ri, ξ̃)

=

∫ γ
yT
i

+1

γ
yT
i

∫ γ
yE
i

+1

γ
yE
i

f(ξTi , ξ
E
i | ci, ri, ξ̃)dξEi dξTi ,

where f(ξT , ξE | c, r, ξ̃) is given by (2.5), and the cutoff vector (γ0, γ1, γ2) = (−∞, 0,∞).

2.2 Delayed outcomes

In the MM study, the toxicity outcome is evaluated within V T = 30 days, while efficacy is

defined as complete remission based on disease evaluation on day V E = 90. Thus, toxicity

can occur at any time during the 30 day assessment window, but efficacy is not known until

a patient has reached day 90 of follow up. Consequently, when a regime must be assigned

for a newly enrolled patient, the outcomes of some previously treated patients might not

have been fully assessed. Formally, at the time of interim decision making, both Y E and

Y T of previously treated patients are subject to missingness. In the MM study, the amount

of missing Y T data would be much less than the amount of missing Y E data because the

30-day assessment window for Y T is much shorter than the 90 days required to evaluate Y E.

At an interim decision-making time, suppose that patient i has been followed for ti days. We

introduce an indicator vector δi = (δTi , δ
E
i ) to denote the respective missingness of toxicity

and efficacy for the ith patient, where δji = 1 if Y j
i has been evaluated and δji = 0 if not, for

j = T,E. In the MM trial setting, Y T can be defined as a time-to-event outcome. Suppose



An Adaptive Trial Design to Optimize Dose–Schedule Regimes 7

Xi denotes the ith patient’s time to toxicity, then Y T
i = 1 if Xi 6 V T and Y T

i = 0 if

Xi > V T . We have δTi = I(ti > min(Xi, V
T )) and δEi = I(ti > V E). Because V T < V E, we

have δTi > δEi , so (δTi , δ
E
i ) = (0,1) is impossible.

When both Y T
i = yTi and Y E

i = yEi are observed for patient i, i.e., ti > V E, the individual

likelihood is f(yTi , y
E
i | δTi = 1, δEi = 1, ci, ri, ξ̃) = f(yTi , y

E
i | ci, ri, ξ̃). Under the mechanism

of missing at random, the likelihood of a patient with observed Y T
i = yTi and missing Y E

i ,

i.e., min(Xi, V
T )) 6 ti < V E and (δTi , δ

E
i ) = (1, 0), is f(yTi | δTi = 1, δEi = 0, ci, ri, ξ̃) =

Pr(γyTi 6 ξTi < γyTi +1 | ci, ri, ξ̃), where Pr(γyTi 6 ξTi < γyTi +1 | ci, ri, ξ̃) is the marginal

likelihood of Y T
i evaluated at yTi . When both yTi and yEi are missing, i.e., ti < min(Xi, V

T )

and (δTi , δ
E
i ) = (0, 0), it only is known that the ith patient’s time to toxicity is greater than

ti. In this case, for 0 < ti < V T , the likelihood is given by

Pr(Xi > ti | δTi = 0, δEi = 0, ci, ri, ξ̃)

= Pr(Y T
i = 0 | ci, ri, ξ̃) Pr(Xi > ti | Y T

i = 0, ci, ri, ξ̃) (2.6)

+ Pr(Y T
i = 1 | ci, ri, ξ̃) Pr(Xi > ti | Y T

i = 1, ci, ri, ξ̃)

= 1− wi Pr(Y T
i = 1 | ci, ri, ξ̃) (2.7)

where we denote wi = Pr(Xi 6 ti | Y T
i = 1, ci, ri, ξ̃). The first equality above is due to

the fact that, given δTi = 0 and δEi = 0, all values of (Y T
i , Y

E
i ) are possible. Suppressing

ci, ri, ξ̃ for brevity, since 0 < ti < V T , Pr(Xi > ti | Y T
i = 0) = Pr(V T > Xi > ti |

Y T
i = 0) + Pr(Xi > V T | Y T

i = 0) = 0 + 1 = 1, hence the first summand (2.6) equals

Pr(Y T
i = 0 | ci, ri, ξ̃) = 1− Pr(Y T

i = 1 | ci, ri, ξ̃).

We assume that, conditional on Y T
i , the time-to-toxicity distribution is independent of

(ci, ri, ξ̃), i.e. Xi does not depend on subgroup or treatment regime given the indicator of

toxicity on [0, V T ]. We thus need to estimate wi in order to obtain a working likelihood for

Pr(Xi > ti | δTi = 0, δEi = 0, ci, ri, ξ̃). Noting that the support of [Xi | Y T
i = 1] is (0, V T ), we
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model the conditional samples of [Xi | Y T
i = 1] based on a scaled Beta distribution, given by

Sampling model : Xi | Y T
i = 1 ∼ V T × Beta(α, β), (2.8)

Priors : α, β ∼ Gamma(λ0, η0),

where λ0 and η0 are the hyperparameters for the Gamma prior distribution. As a result, wi

can be obtained based on the posterior distribution of [Xi | Y T
i = 1].

Let Dn = {(ci, ri, yTi , yEi , xi, ti, δTi , δEi )}ni=1 be the observed data at the arrival time of the

(n+ 1)th patient. The joint likelihood for the first n patients can be written as

L(Dn | ξ̃, α, β)

=
n∏
i=1

{
g(xi | α, β)y

T
i × f(yTi , y

E
i | δTi = 1, δEi = 1, ci, ri, ξ̃)δ

T
i δ

E
i ×

f(yTi | δTi = 1, δEi = 0, ci, ri, ξ̃)δ
T
i (1−δEi ) × Pr(Xi > ti | δTi = 0, δEi = 0, ci, ri, ξ̃)(1−δTi )(1−δEi )

}

where g(· | α, β) is the density function of the scaled Beta distribution.

