
Biometrics 71, 188–197 DOI: 10.1111/biom.12250
March 2015

Bayesian Nonparametric Estimation of Targeted Agent Effects on
Biomarker Change to Predict Clinical Outcome

Rebecca Graziani,1 Michele Guindani,2,* and Peter F. Thall2
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Summary. The effect of a targeted agent on a cancer patient’s clinical outcome putatively is mediated through the agent’s
effect on one or more early biological events. This is motivated by pre-clinical experiments with cells or animals that identify
such events, represented by binary or quantitative biomarkers. When evaluating targeted agents in humans, central questions
are whether the distribution of a targeted biomarker changes following treatment, the nature and magnitude of this change,
and whether it is associated with clinical outcome. Major difficulties in estimating these effects are that a biomarker’s
distribution may be complex, vary substantially between patients, and have complicated relationships with clinical outcomes.
We present a probabilistically coherent framework for modeling and estimation in this setting, including a hierarchical Bayesian
nonparametric mixture model for biomarkers that we use to define a functional profile of pre-versus-post-treatment biomarker
distribution change. The functional is similar to the receiver operating characteristic used in diagnostic testing. The hierarchical
model yields clusters of individual patient biomarker profile functionals, and we use the profile as a covariate in a regression
model for clinical outcome. The methodology is illustrated by analysis of a dataset from a clinical trial in prostate cancer
using imatinib to target platelet-derived growth factor, with the clinical aim to improve progression-free survival time.
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1. Introduction
Intensive research investigating the biological bases for many
types of cancer has produced a rapidly growing number of so-
called “targeted agents.” Targeted agents may be molecules,
such as tyrosine kinase inhibitors, or cells, such as T-cells or
natural killer cells engineered to recognize a particular cell
surface marker. The rationale for using a targeted agent ther-
apeutically is that it causes either direct destruction of the
cancer cell or a change in a pathway believed to be asso-
ciated with an observable change in a biomarker related to
clinical outcome. The therapeutic goal may be to stabilize
a solid tumor so that it stops growing, reduce the patient’s
disease burden or, ideally, eradicate the disease. Identifica-
tion of biomarkers that are changed by a targeted agent is a
major challenge due to the complexities of biological disease
mechanisms, which make it difficult to estimate effects of tar-
geted agents on the levels of biomarkers and their associated
pathways (Ratain and Glassman, 2007). Once a biomarker
affected by a targeted agent has been identified, establishing
a relationship between the biomarker and clinical outcome
also is difficult due to variability in the biomarker, evaluation
methods, and patient response. See, for example, the recent
discussion in Kelloff and Sigman (2012).

In the following formalism, each object may be one-
dimensional or a vector of several elements. Denote treatment
regime by τ, and available covariates by Z. Let X denote the
baseline biomarker and Y its corresponding post-treatment
value, and denote clinical outcome by T . In practice, τ may
be a single agent, a combination or sequence of two or more

agents, or an administration mode. Let p(·) denote a distri-
bution, for example, p(T | X, Y, Z, τ) is the conditional distri-
bution of T given X, Y, Z, τ.

Putatively, a desired effect of a targeted τ on T is mediated,
at least in part, through the effect of τ on the biomarker, in
particular the change from X to Y. This effect first is identified
in pre-clinical experiments, which provide the rationale for
developing and using targeted agents therapeutically on
humans. Once τ has been used to treat humans, a first
question is how the biomarker distribution may be affected
by τ. Addressing this requires characterizing and estimating
the change within each patient from X to Y . To assess this
change, one must account for association between X and
Y due to within-patient effects, in addition to treatment
effects on Y and covariate effects on both X and Y , hence
p(Y | X, Z, τ) and p(X | Z). However, these distributions may
be complex and highly disperse. In many settings, X and
Y are dichotomized, for example, to identify nominally low
versus high biomarker expression. This simplification may
misrepresent the data by discarding important information,
especially quantitative within-patient biomarker changes due
to treatment. Discussions of information loss or distortion
due to discretizing continuous variables are given by Altman
et al. (1994), Irwin and McClelland (2003), and Royston,
Altman, and Sauerbrei (2006). Recent studies have reported
multimodal or skewed distributions of putative biomarkers
(e.g., Lucas et al., 2009; Bessarabova et al., 2010), and some
authors have proposed indexes of bimodality for scoring
transcript expression profiles (Wan et al., 2009). If p(X | Z)
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and p(Y | X, Z, τ) are multi-modal and highly complex,
empirical estimates of quantities like E(X − Y | Z, τ) may not
be meaningful (cf. Morita et al., 2010).

