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Abstract
Precision medicine relies on the idea that, for a particular targeted agent, only a
subpopulation of patients is sensitive to it and thusmay benefit from it therapeu-
tically. In practice, it is often assumed based on preclinical data that a treatment-
sensitive subpopulation is known, and moreover that the agent is substantively
efficacious in that subpopulation. Due to important differences between preclin-
ical settings and human biology, however, data from patients treated with a new
targeted agent often show that one or both of these assumptions are false. This
paper provides a Bayesian randomized group sequential enrichment design that
compares an experimental treatment to a control based on survival time and uses
early response as an ancillary outcome to assist with adaptive variable selection
and enrichment. Initially, the design enrolls patients under broad eligibility cri-
teria. At each interim decision, submodels for regression of response and survival
time on a baseline covariate vector and treatment are fit; variable selection is used
to identify a covariate subvector that characterizes treatment-sensitive patients
and determines a personalized benefit index, and comparative superiority and
futility decisions are made. Enrollment of each cohort is restricted to the most
recent adaptively identified treatment-sensitive patients. Group sequential deci-
sion cutoffs are calibrated to control overall type I error and account for the adap-
tive enrollment restriction. The design provides a basis for precision medicine
by identifying a treatment-sensitive subpopulation, if it exists, and determining
whether the experimental treatment is superior to the control in that subpop-
ulation. A simulation study shows that the proposed design reliably identifies a
sensitive subpopulation, yieldsmuch higher generalized power compared to sev-
eral existing enrichment designs and a conventional all-comers group sequential
design, and is robust.
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1 INTRODUCTION

Physicians routinelymake treatment decisions by account-
ing for the fact that any treatment’s effects are modulated
by known prognostic covariates such as age or disease
severity. Precision medicine is motivated by the idea that
heterogeneity of patient response to an experimental treat-
ment, 𝐸, may be due to biological covariates that modify
the effects of 𝐸 at the cellular or molecular level. If differ-
ences in drug effects are due to genes or proteins that affect
drug-metabolizing enzymes, drug-specific transporters, or
cell surface markers targeted by 𝐸, then only a subset
of “𝐸-sensitive” patients defined by biological covariates,
such as gene or protein expression, may respond favor-
ably to 𝐸. Precision medicine uses biological cariates to
restrict administration of drug to an identified subset of 𝐸-
sensitive patients, avoiding futile use of 𝐸 in nonsensitive
patients unlikely to benefit from 𝐸.
As examples, 70–90% of hypertension patients respond

to ACE inhibitors, and beta 2-agonists for asthma work for
30–60% of patients (Abrahams and Silver, 2009). In such
settings, traditional clinical trial designs with broad eligi-
bility criteria may be dysfunctional. A trial design assum-
ing homogeneity may show a small estimated 𝐸 effect
because the estimate is an average of positive outcomes
of an 𝐸-sensitive subpopulation and negative outcomes
of non-𝐸-sensitive patients. Assuming homogeneity thus
may lead to the incorrect inference that a new drug is inef-
fective for all patients, when in fact it is effective in a sub-
group of 𝐸-sensitive patients.
An efficient approach to evaluating a new targeted

agent is a clinical trial that uses an enrichment design
that focuses on 𝐸-sensitive patients (FDA, 2012). Most
existing enrichment designs assume that an 𝐸-sensitive
subgroup is known, based on preclinical studies or lim-
ited phase II trial data, and enroll patients according to
predetermined eligibility criteria (Brannath et al., 2009;
Jenkins et al., 2011; Mehta et al., 2014; Kimani et al.,
2015; Rosenblum et al., 2016; Uozumi and Hamada, 2017).
Because this assumption is often incorrect, key prob-
lems are how to use biological covariates to (1) determine
whether an 𝐸-sensitive subgroup exists, and if so iden-
tify it, and (2) determine whether 𝐸 provides an improve-
ment over a standard control therapy, 𝐶, in the subgroup.
Simon and Simon (2013) proposed the adaptive enrich-
ment design, which restricts entry to an𝐸-sensitive patient
subgroup that is modified adaptively based on interim
data. They considered group sequential (GS) trials, defined
an 𝐸-sensitive subgroup using a cutoff for a numeri-
cal biomarker, and focused on cutpoint optimization and
power comparisons of adaptive versus nonadaptive enrich-
ment designs. Freidlin and Simon (2005) and Freidlin et al.
(2010) proposed an adaptive signature design for a binary

endpoint and used machine learning to select 𝐸-sensitive
patients.
In this paper, we propose a GS adaptive enrichment

design, AED, based on a time-to-event variable, 𝑌, and an
early response indicator, 𝑍, with adaptive variable selec-
tion and enrichment. We are motivated by the facts that
long-termevents are rarely observed early in the trial, but𝑍
is observed much sooner and may be related to treatment,
covariates 𝒙, and 𝑌. AED exploits these relationships to
start adaptive enrichment early in the trial. We assume a
Bayesian model with the distribution of 𝑌 a mixture over
responders and nonresponders, including regressionmod-
els for the probability of 𝑍 and 𝑌 on 𝒙. We define a person-
alized benefit index (PBI) to be a predictive probability that
a patient with a given 𝒙will benefit more from𝐸 than from
𝐶. Both regression models are updated at each interim
analysis by performing covariate selection, refitting the
models using the newly selected subvector of 𝒙 to define
𝐸-sensitive patients, and using this to update the PBI
and eligibility criteria. Weights between the response and
survival time components of the PBI are changed adap-
tively, with more weight given to survival time as the trial
progresses.
Our proposed AED makes three major contributions.

First, we develop a covariate selectionmethod to character-
ize 𝐸-sensitive patients based on both 𝑍 and𝑌. Second, we
define a PBI based on both endpoints to quantify the com-
parative 𝐸-versus-𝐶 benefit of a patient with given 𝒙, and
we use this to define an adaptive enrichment rule. Third,
we propose a Bayesian GS design based on this structure,
including a new test statistic that accounts for the sequen-
tially adaptive variable selection and resulting modifica-
tion of the enrichment rule during the trial.
Our proposed AED is motivated by a clinical trial to

investigate the effect of a novel PI3K pathway inhibitor
(𝐸) combined with olaparib for treating high-grade serous
or BRCA-mutant ovarian cancer patients. Olaparib is a
potent inhibitor of poly(ADP-ribose) polymerase (PARP),
an enzyme involved in base-excision repair of single-strand
DNA breaks. Treatment with olaparib can lead to tumor
regression by a process known as synthetic lethality, which
is a result of the accumulation of unrepaired DNA double-
strand breaks and an unsupportable increase of genomic
instability in the cancer cells. The PI3Kpathway is involved
in cellular proliferation and is often upregulated in high-
grade serous ovarian cancer. The aim of combining PARP
and PI3K pathway inhibition is to generate a synergistic
treatment effect. The statistical challenge for this trial is
that clinicians expect that only a subgroup of patients will
benefit from 𝐸. The study has two closely related objec-
tives. The first objective is to identify a genomic signa-
ture that predicts clinical response to 𝐸 + olaparib. Muta-
tional analysis is performed using the sequencing platform
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Sequenom MassARRAY. Ten mutations related to PARP
and PI3K pathway will be used as biomarkers, 𝒙, for iden-
tifying a genomic signature characterizing an 𝐸-sensitive
subgroup. The second objective is to evaluate whether 𝐸
+ olaparib is more effective than the standard treatment,
cisplatin combined with paclitaxel (𝐶) in the identified
sensitive subgroup. Treatment efficacy is characterized by
objective response (𝑍) and progression free survival time
(𝑌). Thus, our proposed AED addresses the data structure
and goals of this trial.
The remainder of the paper is organized as follows. In

Section 2, we describe the mixture model for the short-
term and long-term endpoints and present the GS proce-
dure for performing adaptive variable selection, modify-
ing the enrichment criterion, and doing treatment compar-
ison. The proposed AED’s performance is evaluated and
compared to existing methods by simulation in Section 3.
We close with a discussion in Section 4.