Denote the vector of all hyperparameters by θ0 = (ρ, ζ2, σ2
ξ , λ0, η0, ξ

T
0 , ξ

E
0 , σ

T,2
0 , σE,20 , τ 2

0 ),

and let π(ξ̃, α, β | θ0) be the joint prior distribution of (ξ̃, α, β) induced by the hierarchical

model (2.1)–(2.4) and the model (2.8) for time to toxicity. The joint posterior distribution

of (ξ̃, α, β) is then given by π(ξ̃, α, β | θ0,Dn) ∝ π(ξ̃, α, β | θ0)L(Dn | ξ̃, α, β), where the

posterior samples of [ξ̃, α, β | θ0,Dn] can be obtained via standard Markov chain Monte Carlo

sampling methods. The sampling procedure is carried out in two steps. Since the posterior

sampling of model (2.8) only depends on the time to toxicity data {(Xi, δ
T
i ), i = 1, . . . , n},

in the first step we simulate the posterior samples of (α, β), as well as those of wi, because

wi depends solely on the model assumption (2.8). In the second step, we plug the posterior

samples of wi values into equation (2.7) to obtain samples of the remaining parameters. R

code for implementing the proposed design is available in Supplementary Materials.
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3. Trial design

We define admissibility criteria to screen out any regimes with excessively high toxicity or

unacceptably low efficacy adaptively based on the interim data. Let πjc,r(ξ̃) = Pr(Y j = 1 |

c, r, ξ̃) be the marginal probability of outcome j = T,E. Recall that θ0 denotes the vector

of all fixed hyperparameters. Given a fixed upper limit πT on πTc,r(ξ̃), a fixed lower limit πE

on πEc,r(ξ̃), and fixed cutoff probabilities ηT and ηE, for each subgroup c, we define the set

Ac of admissible regimes to be all r = (d, s) satisfying the two criteria

Pr{πTc,r(ξ̃) > πT | θ0,Dn} < ηT and Pr{πEc,r(ξ̃) < πE | θ0,Dn} < ηE, (3.1)

similarly to Thall and Cook (2004).

To choose regimes from Ac for each subgroup c, we utilize a utility-based criterion to

quantify efficacy–toxicity risk-benefit trade-offs. To do this, a numerical utility U(yT , yE) is

elicited for each of the four elementary outcome pairs (yT , yE) = (0, 0), (1, 0), (0, 1), and (1, 1).

For illustrations of the choice of U in a variety of settings, see Houede et al. (2010), Thall

and Nguyen (2012), Yuan, Nguyen and Thall (2016), or Liu, et al. (2018). Since (Y T , Y E)

are random variables that depend on the patient’s regime r and subgroup c, U(Y T , Y E)

also is a random variable. Denote yu = {(yT , yE) : U(yT , yE) = u}. The posterior predictive

distribution (PPD) of U(Y T , Y E) for future values (Y T , Y E) is derived as follows.

Pr
{
U(Y T , Y E) = u | c, r,θ0,Dn

}
=

∑
yu

Pr{(Y T , Y E) = yu | c, r,θ0,Dn}

=
∑
yu

∫
ξ̃

Pr{(Y T , Y E) = yu | c, r, ξ̃}π(ξ̃ | θ0,Dn)dξ̃,

where π(ξ̃ | θ0,Dn) is the marginal posterior of ξ̃ obtained by integrating π(ξ̃, α, β | θ0,Dn)

over (α, β) under the gamma hyperprior. We denote the random variable [U(Y T , Y E) |

c, r,θ0,Dn] by Uc,r = Uc,d,s. Let umax
c = maxr{uc,r} be the maximum utility among all

considered treatment regimes for subgroup c = 1, . . . , C, where uc,r denotes the true mean

utility for combination (c, r). The optimal treatment regime for each subgroup c = 1, . . . , C,
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is defined as the regime with uc,r > umax
c − u, where u is an indifference margin. In the MM

study, we consider u = 5.

The AR procedure of the proposed trial design, which will be given in detail below, depends

on the PPD of Uc,r. We define AR with probability of assignment to regime (d, s) within

each subgroup c proportional to

ωc(d, s) = Pr

{
Uc,d,s = max

d′∈{1,...,D}
Uc,d′,s

}
I{(d, s) ∈ Ac}. (3.2)

In equation (3.2), since Uc,d,s is a random variable, the quantity max
d′∈{1,...,D}

Uc,d′,s is the

maximum among D random variables, and may not equal the maximum utility U(0, 1).

This equation implies that the AR probability is proportional to the posterior predictive

probability of attaining the maximum predicted utility among all admissible dose levels

within treatment schedule s, for a future patient. Thus, ωc(d, s) accounts for both the mean

and variation of the utilities from different regimes within the schedule. This PPD-based

approach is fundamentally different from the procedures used by Thall and Nguyen (2012),

Lee, et al. (2015), and others, where AR probabilities are defined in terms of posterior mean

utilities. In the present context, these would be

uc(d, s,θ0,Dn) = E
[
E{U(Y T , Y E) | c, d, s, ξ̃} | θ0,Dn

]
=

∑
(yT ,yE)

U(yT , yE)

∫
ξ̃

f(Y T = yT , Y E = yE | c, d, s, ξ̃)π(ξ̃ | θ0,Dn)dξ̃.

AR probabilities ω′c(d, s) among (d, s) pairs for subgroup c then are defined to be proportional

to uc(d, s,θ0,Dn)I{(d, s) ∈ Ac}.

Compared to the approach of defining AR probabilities ω′c(d, s) based on posterior mean

utilities (Thall and Nguyen, 2012; Lee, et al., 2015), the proposed approach of using the

PPD of Uc,r to define the AR probabilities ωc(d, s) leads to a more extensive exploration of

the regime space, and thus it addresses the “exploitation versus exploration” problem, which

is well known in phase I-II trials (Yuan, Nguyen and Thall (2016), Chapter 2.6) and more

generally in sequential analysis (Sutton and Bartow (1998)). This is because the PPD of Uc,r
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accounts for distributions of future observations. The AR procedure based on the PPD of

Uc,r thus tends to have a smaller chance of getting stuck at suboptimal regimes. Since AR

treats patients with suboptimal regimes, care must be taken to ensure that its use does not

expose patients to unacceptably high risks of high toxicity or low efficacy.