In this article, we develop a unified, probabilistically co-
herent framework for quantifying treatment effects on a given
biomarker’s levels and the effect of such changes on T . We
present a comprehensive model including a biomarker func-
tional profile, � = �{p(X, Y | Z, τ)}, to characterize biomarker
changes due to treatment, and we integrate this into a sub-
model including the effect of � on T. The model also can
identify subgroups of individuals characterized by different �

profiles in terms of the effects of τ and � on T , which is use-
ful for prognostic purposes. More specifically, we employ the
probability factorization,

p(T, X, Y | Z, τ) = p(T | X, Y, Z, τ)p(X, Y | Z, τ). (1)

In (1), we will make two simplifying assumptions. The first is
that p(T | X, Y, Z, τ) = p(T | �, Z, τ), that is, given Z and τ

the effect of (X, Y) on T is characterized by �. Although in
general the distributions of X and Y may depend on Z, for
simplicity hereafter we also will assume that neither X nor Y

depends on Z, so that p(X, Y | Z, τ) = p(X, Y | τ). We employ
a Bayesian parametric regression model for p(T | �, Z, τ), and
a hierarchical Bayesian nonparametric model for p(X, Y | τ),
which gives flexible subject-specific estimates of �, and clus-
ters of these estimates.

Our motivating application is a dataset from a randomized
clinical trial in men with advanced prostate cancer (Matthew
et al., 2007; Morita et al., 2010). The goal was to compare
two drug combinations, docetaxel plus imatinib (DI, n = 41)
and docetaxel plus placebo (D, n = 47). Docetaxel was an es-
tablished chemotherapy for this disease, while imatinib had
shown substantial beneficial effects in other diseases, most no-
tably chronic myelogenous leukemia, and, based on preclinical
experiments, also was considered promising for prostate can-
cer. The target was the platelet-derived growth factor receptor
(PDGFR), which is implicated in cancer cell angiogenesis and
believed to increase the chance of the prostate cancer metas-
tasizing to the bone. The hypothesis was that imatinib would
reduce the blood concentrations of phosphorylated PDGFR
(p-PDGFR), thus inhibiting tumor angiogenesis, reducing the
development of bone metastases, and improving progression
free survival (PFS) time. The dataset includes paired sam-
ples of p-PDGFR values from peripheral blood leukocytes,
obtained from each patient at baseline and after chemother-
apy. Additional covariates included hemoglobin and prostate-
specific antigen (PSA) levels.

In order to obtain a highly flexible yet tractable model
for p(X, Y | τ), we use the Nested Dirichlet Process (NDP)
(Rodriguez, Dunson, and Gelfand, 2008), a hierarchical
Bayesian nonparametric model that has been applied exten-
sively for density estimation. In the present setting, the NDP
model first assumes that each patient’s observed X and Y are
conditionally independent samples from mixtures of normal
distributions having parameters assumed to follow priors that
are patient-specific realizations of Dirichlet processes. A hier-
archical structure is obtained by assuming that the patient-
specific Dirichlet processes are conditionally independent

samples from a hyperprior (second level prior) that also
is a Dirichlet process. This NDP structure accommodates
highly complex, multi-modal distributions for the observed
vectors of X and Y values of each patient, substantial
between-patient variability, identifies patient clusters, and
also describes population properties of the biomarkers.

To characterize biomarker change, we propose a functional
biomarker profile � by building on Bayesian nonparamet-
ric density estimation (Ferguson, 1983; Escobar and West,
1995) to obtain an estimator of P(X < Y | τ) that accounts
for complex distributional forms of X and Y . Inference about
P(X < Y | τ), sometimes referred to as “stress-strength re-
liability,” has received wide attention in the literature (see,
e.g., Kotz, Lumelskii, and Pensky, 2006, for a review). Recent
work in the Bayesian literature includes Ventura and Racugno
(2011), where inference is conducted via pseudo-likelihoods,
and Rubio and Steel (2012), where the dependencies between
X and Y are modeled parametrically through a Gaussian cop-
ula. Our approach is similar to that proposed by Branscum
et al. (2008) for disease diagnosis and for quantifying the dis-
criminatory ability of a continuous diagnostic measure. How-
ever, our interest resides in evaluating and clustering individ-
ual responses in an integrated survival framework, not on the
population-level performance of a screening test.

The article is organized as follows. Section 2 describes
the general modeling framework. In Section 3, we detail the
NDP model for characterizing individual patient profiles. Sec-
tion 4 discusses the functional profile we use to characterize
biomarker distributional change. Section 5 describes posterior
computation. In our dataset, we have available large within-
patient samples of the baseline biomarker X and the corre-
sponding post-treatment levels Y, as it occurs in many appli-
cations involving tissue or blood cell samples. The special case
where X and Y are single quantitative, categorical or binary,
variables is discussed in Section 6. In Section 7, we apply our
method to analyze data from a randomized clinical trial of
imatinib in prostate cancer. Section 8 concludes with a brief
discussion.

2. Integrated Survival Model

In this Section, we establish notation for the data structure
and introduce our model. We index subjects by i = 1, . . . , N.