2 DESIGN STRUCTURE

We consider a comparative clinical trial with patients ran-
domized to 𝐸 (𝐺 = 1) or 𝐶 (𝐺 = 0) in a fixed ratio. For
each patient, we assume that a covariate vector 𝒙 ∈ ℝ𝑝 is
available at enrollment and a short-term response indica-
tor 𝑍 and time-to-event endpoint 𝑌 are observed. In can-
cer trials, 𝑍 may be the indicator of ≥50% shrinkage of a
solid tumor at 12 weeks compared to baseline, and 𝑌 typ-
ically is overall survival or progression-free survival time.
For right censoring of𝑌 at follow-up time𝑈 when the data
are evaluated for interim decision-making, we define the
observed event time 𝑌𝑜 = min(𝑌,𝑈) and event indicator
𝛿 = 𝐼(𝑌 ≤ 𝑈).
In treatment arm𝐺 = 0 or 1, denote𝜋(𝒙, 𝐺, 𝜽𝑍) = Pr(𝑍 =

1|𝐺, 𝒙, 𝜽𝑍), and let ℎ𝐺(𝑦|𝒙, 𝑍, 𝜽𝑌) denote the hazard func-
tion of 𝑌 at time 𝑦 for a patient with covariates 𝒙 and
response indicator 𝑍, where 𝜽𝑍 and 𝜽𝑌 are the model
parameter vectors. At each decision in the GS design, our
proposed design adaptively selects two subvectors of 𝒙 to
identify patients expected to benefit more from 𝐸 than
𝐶 in terms of 𝑍 or 𝑌. The first subvector, 𝒙𝑍 , is identi-
fied by doing variable selection in the regression model
for (𝑍 | 𝐺, 𝒙), based on the difference in response prob-
abilities, Δ𝑍(𝒙, 𝜽𝑍) = 𝜋(𝒙, 1, 𝜽𝑍) − 𝜋(𝒙, 0, 𝜽𝑍). The para-
metric function Δ𝑍(𝒙, 𝜽𝑍) generalizes the indicator func-
tion 𝑓(𝒙) = 𝐼[𝜋(𝒙, 1) > 𝜋(𝒙, 0)] used by Simon and Simon
(2013) to define an enrichment subset. The second sub-
vector, 𝒙𝑌 , is identified by doing variable selection in the
regression model for (𝑌 | 𝑍,𝐺, 𝒙), based on the hazard
ratio Δ𝑌(𝒙, 𝜽𝑌) = ℎ1(𝑦|𝒙, 𝑍, 𝜽𝑌)∕ℎ0(𝑦|𝒙, 𝑍, 𝜽𝑌), for 𝑦 > 0.
While 𝒙𝑍 and 𝒙𝑌 may not be identical, they may share
common terms, since a covariate predictive of a higher

tumor response probability often is predictive of longer
survival. To account for association, selection of 𝒙𝑍 and 𝒙𝑌
is not done independently, but rather are based on corre-
lated vectors of latent variable selection indicators. This is
described in Section 2.2.
Our design enrolls a maximum of 𝑁 patients sequen-

tially in cohorts of sizes 𝑐1, … , 𝑐𝐾 , with
∑𝐾

𝑘=1
𝑐𝑘 = 𝑁. The

schema of the design is shown in Figure 1. The design
uses a Bayesian GS test procedure including both superi-
ority and futility stopping rules for comparing 𝐸 to 𝐶 in
the most recently identified 𝐸-sensitive subset. The trial
begins by enrolling patients under broad eligibility crite-
ria for the first cohort of 𝑐1 patients. When the first cohort
has been enrolled and its patients’ outcomes have been
evaluated, the subvectors 𝒙𝑍 and 𝒙𝑌 of 𝒙 are chosen and
used to compute a PBI, given formally in Section 2.3. The
PBI is used to define the subgroup of 𝐸-sensitive patients,
and the comparative tests are defined in terms of the 𝐸-
sensitive patients. These tests possibly may terminate the
trial due to either superiority or futility, but if the trial is not
stopped early then only 𝐸-sensitive patients are enrolled
in the second cohort. This process of identifying (𝒙𝑍, 𝒙𝑌),
computing the PBI, defining the set of 𝐸-sensitive patients,
and performing the tests is repeated group sequentially
until the end of the trial. If the maximum sample size 𝑁
is reached, a final analysis is done when the last patient
has been enrolled and his/her follow-up completed.
Below, we provide details of the probability model for

(𝒙, 𝐺, 𝑍, 𝑌), how sequentially adaptive variable selection
and enrichment are done, and the Bayesian GS decision-
making procedure.

2.1 Probability model

We construct a joint probability model for (𝑌, 𝑍 | 𝐺, 𝒙) as
a mixture of the conditional distribution of (𝑌 | 𝑍,𝐺, 𝒙)
weighted by themarginal distribution of (𝑍 |𝐺, 𝒙). Wewill
assume that 𝑍 always is observed before 𝑌. However, if 𝑌
maybe observed before𝑍 can be evaluated,which can arise
when dealing with rapidly fatal diseases, then a model
elaboration is needed.Weprovide this, similarly to themix-
ture model of Inoue et al. (2002), in Web Appendix A.
For the marginal distribution of (𝑍 ∣ 𝒙, 𝐺), we assume

a probit model 𝜋(𝒙𝑖, 𝐺𝑖, 𝜽𝑍) = Φ
(
𝒙̃⊤
𝑖
𝜷𝑍 + 𝐺𝑖𝒙̃

⊤
𝑖
𝜸𝑍

)
, where

𝑖 = 1, … , 𝑛, indexes patients,Φ(⋅) denotes the standard nor-
mal cumulative distribution function, 𝒙̃ = (1, 𝒙⊤)⊤ and
𝜽𝑍 =

(
𝜷⊤
𝑍
, 𝜸⊤

𝑍

)⊤
is the regression coefficient parameter

vector. Thus, 𝜷𝑍 is the vector of covariate main effects
and 𝜸𝑍 = (𝛾𝑍,0, 𝛾𝑍,1, … , 𝛾𝑍,𝑝)

⊤ is the vector of additional 𝐸-
versus-𝐶 treatment-covariate interactions, with the main
experimental versus control effect 𝛾𝑍,0. Denoting 𝐙𝑛 =
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F IGURE 1 Schema of the proposed design

(𝑍1, … , 𝑍𝑛), 𝐆𝑛 = (𝐺1, … , 𝐺𝑛), and 𝕏𝑛 = (𝒙1, … , 𝒙𝑛)
⊤, the

marginal likelihood of 𝑍 for the first 𝑛 patients is

𝑛(𝐙𝑛, 𝐆𝑛,𝕏𝑛, 𝜽𝑍) =

𝑛∏
𝑖=1

Φ
(
𝒙̃⊤
𝑖
𝜷𝑍 + 𝐺𝑖𝒙̃

⊤
𝑖
𝜸𝑍

)𝑍𝑖
×
{
1 − Φ

(
𝒙̃⊤
𝑖
𝜷𝑍 + 𝐺𝑖𝒙̃

⊤
𝑖
𝜸𝑍

)}1−𝑍𝑖
.