To estimate the optimal subgroup-specific treatment regime that maximizes U(yT , yE)

across different combinations of (c, r), we divide the trial into two stages. In stage 1, for each

subgroup c = 1, . . . , C, N1c patients are randomized fairly among the schedules. This is

different from standard phase I methods, such as the CRM or EWOC, which use deterministic

allocation to treat patients. In the motivating MM study, the toxicity assessment window

is 30 days, while efficacy is evaluated much later, at day 90. Thus, toxicity outcomes are

observed much sooner than efficacy outcomes, and in stage 1 the data available for making the

adaptive decisions are largely toxicity data, with efficacy data collected to facilitate decision

making in stage 2. At the end of stage 1, since some previously missing Y E outcomes may be

observed for patients followed to V E, preliminary estimates of the subgroup-specific optimal

regimes can be obtained. For each subgroup c, stage 2 enrolls the remaining N2c patients with

the goal to estimate the globally optimal regime. To achieve this, we propose a procedure

that does optimization within schedule, combined with AR across schedules. An optimal dose

first is selected within each treatment schedule, and then patients are adaptively randomized

among the optimal dose set across schedules. This hybrid approach, of selecting optimal

doses and randomizing, balances exploitation versus exploration by allowing sufficient dose

exploration (through AR) to reduce the risk of being stuck at suboptimal doses, but also

avoids allocating too many patients to suboptimal doses.

Let Nmax be the maximum total sample size, and pc the prevalence of subgroup c =

1, . . . , C, so
∑C

c=1 pc = 1. We bound the maximum sample size Nmax
c for subgroup c by

pcN
max. Assume patients are recruited sequentially to each schedule within each subgroup.
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Let κ be the proportion of patients assigned to each schedule in stage 1, that is, we randomize

κNmax
c patients to each schedule in stage 1 for each subgroup. Thus, N1c = κSNmax

c =

κSpcN
max and N2c = Nmax

c −N1c. The two-stage trial proceeds as follows.

Stage 1. If the next patient enrolled is in subgroup c,

1.1 Randomly choose a schedule, s, with probability 1/S each.

1.2 If s has never been tested before, then start the subtrial in this schedule at the lowest

dose. Otherwise, based on (3.1), determine the admissible set Ac in subgroup c based on the

most recent data Dn. Subject to the constraint that no untried dose may be skipped when

escalating, randomly choose an acceptable dose for the next patient with AR probability

proportional to ωc(d, s), d = 1, . . . , D. Thus, the AR probability in subgroup c is proportional

to the probability that regime (d, s) induces the maximum utility within schedule s, with all

(d, s) that are unacceptable in subgroup c given AR probability 0.

1.3 The subtrial for subgroup c is either stopped when the maximum sample size κNmax
c is

reached, or terminated early if no dose within this schedule is admissible for subgroup c.

Stage 2. For each newly enrolled patient in subgroup c, first determine the optimal dose

d∗c(s) that has largest probability of having the maximum utility within each s, i.e., d∗c(s) =

arg max
d∈{1,...,D}

{ωc(d, s)}, s = 1, . . . , S, where ωc(d, s) is given by equation (3.2). Then choose the

schedule s across schedules with the AR probability proportional to

ωc(d
∗
c(s), s) = Pr

{
Uc,d∗c(s),s = max

s′∈{1,...,S}
Uc,d∗c(s′),s′

}
I{(d∗c(s), s) ∈ Ac}, s = 1, . . . , S,

and assign the new patient dose d∗c(s). In other words, in Stage 2, dose first is optimized

within each schedule without use of AR, and then AR is applied to randomize patients

among doses across all schedules. Repeat this until N2c patients have been treated in the

second stage, and then stop the trial for subgroup c. If no regime is admissible for subgroup

c as given by (3.1), then stop the trial in that subgroup.

At the end of the study, based on the complete data DNmax , for each subgroup c = 1, . . . , C,
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the optimal treatment regime is defined as that with largest probability of having the max-

imum utility among all regimes, formally r∗c = (d∗c , s
∗
c) = arg max

(d,s)∈Ac

Pr

{
Uc,d,s = max

(d′,s′)
Uc,d′,s′

}
.

To implement the design in practice, one must prespecify values of the hyperparameters

θ0, the utility function U(yT , yE), and the design parameters (Nmax, κ, πT , πE, ηT , ηE).

A detailed description of the calibration procedure for the proposed design is provided in

Supplementary Materials.

4. Simulation Study

In this section, we summarize results of a simulation study to investigate the proposed

design’s OCs, using the PGF Melphalan trial as a basis for the simulation study design.

We consider C = 2 subgroups with equal prevalences p1 = p2 = 1/2, assume the toxicity

probabilities πTc,r are homogeneous across subgroups, but that the efficacy probabilities satisfy

πE2,r > πE1,r for all r = (d, s). We will evaluate sensitivity of the design’s performance to

different prevalences. We study D = 3 doses (200, 225, 250 mg/m2) combined with S = 3

infusion schedules, for a total of nine treatment regimes, and 18 different subgroup-specific

dose–schedule regime combinations. We assume Nmax = 120 patients are accrued, so on

average 6.6 patients are allocated to each subgroup-specific dose–schedule regime. This

sample size is reasonable, since the maximum sample size using a 3 + 3 design to find

an MTD for each of six (c, s) pairs would be similar. Based on preliminary simulations, we

take κ = 0.2, leading to N11 +N12 = 72 patients treated in stage 1. When p1 = p2 = 1/2, the

stage 1 sample size per subgroup is N11 = N12 = 36. Toxicity is monitored during the first

V T = 30 days, and efficacy is evaluated on day V E = 90. We assume patents are accrued at

a rate of 6 per month, arriving according to a Poisson process, so the average inter-arrival

time is 5 days. Thus, the expected time to accrue 120 patients is 20 months.