Although our framework easily may accommodate any
univariate outcome, in the following we assume that Ti is a
time-to-event outcome, such as PFS or overall survival time.
Let T o

i denote either the observed time of the event or right-
censoring, with εi = 1 if T o

i = Ti and 0 if T o
i < Ti. Let T o =

(T o
1 , . . . , T o

N), εεε = (ε1, . . . , εN), and let Zi = (Z1i, Z2i, . . . , Zki)
denote baseline prognostic covariates, with Z =
(Z1,Z2, . . . ,ZN). For the ith individual, let ni and mi denote
the respective frequencies of measurements of the biomarker
levels collected before and after treatment. For example, the
biomarker expression level may be obtained for each cell
in blood samples before and after chemotherapy. Let Xi =
(Xi1, . . . , Xini

) and Yi = (Yi1, . . . , Yimi
) denote the subject-

specific pre-treatment and post-treatment biomarker samples,
respectively, with X = (X1, . . . ,XN) and Y = (Y1, . . . ,YN).

The functional �i = �{p(Xi,Yi|τi)} characterizes the indi-
vidual change in the levels of the biomarker before and after
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treatment, where τi denotes the treatment assigned to the ith
individual. For example, � may be the L1-norm distance or
some other measure of distributional distance, such as that
discussed below in Section 4. Following (1), the patient-level
data likelihood can be factored as

p(T o
i , εi,Xi,Yi|Zi, τi, β, θ)

= p(T o
i , εi|�i,Zi, τi, β)p(Xi,Yi|τi, θ), (2)

where θ is the vector of parameters for the model on the
biomarker profiles and β parameterizes the regression model
p(T o, ε | X,Y,Z, τ, β) = p(T o, ε|�,Z, τ, β). For example, T o

may follow a commonly used survival distribution such as
the Weibull or lognormal, with the linear component being a
function of �, τ, and Z.

3. Bayesian Nonparametric Model for
Biomarkers

The model for p(X,Y|τ, θ) must be flexible enough to rep-
resent a wide range of possible biomarker distributions that
may be multimodal or skewed, and account for variability be-
tween individuals. To describe such heterogeneity, we use a
hierarchical Bayesian nonparametric framework. The model
gives highly flexible individual density estimates that can be
used to identify groups (clusters) of individuals character-
ized by their biomarker profiles. More specifically, we assume
that the biomarker measurements are samples from unknown

subject-specific distributions with Xi1, . . . , Xini

iid∼ FXi
, and

Yi1, . . . , Yimi

iid∼ FYi
, where Xi and Yi are the vectors of subject-

specific pre-treatment and post-treatment measurements. We
model the FXi

’s and FYi
’s using mixtures of Gaussian distri-

butions.
Denote the Gaussian distribution with mean μ and stan-

dard deviation σ by N(μ, σ), and the corresponding pdf and
cdf, respectively, by φ(·, μ, σ) and �(t;μ, σ). Standard Gaus-
sian distributions will be denoted using only the first argu-
ment. We first assume that, for each individual i = 1, . . . , N,

Xij|μXij
, σXij

ind∼ N(μXij
, σXij

), j = 1, . . . , ni,

Yik|μYik
, σYik

ind∼ N(μYik
, σYik

), k = 1, . . . , mi.

(3)

Denote θXij
= (μXij

, σXij
)

′
and θYij

= (μYij
, σYij

)
′
. Under the

mixture model, θXij
and θYij

are sampled from some mixing
distributions, GXi

and GYi
, that is,

θXi1 , . . . , θXini
|GXi

iid∼ GXi
and θYi1 , . . . , θYimi

|GYi

iid∼ GYi
. (4)

This implies that, conditional on realizations GXi
and GYi

,
the distributions of the individual vectors Xi and Yi are the
mixtures,

fX(xi|GXi
) =

∫ ni∏
j=1

φ(xij; θXij
)GXi

(dθXij
),

fY (yi|GYi
) =

∫ mi∏
k=1

φ(yik; θYik
)GYi

(dθYik
).

(5)

Here, our focus is on assessing the change in the distribution
of Yi versus Xi, in terms of �i, to determine the effect of

a given treatment, investigate possible associations of the
change with clinical outcomes, and identify groups (clusters)
of individuals having similar biological responses. This re-
quires a prior model on GXi

and GYi
that identifies clusters of

individual profiles. For that purpose, our prior model on GXi

and GYi
involves the Dirichlet Process (DP), a widely used

prior probability model for unknown distributions, which
often is used for its clustering properties (see Ferguson, 1973).
We write G ∼ DP(α, G
) to indicate that a random distri-
bution G follows a DP with base measure E(G) = G
 and
total mass parameter α. The parameter α determines, among
other important properties, the variation of G around the
prior mean, with smaller (larger) values of α implying higher
(lower) uncertainty. A random probability measure G with
DP prior a.s. has discrete support, and can be represented
as G = ∑∞

h=1
πhδmh

, where δm is the degenerate distribu-

tion with point mass 1 at mh, with πh = vh

∏h−1

j=1
(1 − vj) for

vh ∼ Be(α, 1) and mh ∼ G
, h = 1, . . . ,∞ (Sethuraman, 1994).
Since G is a.s. discrete, samples from G have a positive proba-
bility of ties, as some sets of θXij