For the conditional distribution of (𝑌 | 𝑍,𝐺, 𝒙), we
assume a proportional piecewise exponential (PE) hazard
model (Sinha et al., 1999; McKeague and Tighiouart, 2000;
Ibrahim et al., 2005; Kim et al., 2007). We first specify a
partition of the time axis into𝑀 intervals I𝑚 = (𝜏𝑚−1, 𝜏𝑚]

for 𝑚 = 1,… ,𝑀, with a fixed time grid {𝜏0, 𝜏1, … , 𝜏𝑀}

such that 0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑀 < ∞. The assumed pro-
portional PE hazard function is

ℎ(𝑦|𝑍,𝐺, 𝒙, 𝜽𝑌) = 𝜙𝑚 exp
(
𝒙⊤𝜷𝑌 + 𝐺𝒙̃⊤𝜸𝑌 + 𝛼𝑌𝑍

)
× 𝐼(𝑦 ∈ I𝑚), 𝑚 = 1,… ,𝑀,

with 𝜽𝑌 =
(
𝜙1, … , 𝜙𝑀, 𝜷⊤

𝑌
, 𝜸⊤

𝑌
, 𝛼𝑌

)⊤
the parameter vector,

where 𝜙𝑚 > 0 is the hazard on the𝑚th subinterval and 𝛼𝑌
is the main effect of response (𝑍 = 1) on the hazard of 𝑌.
For each 𝑚 = 1,… ,𝑀, we define 𝑦𝑚 = 𝜏𝑚−1 if 𝑦 ≤ 𝜏𝑚−1,
𝑦𝑚 = 𝑦 if 𝜏𝑚−1 < 𝑦 ≤ 𝜏𝑚 and 𝑦𝑚 = 𝜏𝑚 if 𝑦 > 𝜏𝑚. Given this
definition of 𝑦𝑚, the resulting PE cdf is

𝐹(𝑦|𝑍,𝐺, 𝒙, 𝜽𝑌) = 1 − exp

{
−

𝑀∑
𝑚=1

𝜙𝑚(𝑦𝑚 − 𝜏𝑚−1)

× exp
(
𝒙⊤𝜷𝑌 + 𝐺𝒙̃⊤𝜸𝑌 + 𝛼𝑌𝑍

)}
for 𝑦 > 0.

Denote 𝐘𝑜
𝑛 = (𝑌𝑜

1
, … , 𝑌𝑜

𝑛), 𝜹𝑛 = (𝛿1, … , 𝛿𝑛), and 𝑛 =

(𝐙𝑛, 𝐘
𝑜
𝑛, 𝜹𝑛), the observed data from the first 𝑛 patients in

the trial. The joint likelihood function of the short-term
endpoint 𝑍 and long-term endpoint 𝑌 is

𝑛(𝑛, 𝐆𝑛,𝕏𝑛, 𝜽𝑍, 𝜽𝑌)

= 𝑛(𝐙𝑛, 𝐆𝑛,𝕏𝑛, 𝜽𝑍)

𝑛∏
𝑖=1

{
𝑓
(
𝑌𝑜
𝑖
|𝑍𝑖, 𝐺𝑖, 𝒙𝑖, 𝜽𝑌

)}𝛿𝑖
×
{
1 − 𝐹

(
𝑌𝑜
𝑖
|𝑍𝑖, 𝐺𝑖, 𝒙𝑖, 𝜽𝑌

)}1−𝛿𝑖
, (1)

where 𝑓(𝑌|𝑍,𝐺, 𝒙, 𝜽𝑌) is the conditional density function
of 𝑌. The marginal likelihood function of 𝑌 is obtained
by averaging the joint likelihood function of (𝑌, 𝑍) over
𝑍. We do Bayesian posterior computation. For 𝜽𝑍 , as in
Albert and Chib (1993), using data augmentation, based
on the iid latent real-valued variables 𝑍̃1, … , 𝑍̃𝑛, with
𝑍𝑖 = 1 if and only if 𝑍̃𝑖 > 0 and 𝑍𝑖 = 0 otherwise. We
assume 𝑍̃𝑖|𝐺𝑖, 𝒙𝑖, 𝜽𝑍 ∼  (𝒙̃⊤

𝑖
𝜷𝑍 + 𝐺𝑖𝒙̃

⊤
𝑖
𝜸𝑍, 1) with prior

𝜽𝑍 = (𝜷⊤
𝑍
, 𝜸⊤

𝑍
)⊤ ∼  (𝝁𝑍, 𝚺𝑍), where 𝝁𝑍 and 𝚺𝑍 are pre-

specified hyperparameters, and the normal variance is
set equal to 1 to ensure identifiability. In our simula-
tions, we assume vague normal priors with zero mean
vector and diagonal covariance matrix with large diag-
onal elements 106. An alternative approach is to use
a logistic model, rather than the probit model. In this
case, Bayesian posterior computation can be carried out
efficiently using data augmentation based on the Polya–
Gamma latent variable (Polson et al., 2013). For 𝜽𝑌 , we
assume a normal prior on both (𝜷⊤

𝑌
, 𝜸⊤

𝑌
)⊤ and 𝛼𝑌 and

independent gamma distributions on 𝝓 = (𝜙1, … , 𝜙𝑀), as
follows: (𝜷⊤

𝑌
, 𝜸⊤

𝑌
)⊤ ∼  (𝝁𝑌, 𝚺𝑌), 𝛼𝑌 ∼  (𝑎, 𝜎2𝑎) and𝜙𝑚 ∼

Gamma(𝑐𝜙∗𝑚, 𝑐), 𝑚 = 1,… ,𝑀, where 𝝁𝑌, 𝚺𝑌 , 𝑎, 𝜎𝑎, 𝑐 and
𝜙∗𝑚, 𝑚 = 1,… ,𝑀 are prespecified hyperparameters and
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Gamma(𝑔1, 𝑔2) denotes a gamma random variable with
shape parameter 𝑔1 and rate parameter 𝑔2.

2.2 Sequentially adaptive variable
selection

A key goal is to identify subvectors of 𝒙 that identify
patients more likely to benefit from 𝐸. We do this by
performing joint variable selection on 𝒙 in each of the
submodels for (𝑌 | 𝑍,𝐺, 𝒙) and (𝑍 | 𝐺, 𝒙), exploiting
treatment–covariate interactions. The joint variable selec-
tions are based on correlated latent covariate inclusion
variables that account for the possibility that a covari-
ate predictive of one outcome may also be predictive
of the other. In the joint likelihood function of 𝑍 and
𝑌 given in (1), for each 𝑡 = 𝑍 or 𝑌, let 𝝍𝑡 denote
the regression coefficient vector, excluding the inter-
cept, so 𝝍𝑍 = (𝛽𝑍,1, … , 𝛽𝑍,𝑝, 𝛾𝑍,0, 𝛾𝑍,1, … , 𝛾𝑍,𝑝) and 𝝍𝑌 =

(𝛽𝑌,1, … , 𝛽𝑌,𝑝, 𝛾𝑌,0, 𝛾𝑌,1, … , 𝛾𝑌,𝑝). If needed, we will use
𝜓𝑍,0 to denote the regression intercept parameter for 𝑍.
For each submodel, 𝑡 = 𝑍 or 𝑌, we perform Bayesian

variable selection assuming spike-and-slab prior on 𝝍𝑡

(Mitchell and Beauchamp, 1988; George and McCulloch,
1993; Ishwaran et al., 2005). This uses sparse posterior coef-
ficient estimates to determine which variables to include
in the submodel’s linear component. For each 𝑡, let 𝝀𝑡 =
(𝜆𝑡,1, … , 𝜆𝑡,2𝑝+1)

⊤ be a vector of latent variable selection
indicators corresponding to (𝒙, 𝐺, 𝐺𝒙) in the linear term.
The 𝑗th variable in (𝒙, 𝐺, 𝐺𝒙) is included in the submodel
for outcome 𝑡 if 𝜆𝑡,𝑗 = 1 and excluded if 𝜆𝑡,𝑗 = 0.We restrict
the variable selection algorithm in each submodel so that,
if the interaction term𝐺𝑥𝑗 is included, then themain effect
term 𝑥𝑗 corresponding to𝐺𝑥𝑗 and𝐺 alsomust be included.
This is known as the strong hierarchy interaction constraint
(Liu et al., 2015).
Because some covariates may be predictive of treatment

effects on both 𝑍 and 𝑌, it is not appropriate to select
subvectors 𝒙𝑍 and 𝒙𝑌 independently using the regres-
sion submodels for (𝑍 | 𝐺, 𝒙) and (𝑌 | 𝑍,𝐺, 𝒙). We thus
endow 𝝀𝑍 and 𝝀𝑌 with a joint distribution, to borrow infor-
mation about covariate effects on 𝑍 and 𝑌, and refer to
variable selection using (𝝀𝑍, 𝝀𝑌) as “joint variable selec-
tion.” To account for correlation, we assume a bivariate
Bernoulli distribution for (𝜆𝑍,𝑗, 𝜆𝑌,𝑗), for 𝑗 = 1,… , 2𝑝 +