We evaluated the proposed design’s OCs under eight different scenarios, characterized

in terms of fixed marginal probabilities of toxicity and efficacy (πTc,r, π
E
c,r) given in Table
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1. The trial data were simulated using (2.1)–(2.2), where we set σ2,true
ξ = 0.52, ρtrue =

−0.2, ζ2,true = 0.32. The true values of ξ̃true
c,r were determined by matching πjc,r = 1 − Φ(0 |

ξj,true
c,r , σ2,true

ξ + ζ2,true), j = T,E. In scenarios 1–6, a regime with an efficacy probability < π̄E

= .20 is considered clinically unimportant, and a toxicity probability > πT = .15 is considered

unsafe. To assess applicability of the design to more general scenarios, regimes with toxicity

rate above 30% and an efficacy rate below 30% are considered inadmissible in scenarios 7–

8, which are different from the MM trial. The utility function is U(0, 1) = 100, U(0, 0) =

60, U(1, 1) = 40, U(1, 0) = 0, reflecting the belief that avoiding toxicity is more important

than achieving efficacy. The expected utility of each regime under the eight scenarios is

displayed in Table 1, and the true optimal treatment regimes are underlined.

We denote the proposed two-stage design by TD. The design configuration of TD is

given in Supplementary Materials. To show the advantage of borrowing information between

subgroups, we compare the TD with a design that conducts a separate trial independently

for each subgroup in parallel, with the sample size for subgroup c bounded by pcN
max, c =

1, . . . , C. We denote this design by ITD. As a benchmark for comparison, we also implement

the complete-data version of the proposed two-stage design, denoted by TDC, which waits

until all toxicity and efficacy outcomes of previously treated patients are completely observed

before choosing a regime for the next patient. The TDC design thus requires repeatedly

suspending accrual of new patients prior to each new regime assignment. Therefore, TDC

has a very lengthy trial duration, which is not feasible in practice with late-onset outcomes.

To examine the benefit of using the proposed AR probabilities ωc(d, s), we also include the

design using AR probabilities ω′c(d, s) that depends on posterior mean utilities. We denote

this design by TDU. Each design was simulated 1000 times under each scenario.

Table 2 shows the percentages of selecting optimal treatment regimes (OTRs) and the

average trial durations of the four designs. In general, the average OTR selection percentages
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of TD are 71.8 and 74.9 for subgroups 1 and 2, respectively. Since scenarios 7–8 have different

definitions of admissible regimes than scenarios 1–6, the desirable performance of TD in

scenarios 7–8 also indicates that the proposed TD design is flexible and can be applied

to different trial settings. The selection percentage of each regime using TD are given in

Table 3. We find that TD is efficient in identifying inadmissible regimes. For example, TD

has very small probabilities of selecting the toxic treatment regimes with schedule s = 2

in scenario 2. Similarly, in scenario 8, where the efficacy probabilities of treatment regimes

r = (d, 2), d = 1, 2, 3, all are below the lower limit πE = 0.30, TD is unlikely to select these

inefficacious regimes as the OTRs.

Table 2 shows that the OTR selection percentages of TD are very close to those of TDC,

indicating that TD recovers from efficiency loss due to missing efficacy data early in the

trial. Once the missing outcomes are observed, TD efficiently incorporates the new data for

subsequent decision making. Since TDC repeatedly suspends accrual of new patients to wait

for full assessments of previously treated patients, on average it would require 360 months to

complete a trial with 120 patients. In contrast, TD facilitates real-time decision making with

no suspension of accrual, requiring approximately 23 months for the trial, with a negligible

drop in OTR selection percentage. Comparing the OTR selection percentages of TD and

TDU in Table 2 shows that, on average, TD performs better than TDU. When there is only

one OTR, as in scenarios 4 and 8 for subgroup 1, TD yields approximately 10% higher OTR

selection percentages than TDU, indicating that the use of AR probabilities by TD leads

to a more thorough exploration of the treatment regime space. We summarize the total

number of patients treated with a toxic regime having true πTc,r > π̄T in Figure 1, and the

total number of patients treated with an inefficacious regime having πEc,r < π̄E in Figure

2. The results show that, compared to TDU, TD only exposes 2-3 more patients to overly

toxic treatment regimes. For maximum sample size 120 patients, such a risk is generally
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acceptable. However, because it explores more doses and schedules, TD tends to treat fewer

patients at inefficacious regimes than TDU (See Figure 2).

Table 2 shows the advantage of borrowing information across subgroups, in terms of within-

subgroup OTR selection percentage. For nearly all scenarios and subgroups, TD has a larger

OTR selection percentage than ITD, with the relative performance between TD and ITD

depending on the degree of homogeneity of treatment effects across subgroups. In scenarios

1 and 2, where the locations of the OTRs are the same for the two subgroups, TD greatly

outperforms ITD in terms of selection percentages of OTRs, with at least a 10% advantage

over ITD for all scenario-subgroup combinations. This is because TD borrows information

between subgroups. When the subgroups are relatively homogeneous in terms of treatment

effects, TD may be expected to perform better than ITD. In scenarios 3–5, subgroup 2 has

one more OTR than subgroup 1, with the remaining OTRs of subgroup 2 the same as those of

subgroup 1. In these scenarios, TD again has substantially larger OTR selection percentages

than ITD. However, in extremely heterogenous cases, borrowing information may harm TD’s

performance. This is shown by scenario 6, where the OTRs are very different for the two

subgroups, and the OTR selection percentage in subgroup 2 for TD is less than that of ITD.