’s (θYij
) in (4) may be equal. A

review of DP mixture models is given by Hjort et al. (2010).
A DP can be used to flexibly estimate GXi

and GYi
for each

individual, but it does not provide an explicit clustering of
those distributions either across i or between pre- and post-
treatment samples. Such clustering is important to properly
characterize the functional �i. We achieve this objective by
assuming that GXi

and GYi
are realizations of a common NDP

(Rodriguez et al., 2008). In this framework, the individual re-
alizations of GXi

and GYi
can be shared both across individ-

uals and between each individual’s pre- and post-treatment
samples. Formally, GXi

and GYi
are conditionally independent

samples from a common DP prior, that is,

GXi
∼

∞∑
r=1

πr δG∗
r

and GYi
∼

∞∑
r=1

πr δG∗
r
, (6)

where each atom G∗
r is itself a realization from a DP(γ, G0)

hyperprior with base measure G0 and concentration param-
eter γ, that is G∗

r (·) = ∑∞
l=1

w∗
lrδθ∗

lr
(·), with θ∗

lr ∼ G0. Thus,
each GXi

and GYi
is sampled from a collection of distribu-

tions, the G∗
r ’s. We denote this hierarchical NDP formulation

as (GXi
, GYi

) ∼ NDP(α, γ, G0). Recall that �i is a functional
of p(Xi,Yi|Zi, τi), which in the NDP is determined by the re-
alizations of GXi

and GYi
under (6). Because the DP given by

(6) has discrete support, if some πr’s in (6) are not negligible
then there is a non-trivial probability that GXi

= GYi
. This

implies that the biological effect of treatment is null for pa-
tient i, which should be reflected by the posterior estimate of
�i. This is discussed in Section 4. For the same reason, there
also is non-trivial probability that (GXi

, GYi
) = (GXi′ , GYi′ ) for

some i �= i′, and thus �i = �i′ , which says that the biomarker
profiles of subjects i and i′ belong to the same cluster. The
model is completed by specifying the base measure G0, which
we assume follows a Normal-Inverse Gamma (N-IG) prior dis-
tribution, as is commonly done for mean and precision vectors
in Normal models. Finally, independent Gamma priors are as-
signed to α and γ.
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4. Biomarker Distributional Change Functionals

In this section, we discuss definitions of the biomarker func-
tional profile, �. Measures of distributional change based on
Bayesian nonparametric priors recently have been considered
by Nguyen and Gelfand (2014), who describe Lr-norm, vari-
ational and symmetrized Kullback–Leibler distances between
realizations of a random probability measure in a functional
ANOVA setting. Here, our objective is different, as our goals
are to estimate how a biomarker changes due to treatment
and relate this to the outcome T. For example, if on average
a given treatment results in a decrease of a biomarker’s lev-
els, this information usually is hidden by area-based measures
such as those noted above. Therefore, we employ a measure
of distributional change that more appropriately describes the
probability of a shift in the distribution of biomarker levels
before and after treatment. In the literature, such a measure
has been provided, for example, by the vertical quantile com-
parison function (see Li, Tiwari, and Wells, 1996, 1999).

For two cdfs FX and FY with common support, the ver-
tical quantile comparison function is defined as QX,Y (p) =
FY {F−1

X (p)}, for p ∈ (0, 1). This quantity represents the func-
tional form of the probability plot and facilitates compar-
ison of two distributions’ quantiles. In particular, QX,Y (p)
= 0.5 has been used in so-called “control median tests” for
comparing control and treatment groups (see Gart, 1963;
Gastwirth, 1968; Park, 2002). In decision theory, the verti-
cal quantile comparison function is related to the Receiving
Operating Characteristic (ROC) curve, defined as ROC(p) =
1 − FY {F−1

X (1 − p)}. In that context, FX and FY represent the
cdfs of a diagnostic variable in two populations, for example,
healthy controls and patients, respectively. See also the use of
placement values in diagnostic testing (Pepe and Cai, 2004).
Here, we are not interested in assessing the diagnostic per-
formance of a biomarker. Nevertheless, in the evaluation of
targeted therapies, the vertical quantile comparison function
can be estimated by considering the distribution functions
FXi

and FYi
of the individual biomarker levels before and af-

ter treatment. We define a measure of distributional change

as � = ∫ 1

0
QX,Y (p)dp = EFY

{FX(Y)} = P(X < Y), which cor-
responds to the area under the ROC curve commonly used in
diagnostic testing.

In the present setting, �i represents the shift in biomarker
distribution of the ith subject, putatively due to the treat-
ment’s biological mechanisms of action. A posterior estimate
with P(Xij < Yik | data) > 0.5 implies that the subject’s distri-
bution has shifted to the right (biomarker increase), whereas
P(Xij < Yik | data) < 0.5 implies a shift to the left (biomarker
decrease), and P(Xij < Yik | data) ≈ 0.5 corresponds to no sub-
stantial change in the subject’s biomarker levels.