1. Denote 𝑝𝑍,𝑗 = Pr(𝜆𝑍,𝑗 = 1) and 𝑝𝑌,𝑗 = Pr(𝜆𝑌,𝑗 = 1), the
marginal probabilities that the 𝑗th variable is included in
the submodel for (𝑍 | 𝐺, 𝒙) and (𝑌 | 𝑍,𝐺, 𝒙), respectively,
and let

𝜌𝑗 =
Pr(𝜆𝑌,𝑗 = 1, 𝜆𝑍,𝑗 = 1)∕ Pr(𝜆𝑌,𝑗 = 0, 𝜆𝑍,𝑗 = 1)

Pr(𝜆𝑌,𝑗 = 1, 𝜆𝑍,𝑗 = 0)∕ Pr(𝜆𝑌,𝑗 = 0, 𝜆𝑍,𝑗 = 0)

denote the odds ratio for the 𝑗th pair of latent vari-
ables. Thus, 𝜌𝑗 is the ratio of the odds of 𝜆𝑍,𝑗 = 1 given
𝜆𝑌,𝑗 = 1 and the odds of 𝜆𝑍,𝑗 = 1 given 𝜆𝑌,𝑗 = 0. We
denote by (𝑝𝑍,𝑗, 𝑝𝑌,𝑗, 𝜌𝑗) the joint Bernoulli distribu-
tion of (𝜆𝑍,𝑗, 𝜆𝑌,𝑗). A detailed description is given in Web
Appendix B.
Our spike-and-slab prior model used for the joint vari-

able selection is

𝜓𝑍,𝑗|𝜆𝑍,𝑗 ∼ (1 − 𝜆𝑍,𝑗) (
0, 𝜏2

𝑍,𝑗

)
+ 𝜆𝑍,𝑗 (

0, 𝑢2
𝑍,𝑗

𝜏2
𝑍,𝑗

)
,

𝑗 = 1, … , 2𝑝 + 1 (2)

𝜓𝑌,𝑗|𝜆𝑌,𝑗 ∼ (1 − 𝜆𝑌,𝑗) (
0, 𝜏2

𝑌,𝑗

)
+ 𝜆𝑌,𝑗 (

0, 𝑢2
𝑌,𝑗

𝜏2
𝑌,𝑗

)
,

𝑗 = 1, … , 2𝑝 + 1, (3)

where 𝑢𝑍,𝑗, 𝜏
2
𝑍,𝑗

, 𝑢𝑌,𝑗, 𝜏
2
𝑌,𝑗

, 𝑗 = 1, … , 2𝑝 + 1 are prespeci-
fied hyperparameters. We choose large 𝑢𝑍,𝑗 and small
𝜏𝑍,𝑗 in (2) so that 𝜆𝑍,𝑗 = 1 implies that a nonzero
estimate of 𝜓𝑍,𝑗 is included, whereas 𝜆𝑍,𝑗 = 0 implies
that the covariate corresponding to 𝜓𝑍,𝑗 has negligi-
ble effect on 𝑍. Similar choices are applied to (3) to
obtain sparse vectors of coefficient estimates for 𝑌. The
latent indicator variables are assumed to follow the prior
distributions (𝜆𝑍,𝑗, 𝜆𝑌,𝑗)|𝑝𝑍,𝑗, 𝑝𝑌,𝑗, 𝜌𝑗 ∼ (𝑝𝑍,𝑗, 𝑝𝑌,𝑗, 𝜌𝑗)
for 𝑗 = 1,… , 𝑝 + 1 and 𝜆𝑍,𝑗 ∼ Bernoulli(𝑝𝑍,𝑗) and 𝜆𝑌,𝑗 ∼

Bernoulli(𝑝𝑌,𝑗), for 𝑗 = 𝑝 + 2,… , 2𝑝 + 1. To ensure the
strong hierarchical property, we impose the constraints

𝑝𝑍,𝑗 = 𝑝𝑍,𝑗−𝑝−1𝑝𝑍,𝑝+1 min{𝑝𝑍,𝑗−𝑝−1, 𝑝𝑍,𝑝+1},

𝑗 = 𝑝 + 2,… , 2𝑝 + 1 (4)

𝑝𝑌,𝑗 = 𝑝𝑌,𝑗−𝑝−1𝑝𝑌,𝑝+1 min{𝑝𝑌,𝑗−𝑝−1, 𝑝𝑌,𝑝+1},

𝑗 = 𝑝 + 2,… , 2𝑝 + 1. (5)

Thus, the main effects are correlated through the bivari-
ate Bernoulli distribution and the interactions follow the
strong hierarchy property through (4) and (5). We spec-
ify prior distributions for the remaining parameters as fol-
lows:

𝜓𝑍,0 ∼  (𝑢0, 𝜏
2
0
), 𝛼𝑌 ∼  (𝑢𝑎, 𝜏

2
𝑎),

𝜙𝑚 ∼ Gamma(𝑐𝜙̃𝑚, 𝑐),𝑚 = 1,… ,𝑀,

𝑝𝑍,𝑗 ∼ Beta(𝑙𝑍1,𝑗, 𝑙𝑍2,𝑗), 𝑝𝑌,𝑗 ∼ Beta(𝑙𝑌1,𝑗, 𝑙𝑌2,𝑗),

log 𝜌𝑗 ∼  (𝑟1𝑗, 𝑟2𝑗), 𝑗 = 1, … , 𝑝 + 1,

where 𝑢0, 𝜏0, 𝑢𝑎, 𝜏𝑎, 𝑐, 𝜙̃𝑚,𝑚 = 1,… ,𝑀, 𝑙𝑍1,𝑗, 𝑙𝑍2,𝑗, 𝑙𝑌1,𝑗,

𝑙𝑌2,𝑗 , 𝑟1𝑗 , and 𝑟2𝑗 , 𝑗 = 1,… , 𝑝 + 1, are prespecified

test
Highlight
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hyperparameters. Details of the Monte Carlo Markov
chain computations for the joint variable selection are
given in Web Appendix C.
We have considered correlated indicator variables for

inclusion of covariates in models for 𝑍 and 𝑌, for each
variable in {𝒙, 𝐺, 𝐺𝒙}, but our construction assumes that
the predictors are independent. If desired, the joint vari-
able selection algorithm can be extended to the case where
the predictors may be correlated. As in George andMcCul-
loch (1993), we may generalize the distributions to be the
multivariate normal priors

𝝍𝑍|𝝀𝑍 ∼ 2𝑝+1(𝟎,𝐃𝛌𝐑𝐃𝛌) and 𝝍𝑌|𝝀𝑌
∼ 2𝑝+1(𝟎, 𝐃̃𝝀𝐑̃𝐃̃𝝀),

where𝐃𝝀 is a diagonalmatrixwith𝑎𝑗𝜏𝑍,𝑗, 𝑗 = 1, … , 2𝑝 + 1

with 𝑎𝑗 = 1 if 𝜆𝑍,𝑗 = 0 and 𝑎𝑗 = 𝑢𝑍,𝑗 if 𝜆𝑍,𝑗 = 1, and 𝐃̃𝝀 is a
diagonal matrix with 𝑎̃𝑗𝜏𝑌,𝑗, 𝑗 = 1, … , 2𝑝 + 1 with 𝑎̃𝑗 = 1

if 𝜆𝑌,𝑗 = 0 and 𝑎̃𝑗 = 𝑢𝑌,𝑗 if 𝜆𝑌,𝑗 = 1. Thus, 𝐑 and 𝐑̃ are
the prior correlation matrices for 𝝍𝑍|𝝀𝑍 and 𝝍𝑌|𝝀𝑌 . If the
predictors in {𝒙, 𝐺, 𝐺𝒙} are correlated, the prior correla-
tionmatrixmay be specified to be proportional to (𝐗⊤𝐗)−1,
where𝐗 denotes the designmatrix, implying that the prior
correlation is the same as the design correlation.
During the trial, joint variable selection is performed at

each interim stage to obtain the subvectors 𝒙𝑍 and 𝒙𝑌 .
While this procedure may miss informative covariates in
𝒙𝑌 early in the trial, due to an insufficient number of
observed events for 𝑌, as the trial progresses the proba-
bilities of identifying truly important covariates with inter-
active effects increase. Thus, it is important to repeatedly
reselect 𝒙𝑍 and 𝒙𝑌 as new data become available for each
GS decision.