An advantage of information sharing by the TD method is that, since the toxicity outcomes

are assumed to be homogenous, borrowing toxicity information across subgroups helps screen

out overly toxic regimes. Since ITD does not borrow information between subgroups, it is

more likely to treat patients with overly toxic regimes, illustrated by Figure 1, which gives

the total numbers of patients overdosed. Thus, in terms of OTR selection, trial duration,

and safety, TD is superior to ITD.

The Supplementary Materials report extensive sensitivity analyses to examine the OCs of

the proposed TD for different maximum sample sizes, Nmax. These show that the probability

that TD correctly identifies the OTR increases substantially with Nmax. For Nmax = 300,
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the average selection percentage of OTR across the eight considered scenarios is as high

as 90%. This indicates that the proposed design can recover from situations where it may

get stuck early on at suboptimal regimes. We also show that TD is very robust to various

subgroup prevalence ratios, patient accrual rates, true underlying models (data generating

processes), and prior distributions (with reasonably noninformative priors).

5. Concluding remarks

We have proposed a two-stage phase I-II clinical trial design that does subgroup-specific dose–

schedule finding based on a Bayesian hierarchical model, with specific attention to settings

where the efficacy outcome is evaluated long after the start of treatment. To accommodate

subgroups, the model exploits prior ordering information that the drug should be more

effective in one subgroup than the other. The posterior predictive distribution of the utility of

each dose–schedule regime is used as a basis for regime selection and adaptive randomization,

which is employed to improve reliability. Within-subgroup regime acceptability rules are

included for both toxicity and efficacy.

Late-onset outcomes complicate outcome-adaptive trial conduct. We have addressed this

problem by using a hybrid two-stage design with adaptive randomization. In stage 1, little

efficacy data are available, and mainly toxicity data are utilized for early decision making,

primarily to screen out unsafe treatment regimes. When efficacy outcomes of more patients

have been assessed in stage 2, efficacy plays a more prominent role in choosing regimes

for the remaining patients, and for making final within-subgroup optimal regime selections.

Simulations show that the operating characteristics of the proposed design are very similar

to those of the benchmark complete-data design, which would require an unrealistically long

time to complete the trial. Thus, the proposed design has a minimal loss in efficiency due to

accommodating late-onset toxicity/efficacy, while providing a realistic trial duration.
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Figure 1. Average total number of patients overdosed, i.e. treated with a regime having
true πTc,r > πT = .15 in scenarios 1–6 and πTc,r > πT = .30 in scenarios 7–8, for the TD (circle
◦), ITD (triangle 4), TDC (plus +), and TDU (cross ×) under the simulation scenarios in
Table 1. “TD” is the proposed two-stage trial design; “TDC” denotes the two-stage trial
design based on complete (Y T , Y E) data; “TDU” denotes the two-stage trial design based on
AR probabilities ω′c(d, s); “ITD” denotes the independent two-stage design that conducts a
separate regime-finding trial for each subgroup.
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Figure 2. Average total number of patients treated with an inefficacious regime having
true πEc,r < πE = .20 in scenarios 1–6 and πEc,r > πE = .30 in scenarios 7–8, for the TD (circle
◦), ITD (triangle 4), TDC (plus +), and TDU (cross ×) under the simulation scenarios in
Table 1. “TD” is the proposed two-stage trial design; “TDC” denotes the two-stage trial
design based on complete (Y T , Y E) data; “TDU” denotes the two-stage trial design based on
AR probabilities ω′c(d, s); “ITD” denotes the independent two-stage design that conducts a
separate regime-finding trial for each subgroup.
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Table 1
True toxicity and efficacy probabilities and utilities (πT

c,r, π
E
c,r, uc,r) under eight simulation scenarios, for each dose,

schedule, and subgroup. These values for optimal treatment regimes with uc,r > umax
c − 5 are underlined, where

umax
c = maxr{uc,r} is the maximum utility for subgroup c, c = 1, 2. The regimes with a toxicity rate above 15% and

an efficacy rate below 20% are considered inadmissible in scenarios 1–6; The regimes with a toxicity rate above 30%
and an efficacy rate below 30% are considered inadmissible in scenarios 7–8.

Scenario
Subgroup 1 Subgroup 2

s d=1 d=2 d=3 d=1 d=2 d=3

1 1 (.03,.10,62.2) (.05,.20,65.0) (.15,.60,75.0) (.03,.13,63.4) (.05,.23,66.2) (.15,.63,76.2)

2 (.05,.50,77.0) (.15,.40,67.0) (.30,.40,58.0) (.05,.56,79.4) (.15,.46,69.4) (.30,.46,60.4)

3 (.13,.35,66.2) (.45,.40,49.0) (.60,.45,42.0) (.13,.47,71.0) (.45,.52,53.8) (.60,.57,46.8)

2 1 (.10,.30,66.0) (.27,.40,59.8) (.55,.50,47.0) (.10,.40,70.0) (.27,.50,63.8) (.55,.60,51.0)

2 (.25,.25,55.0) (.30,.30,54.0) (.40,.40,52.0) (.25,.35,59.0) (.30,.40,58.0) (.40,.50,56.0)

3 (.08,.15,61.2) (.12,.35,66.8) (.25,.35,59.0) (.08,.25,65.2) (.12,.45,70.8) (.25,.45,63.0)

3 1 (.05,.10,61.0) (.15,.40,67.0) (.40,.10,40.0) (.05,.30,69.0) (.15,.45,69.0) (.40,.30,48.0)

2 (.05,.40,73.0) (.18,.20,57.2) (.40,.10,40.0) (.05,.45,75.0) (.18,.30,61.2) (.40,.20,44.0)

3 (.03,.15,64.2) (.08,.23,64.4) (.15,.45,69.0) (.03,.30,70.2) (.08,.30,67.2) (.15,.50,71.0)