5. Posterior Computation

Figure 1 summarizes the formulation of our hierarchical
model. Since the joint posterior distribution of the model
parameters cannot be obtained in closed form, we employ
Markov chain Monte Carlo (MCMC) algorithms for posterior
inference. The full-conditionals for the update of the NDP
mixture model parameters are obtained as in Rodriguez et al.
(2008), based on a truncation of the Dirichlet Processes. The
parameters of the baseline distribution G0 are updated at

each iteration using all samples of biomarker levels, (X,Y).
The full-conditionals for the update of the event time model
parameters are obtained using standard methods for Bayesian
analysis of accelerated failure survival models. Additional de-
tails of the Gibbs sampler are available in the Web Appendix.

To provide a basis for estimating both biological and clini-
cal effects simultaneously, our integrated model fully accounts
for the uncertainty of all random quantities, including vari-
ability between the �i’s to reflect heterogeneity of the patient
population. At each iteration, the MCMC algorithm draws
samples of the biomarker distributions (GXi

, GYi
) for each in-

dividual, and uses these to obtain an update of the biomarker
functional profile �i. As an illustration, consider the model as
outlined in Figure 1. To obtain the MCMC posterior samples
after burn in, each sample value �∗

i is computed by averaging
over the posterior estimates (G∗

Xi
, G∗

Yi
) of that subject’s

biomarker distributions. Since (5) and (6) imply that, for any
given mixing distribution G∗

r , F(t|G∗
r ) = ∫

�(t; θ)G∗
r (dθ) =∑∞

l=1
w∗

lr�(t; θ∗
lr) for F = GXi

or GYi
,, the posterior biomarker

profile is computed as �∗
i = EG∗

Yi
{G∗

Xi
(Yik)} = ∫

G∗
Xi

(y)

dG∗
Yi
(y)dy. Denoting G∗

Xi
= ∑∞

l=1
w∗

l δθ∗
l
and G∗

Yi
= ∑∞

l′=1
w∗

l′δθ∗
l′
,

it follows that the posterior biomarker functional profile
estimate is the mean over posterior values of the form

�∗
i = ∑

l

∑
l′ ω

∗
l ω

∗
l′

(
1 − �

(
μ∗

l
−μ∗

l′√
σ2∗
l

+σ2∗
l′

))
.

6. Binary or Single Biomarker Measurements

In many settings, the biomarker is binary, either as the result
of dichotomizing a continuous variable or as an indicator of
the presence/absence of a biological characteristic in the pa-
tient, such as a gene mutation. It also commonly is the case
that biomarker values are available only as pre–post-pairs of
single measurements on each patient. Additionally, clinical
outcome may not be an event time but rather a categorical
variable, such as {complete response, partial response, stable
disease, progressive disease}, or a binary variable such as the
indicator of complete or partial response. In this section, we
show how our modeling framework can accommodate such
settings.

For the case where the elements of Xi and Yi are binary, the
model structure established above may be exploited by assum-
ing that it holds for unobserved real-valued latent variables,
say X̃ij and Ỹik, and defining the observed binary variables as
Xij = I(X̃ij > 0) and Yij = I(Ỹik > 0). This follows the latent
variable data augmentation approach of Albert and Chib
(1993). One then can think of Xij and Yik as draws from con-
ditionally independent Bernoulli distributions with subject-
specific parameters pXij

and pYik
, that is, Xij ∼ Bern(pXij

)
and Yik ∼ Bern(pYik

). These probabilities are then mapped to
real-valued parameters, θXij

= link(pXij
), θYik

= link(pYik
), by

a conventional link function such as the logit or probit. The
established NDP prior construction is then used to obtain
individual estimates of �i, as above. However, note that
here �i = Pr(Xi = 0, Yi = 1), and GXi

and GYi
are mixtures

of Bernoulli distributions, allowing the possibility that the
biomarker distributions are not the same across samples.

Next, we consider the case where only a single pair of
pre- and post-treatment biomarker measurements, (Xi, Yi),
are available for each patient, that is, all ni = mi = 1. While



192 Biometrics, March 2015

Figure 1. Hierarchical formulation of the proposed probabilistic model. Ti represents the outcome of interest, τi is the
treatment, Zi is a vector of covariates, X and Y are the pre- and post-treatment values of a biomarker for patient i.

the two biomarker distributions for each individual now can-
not be estimated, population level estimates of biomarker
change due to treatment can be obtained. We collapse the hi-
erarchical structure, as follows. For a continuous biomarker,
writing θXi

= (μXi
, σXi

) and θYi
= (μYi

, σYi
), we assume Xi|θXi

∼
N(θXi

) and Yi|θYi
∼ N(θYi

), with θXi
|GX ∼ GX and θYi

|GY ∼ GY ,
and (GX, GY ) ∼ DP(α, G0). The binary case can be handled
similarly, assuming Xi ∼ Bern(pXi

) and Yi ∼ Bern(pYi
) where

the individual real-valued parameters θXi
= link(pXi

) and
θYi

= link(pYi
) follow the single level DP given above. Fi-

nally, although in the application described in the next sec-
tion we assume a log-normal distribution for the event times,
p(Ti|Zi, �i, τi) can be quite general, to accommodate a binary

or categorical outcome Ti by assuming an appropriate gener-
alized linear model within the Bayesian framework.