2.3 Adaptive enrichment

Recall that the latent indicator variables 𝝀𝑍 and 𝝀𝑌 iden-
tify covariates included in the regression submodels for
(𝑍 | 𝐺, 𝒙) and (𝑌 | 𝑍,𝐺, 𝒙), which are used to make adap-
tive GS decisions. For each cohort 𝑘 = 1,… , 𝐾, let 𝑑𝑘 be
the accumulated number of events (i.e., 𝑌𝑖 = 𝑌𝑜

𝑖
) at the

time when the 𝑘th adaptive enrichment is performed, and
let 𝑛𝑘 =

∑𝑘

𝑗=1
𝑐𝑗 be the total number of patients enrolled

in the first 𝑘 cohorts. Let 𝑘 = {(𝑌𝑜
𝑖
, 𝛿𝑖, 𝑍𝑖, 𝐺𝑖, 𝒙𝑖), 𝑖 =

1, … , 𝑛𝑘} be the accumulated data and 𝒙
(𝑘)
𝑍

and 𝒙
(𝑘)
𝑌

the
selected subvectors at the 𝑘th interim decision. We define
the PBI for a patient with covariate vector 𝒙 as

Ω(𝒙|𝑘) = (1 − 𝜔𝑘) Pr
{
Δ𝑍

(
𝒙
(𝑘)
𝑍
, 𝜽𝑍

)
> 𝜖1|𝑘

}
+𝜔𝑘 Pr

{
Δ𝑌

(
𝒙
(𝑘)
𝑌
, 𝜽𝑌

)
< 𝜖2|𝑘

}
, (6)

where the weight is 𝜔𝑘 = 𝑑𝑘∕𝑛𝑘. Thus, the PBI is a
weighted average of the posterior probabilities that a
patient with covariates 𝒙 will benefit from 𝐸 more than
𝐶, defined in terms of the comparative treatment effect
parametersΔ𝑍(𝒙

(𝑘)
𝑍
, 𝜽𝑍) andΔ𝑌(𝒙

(𝑘)
𝑌
, 𝜽𝑌). The PBI depends

on 𝒙 only through the selected subvectors 𝒙(𝑘)
𝑍

and 𝒙
(𝑘)
𝑌
,

that is,Ω(𝒙 |𝑘) = Ω(𝒙
(𝑘)
𝑍
, 𝒙

(𝑘)
𝑌

|𝑘). The cutoffs 𝜖1 and 𝜖2
are design parameters specified to quantify minimal clini-
cally significant improvements in response probability and
survival, respectively. Early in the trial, when there are few
observed event times, the PBI will depend on 𝑍 more than
on𝑌 for identification of patientswhopotentiallymay ben-
efit from 𝐸. As more events occur, the weight 𝜔𝑘 for the
survival hazard ratio component in (6) becomes larger and
the weight (1 − 𝜔𝑘) for the response probability difference
becomes smaller, so the PBI depends more on the survival
time data. To use the PBI for decision-making, we consider
a patient with biomarker profile 𝒙 to be eligible for enroll-
ment into the 𝑘 + 1st cohort of the trial if their PBI is suf-
ficiently large, formalized by the rule

Ω(𝒙 |𝑘) = Ω
(
𝒙
(𝑘)
𝑍
, 𝒙

(𝑘)
𝑌

|𝑘

)
> 𝑣

(𝑛𝑘
𝑁

)𝑔
(7)

for 𝑘 = 1,… , 𝐾 − 1, where 𝑣 > 0 and 𝑔 > 0 are prespecified
design parameters. A practical method for determining 𝑣
and 𝑔 is provided inWebAppendix D. This type of adaptive
probability threshold was used previously by Zhou et al.
(2017). Thus, at this stage of the trial, the set of 𝐸-sensitive
patients is defined adaptively as those having covariate vec-
tors satisfying the eligibility condition (7), which depends
on the most recently selected subvectors 𝒙(𝑘)

𝑍
and 𝒙

(𝑘)
𝑌
. If

the trial is not stopped early, when the 𝐾th cohort’s out-
comes have been evaluated at the end of the final follow
up period, the PBI = Ω(𝒙 |𝐾) is updated and used as a
basis for the final tests.

2.4 Bayesian sequential monitoring
rules

To specify Bayesian decision criteria, we use the treat-
ment effect averaged over the enriched trial population,
which still may contain a wide spectrum of patients. The
𝑘th interim decisions are based on 𝑘, which consists of
the accumulated data from 𝑘 successive cohorts. Patients
within each cohort are homogeneous since they satisfy
the same eligibility criteria, but patients may be heteroge-
neous between cohorts since different cohorts may have
different eligibility criteria because the variable selection
is repeated and the PBI is refined during the trial. To make
GS decisions for superiority or futility based on treatment
effects on 𝑌, the rules used by the design follow the same
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logical structure as those of a conventional GS test, with
one important difference. Prior to each test, the set of 𝐸-
sensitive patients first must be determined in order to use
the most recently selected 𝒙

(𝑘)
𝑍

and 𝒙
(𝑘)
𝑌

to define the test
statistics and to determine the enrollment criteria for the
next cohort if the trial is continued. Let

𝑘 =
{
𝒙 ∶ Ω

(
𝒙
(𝑘)
𝑍
, 𝒙

(𝑘)
𝑌

|𝑘

)
> 𝑣 (𝑛𝑘∕𝑁)𝑔

}
denote the set of the covariates satisfying the eligibility cri-
teria used for the 𝑘 + 1st cohort. At this point in the trial,
we define the covariate-averaged long-term outcome treat-
ment effect to be

𝑇𝑌,𝑘(𝜽) = ∫𝑘

Δ𝑌

(
𝒙
(𝑘)
𝑌
, 𝜽𝑌

)
𝑝̂𝑘

(
𝒙
(𝑘)
𝑌

)
𝑑𝒙

(𝑘)
𝑌
,

where 𝑝̂𝑘(𝒙
(𝑘)
𝑌
) denotes the empirical distribution of 𝒙(𝑘)

𝑌

on the set 𝑘. Since these expectations are computed
over the selected enrichment set 𝑘, that is, the patients
who are expected to benefit more from 𝐸 than 𝐶 in the
𝑘th cohort, 𝑇𝑌,𝑘(𝜽) is a treatment effect in the sense
of precision medicine. Note that 𝐸 is more effective
than 𝐶 for patients with 𝒙 ∈ 𝑘 if 𝑇𝑌,𝑘(𝜽) is sufficiently
small.
To define GS test statistics, we must account for the

fact that, due to adaptive enrichment, there are 𝑘 het-
erogeneous cohorts at the 𝑘th analysis, and the empiri-
cal distribution 𝑝̂𝑘(𝒙

(𝑘)
𝑌
) changes with 𝑘 as new data are

obtained. Thus, denoting the number of events in the
𝑗th cohort by 𝑒𝑗 , we define the test statistic at the 𝑘th
analysis as the weighted average of the treatment effects,
𝑇𝑌,𝑘(𝜽) =