4 1 (.03,.10,62.2) (.05,.30,69.0) (.10,.60,78.0) (.03,.20,66.2) (.05,.35,71.0) (.10,.63,79.2)

2 (.07,.30,67.8) (.15,.40,67.0) (.30,.50,62.0) (.07,.33,69.0) (.15,.60,75.0) (.30,.65,68.0)

3 (.05,.25,67.0) (.10,.34,67.6) (.15,.25,61.0) (.05,.28,68.2) (.10,.38,69.2) (.15,.29,62.6)

5 1 (.05,.10,61.0) (.12,.25,62.8) (.20,.33,61.2) (.05,.15,63.0) (.12,.30,64.8) (.20,.38,63.2)

2 (.07,.05,57.8) (.13,.45,70.2) (.25,.30,57.0) (.07,.20,63.8) (.13,.50,72.2) (.25,.40,61.0)

3 (.02,.23,68.0) (.05,.15,63.0) (.08,.10,59.2) (.02,.28,70.0) (.05,.45,75.0) (.08,.28,66.4)

6 1 (.05,.05,59.0) (.07,.07,58.6) (.09,.09,58.2) (.05,.15,63.0) (.07,.47,74.6) (.09,.49,74.2)

2 (.08,.10,59.0) (.13,.35,66.2) (.30,.40,58.0) (.08,.15,61.2) (.13,.40,68.2) (.30,.45,60.0)

3 (.11,.30,65.4) (.13,.20,60.2) (.20,.10,52.0) (.11,.33,66.6) (.13,.23,61.4) (.20,.13,53.2)

7 1 (.05,.10,61.0) (.15,.45,69.0) (.30,.45,60.0) (.05,.13,62.2) (.15,.48,70.2) (.30,.48,61.2)

2 (.12,.20,60.8) (.23,.55,68.2) (.55,.60,51.0) (.12,.50,72.8) (.23,.58,69.4) (.55,.63,52.2)

3 (.45,.30,45.0) (.50,.35,44.0) (.60,.30,36.0) (.45,.33,46.2) (.50,.38,45.2) (.60,.31,36.4)

8 1 (.05,.10,61.0) (.10,.20,62.0) (.15,.50,71.0) (.05,.15,63.0) (.10,.25,64.0) (.15,.53,72.2)

2 (.10,.15,60.0) (.25,.15,51.0) (.40,.15,42.0) (.10,.20,62.0) (.25,.20,53.0) (.40,.20,44.0)

3 (.07,.25,65.8) (.08,.25,65.2) (.18,.25,59.2) (.07,.25,65.8) (.08,.30,67.2) (.18,.60,73.2)
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Table 2
Selection percentage for the optimal treatment regime (OTR) within each subgroup, and mean trial durations, for the

four designs under the eight scenarios in Table 1. The accrual rate is 6 patients per month.

Selection percentage of OTR Trial duration

Subgroup 1 Subgroup 2 (in months)

Scenario TD ITD TDC TDU TD ITD TDC TDU TD ITD TDC TDU

1 88.1 75.4 89.4 88.6 85.0 69.4 89.5 88.8 23.0 26.0 360.0 23.0

2 69.2 58.7 72.4 72.1 67.1 56.2 69.0 70.9 23.1 26.0 360.0 23.0

3 73.7 64.0 74.1 74.7 73.5 62.2 72.6 75.9 23.0 25.9 360.0 23.0

4 60.9 46.1 63.4 47.9 78.4 66.0 79.7 78.0 23.1 26.0 360.0 23.0

5 72.9 70.0 78.9 75.8 85.9 79.0 87.5 86.9 23.0 26.0 360.0 23.0

6 79.8 74.4 78.0 72.9 48.0 59.8 50.8 45.0 23.0 26.0 360.0 23.0

7 82.5 80.9 83.9 72.4 95.6 93.1 96.7 95.3 23.0 26.0 360.0 23.0

8 47.2 35.2 50.9 38.1 65.6 58.6 68.0 54.0 23.0 26.0 360.0 23.0

Average 71.8 63.1 73.9 67.8 74.9 68.0 75.6 74.4 23.0 26.0 360.0 23.0

“TD” is the proposed two-stage trial design; “TDC” denotes the two-stage trial design based on complete (Y T , Y E) data;

“TDU” denotes the two-stage trial design based on AR probabilities ω′c(d, s); “ITD” denotes the independent two-stage design

that conducts a separate regime-finding trial for each subgroup.
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Table 3
Regime selection percentage based on the proposed two-stage design under the eight scenarios in Table 1. The accrual
rate is 6 patients per month. These values for optimal treatment regimes with uc,r > umax

c − 5 are underlined, where
umax
c = maxr{uc,r} is the maximum utility for subgroup c, c = 1, 2.

Scenario Schedule/dose
Subgroup 1 Subgroup 2

1 2 3 1 2 3

1 1 0.0 0.3 38.7 0.1 0.7 33.6

2 49.4 6.7 0.8 51.4 6.1 0.9

3 4.0 0.1 0.0 7.1 0.1 0.0

2 1 31.7 11.8 0.3 30.0 13.1 0.2

2 3.8 0.8 0.6 4.8 1.4 0.2

3 9.1 37.5 4.4 8.3 37.1 4.9

3 1 1.0 17.3 0.0 3.5 16.6 0.0

2 56.3 0.7 0.0 49.4 1.4 0.0

3 3.1 4.2 17.4 5.2 5.0 18.9

4 1 0.1 6.3 60.9 0.9 5.8 56.7

2 5.8 13.1 3.2 3.9 21.7 3.9

3 2.7 7.4 0.5 1.8 5.1 0.2

5 1 1.1 8.7 3.1 1.2 5.4 3.2

2 0.6 57.9 1.6 1.1 50.3 1.8

3 15.0 11.1 0.9 11.0 24.6 1.4

6 1 0.9 5.2 3.2 0.8 30.6 17.4

2 2.4 37.1 3.5 1.1 22.6 2.7

3 42.7 5.0 0.0 22.7 2.1 0.0

7 1 1.1 45.4 4.2 1.0 35.4 2.7

2 11.2 37.1 0.6 28.9 31.3 0.3

3 0.4 0.0 0.0 0.4 0.0 0.0

8 1 2.4 7.2 47.2 1.9 5.3 42.3

2 2.7 0.2 0.0 2.6 0.3 0.0

3 21.5 11.7 7.1 13.9 10.4 23.3
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S1. Prior calibration

To implement the proposed design in practice, one needs to prespecify the values of hy-

perparameters θ0, the utility function U(yT , yE), and the design parameters (Nmax, κ, πT ,

πE, ηT , ηE). In practice, this calibration procedure can be done as follows.