7. Analysis of the Prostate Cancer Trial Data

7.1. Data and PFS Model

In this section, we apply our integrated model to analyze
the prostate cancer dataset (Matthew et al., 2007). Figure 2
gives the empirical distributions of the log-transformed
p-PDGFR sample values pre- and post-treatment for three
patients in the DI treatment arm. The histograms illustrate
the multi-modality and pronounced left skewness of the
p-PDGFR distributions, and the fact that the treatment
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Figure 2. Empirical distributions of log-transformed p-PDGFR values before (black) and after (gray) treatment with do-
cetaxel + imatinib, for three representative patients. The plots highlight the characteristic multi-modality and skewness of
these distributions, as well as moderate shifts of their distribution following treatment.

effect was not homogeneous across patients. Compared to
p(X|τ), the post-treatment distribution p(Y |τ) shifted to the
right for some patients, shifted to the left for others, and
showed no substantive change for a third subgroup.

Morita et al. (2010) analyzed this dataset using a fully
Bayesian parametric hierarchical framework, where both
biomarker distributions were modeled as two-component mix-
tures of normals. They used the differences between the es-
timated means of the right pre- and post-treatment mixture
components, and differences between the estimated means of
the left pre- and post-treatment mixture components, as co-
variates in a parametric regression model for PFS time. This
analysis characterizes treatment effect on p-PDGFR by the
two estimated location shifts, but it makes no use of any other
characteristics of the biomarker distributions. Our Bayesian
Nonparametric approach refines this previous analysis in two
substantive ways. First, some patients’ p-PDGFR distribu-
tions exhibited three, four, or five modes, which the previous
two-component mixture model ignores but the hierarchical
NDP mixture model identifies quite naturally. Second, the

NDP model yields an automatic clustering of individuals on
the basis of the posteriors of their �i’s.

Following Morita et al. (2010), we assume that the Ti’s are
lognormally distributed, and model the linear term similarly
to their formulation. This will facilitate comparison of the
two analyses. Let τi = 0 if patient i was randomized to the
control (D) arm, and τi = 1 for the experimental (DI) arm.
For the ith patient, define Z1i = 1 if the hemoglobin level
was greater than 11 g/dl, 0 otherwise, Z2i the pretreatment
to post-treatment increase in prostate-specific antigen (PSA)
levels, and denote the vector Zi

′ = (Z1i, Z2i). We assume that
log(Ti) ∼ N(ηi, σT ), where

ηi = β0 + β1 τi + {
β2 τi + β3 (1 − τi)

}
Z1i

+{
β4τi + β5(1 − τi)

}
Z2i + {

β6τi + β7(1 − τi)
}

�i.

(7)

While β1, . . . , β7 have the same respective interpretations as
given in Morita et al. (2010), we obtain �i as the area under
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the ROC curve, as described in Section 4, based on the NDP
model for X and Y. To test the validity of the simplifying
assumption of no association between the distributions of X

and Y and the covariates Z, we regressed the individual pre-
and post- treatment mean values on hemoglobin levels and
increase in prostate antigen levels. This analysis showed that
there was no significant association (Web Appendix).

7.2. Prior Hyperparameter Specification

Following Ishwaran and James (2001) and Rodriguez et al.
(2008), we assume finite truncations of the DP, with the mix-
ture distributions for modeling the pre-treatment and post-
treatment biomarker levels in (6) given by GXi

and GYi
∼∑30

r=1
πrδG∗

r
. Similarly, we define G∗

r (·) = ∑50

l=1
w∗

lrδθ∗
lr
(·). It is

known that this sort of truncation may introduce bias into
the results (Griffin and Walker, 2011). To partially deal with
this, alternatively retrospective sampling (Papaspiliopoulos
and Roberts, 2008) or slice sampling (Walker, 2007; Kalli,
Griffin, and Walker, 2011) techniques could be used. However,
a preliminary sensitivity analysis considering truncation lev-
els ranging from 20 to 60 produced no significant differences
in the final results.

A priori, we assume that the means of each biomarker clus-
ter, μXij

and μYij
, are drawn from a vague normal distribution

centered at 0 with large variance. Specifically, the baseline
of the NDP mixture model was set as G0 ≡ N-IG(0,1,5,50),
which implies that E(μ|σ) = 0, SD(μ|σ) = σ, E(σ) = 12 and
Var(σ) = 52. These values were chosen to obtain disperse prior
predictive distributions of the Xij’s and Yij’s having support
that includes the domain [0, 30] where all of the observed
values occur. This also ensures that the induced priors on the
cluster variances, σ2

Xij
and σ2

Yij
, are vague. For the precision pa-

rameters of the nested DPs, α and γ, we specified a Gamma
distribution, Ga(1, 1) (Escobar and West, 1995). For the re-
gression model on PFS time, we assume non informative flat
priors on the regression coefficients β and the standard de-
viation σ. Specifically, the β coefficients are independent a
priori and, conditionally on σ, are assigned a diffuse Gaussian
prior centered at zero. The sampling variance σ2 is assumed to
have a diffuse Inverse-Gamma prior centered at 1 and infinite
variance. This results in a joint multivariate Normal-Inverse
Gamma prior specification on the set of β’s and σ2, that is,
N-IG(018, I8, 2, 1), where 18 and I8 denote the 8-dimensional
vector of ones and the 8-dimensional identity matrix, respec-
tively.