∑𝑘

𝑗=1
𝑤𝑌,𝑗𝑇𝑌,𝑗(𝜽), where the 𝑗th weight is

𝑤𝑌,𝑗 = 𝑒𝑗∕
∑𝑘

𝑙=1
𝑒𝑙 (Lehmacher and Wassmer, 1999). Note

that 𝑇𝑌,𝑗(𝜽) is calculated based on the data observed at
the interim time. As 𝑌 is a time-to-event endpoint, 𝑇𝑌,𝑗(𝜽)
must be updated at each later interim decision time. Let 𝑏1
denote the hazard ratio (e.g.,≤ 1) underwhich𝐸 is deemed
superior to 𝐶 in the long-term endpoint 𝑌, and let 𝑏2
denote the hazard ratio (e.g.,≥ 1) underwhich𝐸 is deemed
inferior to 𝐶. The values of (𝑏1, 𝑏2) typically are prespeci-
fied by the clinicians. Let (𝐵1, 𝐵2) be prespecified probabil-
ity cutoffs obtained by preliminary simulation-based cal-
ibration. A practical procedure to calibrate the values of
(𝐵1, 𝐵2) is provided in Web Appendix E. For the interim
analysis at each 𝑘 = 1,… , 𝐾 − 1, the decision rules are as
follows:

1. Superiority: Stop the trial for superiority of 𝐸 over𝐶 in
𝑘 if 𝑃𝑟{𝑇𝑌,𝑘(𝜽) < 𝑏1|𝑘} > 𝐵1.

2. Futility: Stop the trial for futility of 𝐸 over 𝐶 in 𝑘 if
𝑃𝑟{𝑇𝑌,𝑘(𝜽) > 𝑏2|𝑘} > 𝐵2.

3. Final Decision: If the trial is not stopped early, at
the last analysis (𝑘 = 𝐾), conclude that 𝐸 is superior
to 𝐶 in the final 𝐸-sensitive subset 𝐾 if 𝑃𝑟{𝑇𝑌,𝐾(𝜽) <

𝑏1|𝐾} > 𝐵1, and otherwise conclude that𝐸 is not supe-
rior to 𝐶 in 𝐾 .

An important practical issue during the process of con-
structing a design is deciding when to begin the adaptive
enrichment. This depends on several factors, including the
number of covariates, their information-to-noise ratio, the
percentage of sensitive patients, the treatment difference
between sensitive and insensitive patients, and the vari-
ances of the outcomes 𝑍 and 𝑌. In practice, logistical lim-
itations will often limit the number of interim decisions
to 1, 2, or 3. Based on these considerations, as a rule of
thumb, a reasonable time to initiate the adaptive enrich-
ment is after 1/3 to 1/2 of themaximum number of patients
has been enrolled.
If desired, at each interim analysis, the following addi-

tional futility stopping rule may be included to account for
the possibility that only a very small percentage of patients
may benefit from 𝐸. For a prespecified lower threshold 0 <
𝑞 < 1 based on practical considerations, the futility rule
stops the trial if the estimated proportion of 𝐸-sensitive
patients in the trial is < 𝑞. We use 𝑞 = 0.10 in the simu-
lation study and recommend to use a value in the range
0.01 – 0.10 in practice.
At the end of the trial, identification of the final 𝐸-

sensitive subset 𝐾 based on PBI involves all covariates,
because the Bayesian variable selection method based on
the spike-and-slab prior does not necessarily drop covari-
ates with little or no contribution to identify 𝐾 . To facil-
itate practical use, one can simplify the 𝐸-sensitive sub-
set identification rule by dropping covariates that have low
posterior probability (i.e., < 0.10) of being selected in the
prediction model of (𝑌, 𝑍).

3 SIMULATION STUDY

This section summarizes results of a simulation study
to evaluate the operating characteristics (OCs) of AED
and compare it to several published enrichment designs.
We assumed maximum sample size 400, with patients
accrued according to a Poisson process with rate 100 per
year, and each patient randomized fairly to receive 𝐸 or
𝐶. Up to two interim analyses were performed at 200
and 300 patients, with a final analysis 1 year after the
last patient was enrolled. We considered 10 biomarkers,
𝒙 = (𝑥1, … , 𝑥10), each either with or without an inter-
action effect, to define the 𝐸-sensitive subpopulation.
While AED handles both continuous and categorical
biomarkers, to facilitate presentation and interpretation
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TABLE 1 Simulation scenarios

𝑬-sensitive Non-𝑬-sensitive
Scen. 𝒙 of 𝑬-sensitive patients 𝝅𝑬 𝝁̃𝑬 𝚫𝒀 𝚫𝒁 𝝅𝑬 𝝁̃𝑬 𝚫𝒀 𝚫𝒁

1 No 𝐸-sensitive patients 0.50 0.817 1 0 0.50 0.817 1 0
2 𝑥1 = 1 0.65 2.593 0.49 0.19 0.46 0.585 1.220 −0.040

3 𝑥1 = 𝑥2 = 1 0.65 2.768 0.60 0.23 0.40 0.586 1.300 −0.073

4 𝑥1 = 1, 𝑥2 = 0 0.65 2.342 0.59 0.19 0.387 0.536 1.983 −0.073

5 𝑥1 = 𝑥2 = 𝑥3 = 1 0.65 2.233 0.60 0.21 0.373 0.404 1.566 −0.141

6 𝑥1 = 𝑥2 = 1, 𝑥3 = 0 0.65 2.236 0.60 0.19 0.300 0.225 2.247 −0.171

7 𝑥1 = 1, 𝑥2 = 𝑥3 = 0 0.65 2.233 0.59 0.17 0.234 0.136 3.459 −0.236

In each scenario, the covariate values are given that define an 𝐸-sensitive subgroup and true values of the response probability 𝜋𝐸 , median survival 𝜇̃𝐸 , Δ𝑌 =

hazard ratio between 𝐸 and 𝐶, and Δ𝑍 = response probability difference between 𝐸 and 𝐶 are given for each subgroup determined by 𝒙. The subscript 𝐸 of 𝜋𝐸 and
𝜇̃𝐸 denotes the experimental treatment

of the simulation results, we considered only binary
biomarkers with values 1 (marker positive) or 0 (marker
negative).
We considered seven scenarios, described in Table 1.

Scenario 1 is a null case where 𝐸 is not effective for
any patients, and there are no 𝐸-sensitive patients. For
𝐸-sensitive patients, we set the hazard ratio of 𝐸 to 𝐶

at several values Δ𝑌 < 1 and set several differences of
Δ𝑍 > 0 between the response rates of 𝐸 and 𝐶. For 𝐸-
insensitive patients, we set Δ𝑌 ≥ 1 and Δ𝑍 ≤ 0. Numerical
values of Δ𝑍 and Δ𝑌 are nonlinear functions of the regres-
sion parameters, 𝒙, and 𝐺. Technical details given in Web
Appendix F.
We generated 𝑍 from a Bernoulli distribution with

response probability given by

𝜋(𝒙, 𝐺, 𝜽𝑍) = Φ

{
𝛽𝑍,0 +

10∑
𝑗=1

𝛽𝑍,𝑗𝑥𝑗

+ 𝐺

(
𝛾𝑍,0 +

10∑
𝑗=1

𝛾𝑍,𝑗𝑥𝑗

)}
, (8)

and generated 𝑌 based on the hazard function

ℎ(𝑦|𝑍 = 𝑧, 𝐺, 𝒙, 𝜽𝑌) = ℎ0(𝑦) exp

{
10∑
𝑗=1

𝛽𝑌,𝑗𝑥𝑗

+ 𝐺

(
𝛾𝑌,0 +

10∑
𝑗=1

𝛾𝑌,𝑗𝑥𝑗

)
+ 𝛼𝑌𝑧

}
, (9)

where ℎ0(𝑦) is the baseline hazard, assumed to follow
a Weibull distribution with scale parameter 1 and shape
parameter 0.6 to obtain a decreasing hazard. We chose val-
ues of the regression parameters in Equations (8) and (9) so
that patients with different 𝒙 respond differently to 𝐸. Web
Appendix F provides numerical values of the parameters
for each simulation scenario. In scenarios 2–7, we consid-

ered three 𝐸-sensitive patient prevalences: 65%, 50%, and
35%.
We set the overall type I error rate to 0.05, with 𝑏1 =