• First calibrate the hyperparameter θ0 based on prior expected sample size (ESS) as defined

in Morita et al. (2008) to obtain a noninformative prior. Following the idea of Lee, et al.

(2015), which relies on the fact that the ESS of a Beta(a, b) distribution is a + b, we first

fix the parameters (σξ, ρ, ζ). Given a specific dose level d, the value of ξT0 (or ξE0 ) can be

specified to match the prior mode of toxicity (or efficacy) probability with some elicited

value. For example, suppose d̃ is the middle dose and the elicited toxicity and efficacy

probabilities at dose d̃ are (p̃T
d̃
, p̃E

d̃
). Then one can obtain the values of (ξT0 , ξ

E
0 ) as ξj0 =

Φ−1(1−p̃j
d̃
, σ2

ξ+ζ2), j = T,E, where Φ−1 denotes the quantile function of a standard normal

random variable. The remaining hyperparameters λ0 and η0 can be specified arbitrarily,

provided that they induce vague priors on α and β. Assuming sufficiently large values

of (σT0 , σ
E
0 ) that yield vague priors for ξ̄jd,s, j = T,E, d = 1, . . . , D, s = 1, . . . , S and a

similarly large τ 20 that ensures a noninformative prior for νE2,r, one can generate prior

samples of Pr(Y j = 1 | c, r) using the latent hierarchal model (2.1)–(2.4). Then, for each

j = E, T, the sample of Pr(Y j = 1 | c, r) values may be fit to a Beta(aj, bj) distribution

using the method of moments by matching the means and variances, with the prior ESS
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approximated as aj + bj. The hyperparameter θ0 can be repeatedly calibrated until the

ESS value near 1, which gives a reasonably vague prior, are obtained for any combination

of (c, r).

• For elicitation of the utility function, it is convenient to fix the best case utility U(0, 1) =

100 and the worst case utility U(1, 0) = 0, although this is not necessary, and ask the

clinicians to specify their utilities of the remaining toxicity–efficacy outcome combinations,

U(0, 0) and U(1, 1). In general, if U(1, 1) > U(0, 0), then the efficacy is considered more

important than toxicity, while if U(1, 1) < U(0, 0), then avoiding toxicity matters more

than achieving efficacy.

• The upper limit πT on πTc,r(ξ̃), and the lower limit πE on πEc,r(ξ̃) are specified by the

clinicians. In practice, the maximum sample size Nmax of a phase I-II trial is specified based

on practical limitations, possibly informed by preliminary trial simulations for a range of

different feasible Nmax values. We recommend that at least D patients are assigned to each

schedule in stage 1 for each subgroup. Hence, every dose level within each schedule has a

reasonable probability of being tried, unless a lower dose for that schedule is found to be

unsafe. In other words, κ > maxc∈{1,...,C}{D/(pcNmax)}. For example, given Nmax = 120,

D = 3, C = 2, and (p1, p2) = (1/4, 3/4), κ should be greater than 0.10, so that at least

three patients in subgroup 1 can be assigned to D = 3 doses for each schedule in stage

1. The cutoff probabilities ηT and ηE can be tuned based on preliminary simulations to

ensure desirable operating characteristics (OCs) across different scenarios.

In the simulation study, to calibrate the hyperparameter θ0 using prior effective ESS, we

first fixed the parameters σξ = 22, ρ = −0.5, ζ2 = 1, and set (λ0, η0) = (1, 1), σT,20 = σE,20 =

52, and τ 20 = 22. We then simulated samples of {πj | c, r} values from the prior for each j, c

and r, fit a beta distribution to each sample, computed the ESS of each beta. We repeated

this process iteratively to determine numerical values of (ξT0 , ξ
E
0 ) that give approximate ESS
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values ranging from 0.25 to 2. For the design parameters that control the admissibility of a

treatment regime, given πT = 0.15 and πE = 0.20 in scenarios 1–6 and πT = πE = 0.30

in scenarios 7–8, the cutoff probabilities are tuned based on preliminary simulations to be

ηT = ηE = 0.95.

S2. Sensitivity analyses

This section presents sensitivity analyses performed to examine the OCs of the proposed

TD for different (a) sample sizes, (b) subgroup prevalence ratios, (c) accrual rates, (d) true

underlying models, and (e) prior distributions.

In sensitivity assessment (a), we consider the maximum sample size Nmax = 90, 120, 180,

240 or 300. The simulation results, displayed in the Table S1, show that the probability

of correctly identifying the OTR increases substantially with Nmax. When the sample size

is 300, the average selection percentage of OTR can attain as high as 90%. Therefore, the

increasing trend of correct OTR selection percentage with the sample size indicates that

the proposed design is able to recover from the situation when it get stuck early on some

suboptimal regimes. For designing real trials, a similar sensitivity analysis may be conducted

to choose Nmax based on trade-offs between OTR selection accuracy, trial duration, and cost.

In sensitivity assessments (b)–(e), we only consider scenarios 2 and 3 of Table 1, since the

sensitivity analyses for the other scenarios give the same conclusions. In sensitivity assessment

(b), the prevalence ratio p1 : p2 was fixed at 1 : 2, 1 : 1, or 2 : 1. The results in the upper panel

of Figure S1 show that the OTR selection percentage in each subgroup is fairly insensitive

to p1 : p2, and varies with scenario.