7.3. Results

The following results are based on MCMC samples of size
10,000, obtained after a burn-in of 10,000 iterations. We
assessed the convergence of the MCMC chains by visual
inspection and, more formally, by Raftery and Lewis’s
diagnostic test and other tests implemented in the R package
“coda” (Raftery and Lewis, 1992; Plummer et al., 2006).
As expected, the Nested-Dirichlet Process Mixture model
confirms the existence of heterogeneous biomarker profiles
in patients. Indeed, posterior inference based on the MCMC
iterations suggests that the patients’ posterior distributions
can be clustered approximately into 10 groups (modal value)
either before and after treatment (Figure 3). Furthermore, if
we consider the distribution of PDGFR values, the number

Figure 3. Clustered posterior means of �, obtained by av-
eraging each patient values across MCMC iterations, in each
of the two treatment arms.

of mixture components estimated for each patient before and
after treatment typically ranges between 2 and 5. Assuming
a quadratic loss function, we can estimate the probability
of a biomarker shift, �, for each individual using the pos-
terior mean, E(�i|data), obtained by averaging the values
computed at each MCMC iteration. Figure 3 shows the
resulting frequency distribution of the posterior means for
all individuals. It is evident that the model captures existing
heterogeneity across patients, as measured by the shift of the
biomarker distribution before and after treatment. We iden-
tified three clusters of patients, according to the value of �i

being less than, equal or greater than 0.5. The high percent-
age of patients for whom there was no significant shift in the
distribution of biomarker profiles before and after treatment
suggests that the leading hypothesis of the study, that is, that
Imatinib lowers the expression of PDGFR values, may not
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Figure 4. On the left, Kaplan–Meier estimates of progression free survival for patients experiencing a shift to the left
(dashed line) or to the right (solid line) in PDFGR values. On the right, posterior median survival and 95% HPD intervals
for two representative individuals in the two groups, respectively.

be correct. In fact, the clinical trial was stopped early due to
futility, since the initial data suggested no therapeutic benefit
on PFS time from the combination of docetaxel and imatinib.
Our results suggest that the biological assumption of the trial
might have been fallacious, and provide an understanding
of the reasons of the negative therapeutic results. See also
Table 3 in the Web Appendix. Therefore, contrary to what
was initially expected by the investigators, the combination
of docetaxel and imatinib did not lead to a large decrease
of PDGFR values in the patients’ blood. Furthermore, if
we consider the study population as a whole and compare
their PFS times as functions of the posterior means of �i

(probability of a shift being less than versus greater than
or equal to 0.5), we see a strong indication that increased
survival, surprisingly, was associated with larger values of
�i. Figure 4a plots the Kaplan–Meier curves of patients
experiencing a shift to the left (E(�|data) < 0.5) versus
those experiencing a shift to the right (E(�|data) ≥ 0.5) in
biomarker levels. Figure 4b provides the posterior median
survival and 95% highest posterior density (HPD) intervals
of two representative individuals in each group. Although
PDFGR inhibition seems to be associated with increased PFS
time in the first few months after therapy, the opposite seems
true after some time. An extended Cox proportional hazard
model confirms this time-varying effect (Web Appendix).

Table 1 displays the estimates of the coefficients in model
(7). In addition to the posterior means of the β′

js, we report
95% posterior credible intervals as well as the posterior prob-
ability of observing a value of β greater than 0. With the
exception of the effect of hemoglobin in the control arm, most
credible intervals overlap zero. Therefore, we should be ex-
tremely careful in interpreting the direction of the effects es-
timated by the model. On the other hand, examination of
Prob(β > 0|data) seems to confirm the previous conclusions:
higher values of �, that is, higher values of PDGFR after
treatment, tend to be associated with longer PFS time. We
should note that the results in Table 1 are similar to those al-
ready given in Morita et al. (2010). However, their parametric
analysis did not provide clustering of patients into subgroups
induced by the distributional changes of the biomarker profiles

before and after treatment. The advantage of the nonparamet-
ric approach is apparent from the improved goodness of fit, as
measured by the achieved L measure statistics under the two
approaches (Ibrahim, Chen, and Sinha, 2001). The L measure
defines a criterion for model comparison based on minimizing
the posterior predictive loss, with lower values indicating a
better fit (Gelfand and Gosh, 1998). Table 2 reports the val-
ues of the L statistics for both the fit of the density estimates
of the pre- and post- treatment PDFGR values (left column)
and the full PFS model (right column) obtained by our ap-
proach and the model in Morita et al. (2010). To determine
whether the clusters identified by the NDP were predictive
of PFS, we also considered an alternative model, where the
single predictor � was replaced by the indicators of the clus-
ters (� < 0.5) and (� > .0.5), using (� = 0) as the baseline,
each interactive with treatment arm, DI or D. The results
were very similar to those for model (7). Again, none of the
treatment-cluster effects were associated with PFS, with pos-
terior 95% credible intervals of the β′

js for the PDGFR shift
overlapping zero.