𝑏2 = 1 for GS monitoring. We used 𝜖1 = 0 and 𝜖2 = 1 to
define the PBI, set the design parameters 𝑣 = 0.766 and
𝑔 = 0.352 for the eligibility criteria, after calibrating these
numerical values by preliminary simulations, and set 𝑞 =

0.10, so that the trial is stopped if less than 10% of patients
are 𝐸-sensitive. We compared AED with four designs: (1)
a GS enrichment design, called GSED (Magnusson and
Turnbull, 2013), that selects a “sensitive” subgroup at the
first interim test based on one prespecified dichotomized
biomarker; (2) a GS design, called InterAdapt (Rosenblum
et al., 2016), that allows interim early stopping by a test (i)
for superiority or futility in the “sensitive” subgroup or (ii)
for superiority of the entire group; (3) the adaptive enrich-
ment design proposed by Simon and Simon (2017), which
we call “Simon,” and (4) an “all-comers GS design,” called
CGS. To focus on the contribution of adaptive enrichment
in AED, CGS is identical to AED with the one exception
that CGS does not perform adaptive enrichment. Because
both the GSED and InterAdapt designs require prespec-
ified “sensitive” and “insensitive” subgroups based on a
prechosen biomarker, in our simulations we used 𝑥1 to
dichotomize the patient population into these two sub-
groups.
To compare the designs, we calculated the generalized

power (GP), defined as the probability that the design cor-
rectly (1) identifies the sensitive subpopulation and (2)
rejects𝐻0 ∶ Δ𝑌(𝒙, 𝜽) ≥ 1when𝐻0 actually is not truewith
Δ𝑌(𝒙, 𝜽) < 1, that is when 𝐸 is superior to 𝐶 in the 𝐸-
sensitive subgroup. GP is very different from conventional
power, which ignores the adaptive signature identifica-
tion process and is computed under the assumption that
the sensitive subgroup is known. The GP is more rele-
vant because it reflects the actual statistical decisions, and
numerical values of GP and power often are very differ-
ent. If a subgroup assumed to be sensitive by a design
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TABLE 2 GP of the AED and comparator designs under seven scenarios, with survival time following a Weibull distribution with
deceasing hazard

Percentage sensitive patients in
cohort Generalized power

Scenario First Second Third AED GSED InterAdapt Simon CGS
1 0 0 0 NA NA NA NA NA
2 0.65 0.88 0.89 0.79 0.45 0.65 0.63 0.61

0.50 0.81 0.81 0.73 0.41 0.65 0.36 0.46
0.35 0.70 0.72 0.73 0.36 0.62 0.20 0.27

3 0.65 0.83 0.84 0.65 0 0 0.49 0.49
0.50 0.77 0.77 0.63 0 0 0.28 0.43
0.35 0.65 0.65 0.56 0 0 0.13 0.36

4 0.65 0.81 0.81 0.68 0 0 0.50 0.49
0.50 0.66 0.68 0.66 0 0 0.32 0.39
0.35 0.57 0.58 0.64 0 0 0.15 0.21

5 0.65 0.83 0.90 0.51 0 0 0.22 0.16
0.50 0.80 0.81 0.50 0 0 0.18 0.15
0.35 0.72 0.74 0.44 0 0 0.14 0.12

6 0.65 0.93 0.93 0.71 0 0 0.36 0.20
0.50 0.88 0.89 0.63 0 0 0.22 0.06
0.35 0.81 0.83 0.59 0 0 0.11 0.05

7 0.65 0.93 0.94 0.84 0 0 0.58 0.03
0.50 0.90 0.91 0.81 0 0 0.32 0.01
0.35 0.83 0.87 0.77 0 0 0.22 0.01

Each trial was simulated 1000 times. In each case, the proportion of sensitive patients for the first cohort is an assumed fixed true value 0.65, 0.50, or 0.35, while
the numerical values for the second and third cohorts are statistics resulting from the adaptive enrichment, computed as means across the simulations

is incorrect, then the GP = 0. GP is useful for precision
medicine because it quantifies howwell a complex sequen-
tially adaptive decision-making process performs to opti-
mize a targeted therapy.
Table 2 summarizes the simulation results for each

design based on 1000 simulated trials in each scenario con-
sidered. In scenario 1, where𝐸 is ineffective for all patients,
all designs preserve the nominal type I error rate 0.05, with
the small exception that InterAdapt has type I error rate
0.06. Scenarios 2−7 are cases where 𝐸 is effective for a par-
ticular subgroup of patients. Each of these scenarios has
three subcases, with 65%, 50%, or 35% sensitive patients in
cohort 1. In contrast, the tabled numerical percentages for
cohorts 2 and 3 are consequences of the adaptive enrich-
ment decisions of AED, so they are design OCs and not
assumed simulation study parameters.
Table 2 shows that AED has much higher GP than

all other designs in most scenarios. The many GP values
of 0 for GSED and InterAdapt are due to the fact that
both designs prespecify a sensitive subgroup, and if this
subgroup is incorrect, then the GP = 0, which occurs
in scenarios 3−7. Simon performs better than GSED and
InterAdapt because Simon adaptively enriches and identi-
fies sensitive patients. CGS yields similar GP as Simon in

most scenarios (except scenarios 6 and 7) because CGS as
defined here is a refined group sequential design, which
uses the same model and decision rules as AED to select
covariates, identify a sensitive subgroup, and test the treat-
ment effect in the identified subgroup. As noted earlier, to
evaluate the adaptive enrichment effect of AED, the only
difference betweenCGS andAED is that CGS does not per-
form adaptive enrichment. AED outperforms both Simon
and CGS with 20–40 percentage points higher GP. The
much larger GP of AED stems from its adaptive enrich-
ment of 𝐸-sensitive patients based on both short-term
𝑍 and long-term 𝑌, and the fact that AED refines the
sensitive subgroup repeatedly throughout the GS process.
Because the first cohort of AED enrolls all comers, in any
case the percentage of sensitive patients enrolled in the
first cohort is approximately the population prevalence of
sensitive patients. Since AED enriches the identified sensi-
tive patient subgroup in all subsequent cohorts, this results
in increasingly higher percentages of sensitive patients in
cohorts 2 and 3. For example, in Scenario 2, the percent-
age of truly sensitive patients is the population value 65%,
but thereafter the percentages of enrolled sensitive patients
increase greatly, to 88% and 89% in cohorts 2 and 3. These
high adaptive enrichment rates alsomakeAED stop earlier



10 PARK et al.

TABLE 3 Ratios of the 90th, 50th, and 10th percentiles of the survival time distributions for future patients after using each design,
compared to the percentiles for the all-comers GS design

Percentage
sensitive
patients in

Ratio of 𝟗𝟎th, 𝟓𝟎th, and 𝟏𝟎th percentiles of future patients’ survival times, versus
the all-comers GS design

Scenario First cohort AED GSED InterAdapt Simon
1 0 1,1,1 1,1,1 0.99, 1, 1 1,1,1
2 0.65 1.44, 1.44, 1.44 1.30, 1.30, 1.30 0.97, 0.98, 0.98 1.15, 1.14, 1.14