In sensitivity assessment (c), we examined accrual rates of 4, 6, or 8 patients per month,

which lead to the average trial durations of 33, 23, or 18 months. Given the fixed toxic-

ity/efficacy assessment windows, the accrual rate determines the amount of missing data at

the time of decision making. The faster that new patients arrive, the more likely it will be
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that patients treated previously will have missing outcomes. The results, given in the lower

panel of Figure S1, indicate that the OTR selection percentage of the proposed TD is robust

to the accrual rate.

To assess robustness of the TD to model mis-specification, we considered three cases: (1)

The prespecified model is correct, that is, all model specifications of the design and the

data-generating process are identical. Therefore, we take ρtrue = −0.5 and ζ2,true = 12, and

keep ρ = −0.5 and ζ2 = 1. (2) The hyperparameters ζ and ρ are misspecified, that is, the

true values in the data-generating process are ρtrue = −0.2 and ζ2,true = 0.32, but we assume

ρ = −0.5 and ζ2 = 1 instead for the design; (3) The assumed model is totally different from

the data-generating model. For this case, we simulated data using the following dynamic

model (Yin et al., 2006),

Pr(Y T = 1 | c, r = (d, s), ε,φT
c,s) =

∑d
d′=1 exp(φTc,r′ + εT )

1 +
∑d

d′=1 exp(φTc,r′ + εT )

Pr(Y E = 1 | c, r = (d, s), ε,φE
c,s) =

exp(
∑d

d′=1 φ
E
c,r′ + εE)

1 + exp(
∑d

d′=1 φ
E
c,r′ + εE)

,

where c′ = c(d′, s), ε = (εT , εE) follows the distribution (2.1) with ζ = 0.05 and ρ = 0.5, and

φj
c,s = {φjc,r, d = 1, . . . , D}, j = T,E. These values were obtained by matching the marginal

prior probabilities with the prespecified fixed probabilities in each scenario. The remaining

design specifications of the proposed method in sensitivity assessment (d) are the same as

those in Section S1. From the upper panel of Figure S2, it appears that the proposed TD is

very robust to the actual probability mechanism that generates the outcomes.

In sensitivity assessment (e), we examine the impact of the prior distribution on the TD.

We consider three prior specifications: (1) The original prior, which is the same prior used

in the simulation study. Using the original prior, the ESS values range from 0.25 to 2. (2) A

stronger prior with similar prior means as the original prior. In particular, we take σξ = 22,

ρ = 0.5, ζ2 = 1, and set (λ0, η0) = (1, 1), σT,20 = σE,20 = 32, τ 20 = 1.52, and calibrate numerical

values of (ξT0 , ξ
E
0 ) that can yiled the similar prior means as those based on the original priors.
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This prior generally gives approximate ESS values ranging from 1.5 to 6. (3) A stronger prior

with different prior means as the original prior. In particular, we take σξ = 22, ρ = −0.5,

ζ2 = 1, and set (λ0, η0) = (1, 1), σT,20 = σE,20 = 22, τ 20 = 22, and (ξT0 , ξ
E
0 ) = (−3, 0). This

prior generally gives approximate ESS values ranging from 1.5 to 6, but generally leads to

higher toxicity and efficacy probabilities than the original prior. The results, given in the

lower panel of Figure S2, indicate that the OTR selection percentage of the proposed TD is

robust to the prior specifications.
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Figure S1. Sensitivity assessments of the proposed method to (a) upper panel: different
prevalence ratios (1:2, 1:1, 2:1), and (b) lower panel: different numbers of new patients per
month (4, 6, 8). The sensitivity assessments are conducted based on scenarios 2 and 3 of
Table 1.
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Figure S2. Sensitivity assessments of the proposed method to (a) upper panel: data-
generating models (1: model correctly specified, 2: hyperparameters ζ and ρ misspecified, 3:
whole model misspecified), and (b) lower panel: different prior distributions (1: original prior
used in the simulation, 2: a stronger prior with similar prior mean as the original prior, 3: a
stronger prior with different prior means as the original prior). The sensitivity assessments
are conducted based on scenarios 2 and 3 of Table 1.
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Table S1
Selection percentage for the optimal treatment regime (OTR) within each subgroup, and mean trial durations, for the
proposed design with different sample sizes under the eight scenarios in Table 1. The accrual rate is 6 patients per

month.

Selection percentage of OTR Trial duration

Scenario Subgroup 1 Subgroup 2 (in months)

Sample size 90 120 180 240 300 90 120 180 240 300 90 120 180 240 300

1 82.9 88.1 92.1 94.9 98.2 81.3 85.0 91.8 94.6 96.1 18 23 33 43 53

2 68.3 69.2 77.7 81.1 87.7 63.9 67.1 74.7 77.9 86.6 18 23 33 43 53

3 68.3 73.7 78.5 85.0 86.2 70.6 73.5 80.0 84.0 85.2 18 23 33 43 53

4 52.5 60.9 74.0 81.3 89.0 70.7 78.4 86.4 90.2 95.0 18 23 33 43 53

5 69.4 72.9 83.6 90.2 90.6 81.9 85.9 91.3 92.3 93.0 18 23 33 43 53

6 71.7 79.8 86.9 90.5 93.1 50.1 48.0 60.0 66.0 73.4 18 23 33 43 53

7 80.8 82.5 86.1 92.0 95.4 94.8 95.6 96.0 96.6 98.3 18 23 33 43 53

8 39.9 47.2 63.1 69.4 75.6 59.4 65.6 79.1 88.6 89.6 18 23 33 43 53

Average 66.7 71.8 80.3 85.6 89.5 71.6 74.9 82.4 86.3 89.7 18 23 33 43 53
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