We also implemented our model assuming that the
biomarker values available on each individual are either sin-
gle measurements or samples of binary indicators. For the first
case, we summarized the individual PDGFR values by their

Table 1
Posterior means and 95% credible intervals of the β

coefficients in the PFS regression model (7)

Posterior mean
Coefficient and 95% CI Prob(β > 0|data)

β0 (intercept) 1.70 (0.49 2.97) 0.99
β1 (DI vs. D) 0.35 (−1.04 1.76) 0.66
β2 (DI hemoglobin) 0.59 (−0.87 1.89) 0.75
β3 (D hemoglobin) 1.42 (0.02 2.70) 0.97
β4 (DI PSA) −0.0014 (−0.016 0.012) 0.42
β5 (D PSA) −0.0048 (−0.012 0.002) 0.13
β6 (DI �) 0.30 (−1.15 1.99) 0.63
β7 (D �) 0.84 (−0.61 2.43) 0.79
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Table 2
L measure goodness of fit for the density estimates of the

pre- and post-treatment PDFGR values (left column) and the
full PFS model (right column) obtained by our approach

(NDP) and the parametric two-component mixture model in
Morita et al. (2010). A smaller value of L corresponds to a

better fit to the data.

L measure Biomarker density PFS

NDP 5.65 170,300
Parametric 71.93 183,230

means, X̄i and Ȳi, before and after treatment, respectively, to
obtain a single continuous measurement for each individual.
To obtain samples of binary measurements, we dichotomized
the continuous measurements using the medians as cut-offs.
We have applied this dichotomization either to each Xij and
Yij, obtaining a sample of binary biomarker levels for each
individual, or to their means, X̄i and Ȳi, thus obtaining a
single binary value of over-expression for each individual, as
is commonly done in practice. We then modified our model
as discussed in Section 6. The results of the fitted regression
models were similar to those in Table 1, although these anal-
yses did not provide additional insights into the heterogeneity
of the biomarker profiles across individuals. We have omitted
the details of these additional analysis in the interest of space.

8. Discussion

We have proposed an integrated Bayesian hierarchical non-
parametric framework for quantifying the effects of treatment
on the levels of a biomarker and estimating how such changes
affect clinical outcome. The Bayesian nonparametric approach
allows us to obtain a flexible estimate of the biomarker profile
for each individual and characterize the heterogeneity of pa-
tients’ responses to treatment. In particular, we have shown
that our model can be used to evaluate naive “clinical hy-
potheses” in subsets of the population of interest. Although
our model assumes multiple continuous measurements of a
biomarker profile before and after treatment, our framework
can be modified to account for binary or single biomarker
measurements.

Our application shows how Bayesian hierarchical nonpara-
metric mixture models can help reveal previously unrecog-
nized heterogeneity, and provide a flexible tool for exploring
the intricacy of treatment effects on survival. A limitation of
the approach presented here is that we assume that the dis-
tribution of pre- and post-treatment biomarker values does
not depend on covariates. Furthermore, the survival outcome
depends on a single measure of functional change, although
two different pairs of distributions for X and Y could in prin-
ciple yield the same � = P(X < Y). Also, we have considered
only measurements taken at two time points, before and af-
ter treatment. Of course, biomarker levels may change as a
complex function of time. If longitudinal biomarker values
are available, then a more structured model accounting for
patients’ biomarker processes would be needed. Extensions
of our work may consider dependent bivariate (or multivari-
ate) Dirichlet processes wherein the dependence is obtained
by modeling explicitly the relationship between two or more

groups of exchangeable data with available covariates (see,
e.g., MacEachern, 1999; Walker and Muliere, 2003; De Iorio
et al., 2004, 2009; Hatjispyros, Nicoleris, and Walker, 2008).
Vector-valued biomarker functional profiles could be consid-
ered to capture different features of distributional change
(e.g., tail and center behavior).

While our model can only identify groups of patients on the
basis of estimated changes in their biomarker levels, further
study would be required to link such heterogeneity with the
underlying biological mechanisms thought to be responsible
for individual effects. Finally, because many targeted agents
are not as specific as desired and may cause harm by attacking
normal cells, the structure considered here may be extended
by considering adverse events, such immunosuppression or or-
gan toxicity, along with T.

9. Supplementary Materials

The Web Appendix, referenced in Sections 5 and 7, and the
Matlab code implementing the method is available with this
paper at the Biometrics website on Wiley Online Library.
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