0.50 1.69, 1.68, 1.68 1.19, 1.20, 1.20 1.09, 1.08, 1.09 1.05, 1.05, 1.05

0.35 2.03, 2.04, 2.04 1.20, 1.22, 1.22 1.19, 1.19, 1.19 0.98, 0.98, 0.98

3 0.65 1.33, 1.34, 1.33 0.76, 0.75, 0.74 1.09, 1.09, 1.09 0.91, 0.91, 0.91

0.50 1.41, 1.43, 1.42 0.80, 0.78, 0.78 1.03, 1.03, 1.03 0.98, 0.98, 0.98

0.35 1.46, 1.49, 1.49 0.90, 0.88, 0.88 0.98, 0.97, 0.97 0.86, 0.85, 0.86

4 0.65 1.34, 1.35, 1.31 0.78, 0.76, 0.74 1.09, 1.09, 1.07 1.13, 1.13, 1.11

0.50 1.41, 1.42, 1.37 0.83, 0.81, 0.80 1.16, 1.17, 1.13 1.12, 1.13, 1.11

0.35 1.52, 1.55, 1.49 0.97, 0.97, 0.95 1.26, 1.28, 1.22 1.01, 1.02, 1.03

5 0.65 2.06, 2.10, 2.00 1.02, 1.00, 0.97 1.17, 1.17, 1.16 1.17, 1.18, 1.16

0.50 1.85, 1.90, 1.84 0.98, 0.96, 0.95 1.12, 1.13, 1.11 1.09, 1.10, 1.10

0.35 1.69, 1.76, 1.72 0.95, 0.93, 0.93 1.01, 1.02, 1.01 1.01, 1.01, 1.02

6 0.65 3.48, 3.54, 3.17 1.56, 1.51, 1.39 1.62, 1.63, 1.53 1.67, 1.69, 1.59

0.50 2.96, 3.06, 2.84 1.23, 1.21, 1.15 1.29, 1.30, 1.26 1.18, 1.20, 1.18

0.35 2.40, 2.53, 2.42 1.06, 1.05, 1.03 1.09, 1.10, 1.09 1.09, 1.11, 1.11

7 0.65 4.13, 4.22, 3.32 2.12, 2.11, 1.71 1.83, 1.85, 1.60 2.66, 2.72, 2.24

0.50 3.05, 3.18, 2.72 1.61, 1.62, 1.43 1.35, 1.37, 1.28 1.37, 1.43, 1.37

0.35 2.39, 2.53, 2.31 1.26, 1.28, 1.21 1.12, 1.13, 1.10 0.98, 1.02, 1.07

Survival times were assumed to follow a Weibull distribution with deceasing hazard. Each trial was simulated 1000 times

for superiority comparedwith the other designs. As seen in
Web Table 2 of Web Appendix G, AED is more likely than
CGS to correctly conclude that 𝐸 is more effective than 𝐶

in the identified sensitive subgroup, and stop the trial early
for superiority, and AED also is less likely to incorrectly
stop the trial for futility when 𝐸 actually is effective for the
sensitive subgroup (scenarios 2–7).
To evaluate clinical benefit for future patients provided

by each of the designs, in Table 3 we report ratios of the
90th, 50th, and 10th percentiles of the survival time dis-
tributions for future patients who are considered sensitive
based on the rule specified by the design at the end of the
trial. We simulated 1000 future patients and treated them
with either 𝐸 or 𝐶 based on the trial’s final conclusion, so
they received 𝐸 if𝐻0 was rejected at the end of the trial, or
𝐶 if𝐻0 was not rejected. In Table 3, each ratio for each per-
centile for each design is computed as the simulation aver-
age of the future survival time distribution percentile for
the design, divided by the corresponding simulation aver-
age percentile resulting from the all-comersGS design. The
average (range) of median survival time, MST = 50th per-
centile, ratios for future patients with AEDwere 2.14 (1.34–
4.22); with GSED were 1.13 (0.75–2.11); with InterAdapt
were 1.20 (0.97–1.85); andwith Simonwere 1.20 (0.85–2.72).

Thus, in terms of survival compared to CGS, the AED pro-
vides the greatest benefit for future patients among the four
enrichment designs considered. However, the clinical ben-
efit for all enrolled patients during an adaptive enrichment
trial is the average effect from the mixture of treatment-
sensitive patients and treatment-insensitive patients after
the randomization. The MST of patients enrolled during
the trial thus does not show a substantial gain in survival
benefit from using enrichment designs, and thus it is not
useful to demonstrate clinical benefit.
To examine robustness, Web Appendix H shows results

for the AED when 𝑌 is generated from a Weibull distribu-
tionwith scale parameter 1 and shape parameter 2 to obtain
an increasing hazard and alsowhen𝑌 follows a log-logistic
distribution with a ∩-shaped hazard. The results are simi-
lar to those in Table 2, where 𝑌 follows a Weibull distribu-
tion with decreasing hazard.
We further investigated the performance of AED when

(1) themaximum sample size is 800; (2) there are 50 covari-
ates, that is, 𝑥1, … , 𝑥50, 𝐺, 𝐺𝑥1, … , 𝐺𝑥50 are included in
each regression model; (3) an additional main effect of a
covariate is added, for example, in scenario 2 where 𝑥1
has a main and an interaction effect, the main effect of
𝑥2 is added but an associated interaction effect of 𝑥2 with



PARK et al. 11

treatment is not included; (4) a covariate effect associ-
ated with 𝑌 but not with 𝑍 was considered; (5) there are
no treatment–covariate interactions; (6) different design
parameterswere used to enrich the patient population; and
(7) different sparsity parameters were used. The results are
summarized inWebAppendix I, suggesting that in general
AED is robust. For example, when there are no treatment–
covariate interactions, and thus no 𝐸-sensitive subgroup,
GP is the same as conventional power. AED performs well
and has OCs similar to those of CGS.

4 DISCUSSION

We have proposed a Bayesian GS adaptive enrichment
design, AED, for a comparative clinical trial that does
covariate selection, adaptive enrichment, and treatment
comparison. By repeating covariate selection at each GS
decision point to take advantage of the accumulating data,
the design is able to update the eligibility criteria by
restricting enrollment to the most recently determined 𝐸-
sensitive subgroup that is likely to benefit, based on a per-
sonal benefit index computed using both early response
and survival time. Compared to the three enrichment
designs of Magnusson and Turnbull (2013), Rosenblum
et al. (2016), and Simon and Simon (2017), and an all-
comersGSdesign that is identical toAED in allways except
that it does not do enrichment, the proposed AED has
much higher GP across a range of scenarios. The AED also
providesmuch greater benefit to future patients in terms of
survival time. These substantial improvements over exist-
ing adaptive enrichment designs may be attributed to the
AED’s adaptive biomarker selection and the effectiveness
of its adaptive enrichment rule based on each patient’s
covariate-based PBI. By exploiting this structure, the AED
greatly magnifies the signal in the patient covariate vector
and boosts the GP for correctly identifying a sensitive sub-
group and detecting a true treatment advance over stan-
dard therapy, if it exists. AED is also more ethical in that it
reduces the probability of enrolling 𝐸-insensitive patients
who are unlikely to benefit.
A practical limitation of AED is that it is not scalable

to handle high-dimensional 𝒙 in a scientifically valid and
clinically ethical way. Our simulations show that, with
sample sizes of several hundred patents, AED can accom-
modate settings where 𝒙 has dimension up to 50. In such
settings, AED obtains good GP figures for realistic alter-
native hazard ratios. To implement AED, the investigators
must do a preliminary biomarker screening, based on pre-
clinical or early clinical data, to obtain 𝒙 of dimension
small enough to be handled practically by AED. Another
practical issue is deciding when the adaptive enrichment
should begin. This depends on the number of covariates,

their information-to-noise ratio, the percentage of sensitive
patients, the treatment difference between sensitive and
insensitive patients, and the variances of the outcomes 𝑍
and 𝑌. Since several of these factors can be estimated dur-
ing the trial, a useful future research problem may be to
construct a rule for use during the trial, which is defined as
a function of these knownand estimated quantities and the
planned maximum number of GS decisions, that decides
when to begin the adaptive enrichment.
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