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Summary. A Bayesian feature allocation model (FAM) is presented for identifying cell subpop-
ulations based on multiple samples of cell surface or intracellular marker expression level data
obtained by cytometry by time of flight (CyTOF). Cell subpopulations are characterized by differ-
ences in expression patterns of makers, and individual cells are clustered into the subpopulations
based on the patterns of their observed expression levels. A finite Indian buffet process is used to
model subpopulations as latent features, and a model-based method based on these latent fea-
ture subpopulations is used to construct cell clusters within each sample. Non-ignorable missing
data due to technical artifacts in mass cytometry instruments are accounted for by defining a static
missingship mechanism. In contrast with conventional cell clustering methods based on observed
marker expression levels that are applied separately to different samples, the FAM based method
can be applied simultaneously to multiple samples, and also identify important cell subpopula-
tions likely to be missed by conventional clustering methods. The proposed FAM based method
is applied to jointly analyze three datasets, generated by CyTOF, to study natural killer (NK) cells.
Because the subpopulations identified by the FAM may define novel NK cell subsets, this statisti-
cal analysis may provide useful information about the biology of NK cells and their potential role
in cancer immunotherapy which may lead, in turn, to development of improved NK cell therapies.
Simulation studies of the proposed method’s behavior under two cases of known subpopulations
are presented, followed by analysis of the CyTOF NK cell surface marker data.

Keywords: Clustering, Natural Killer Cells, Subpopulations, Latent features, Non-ignorable miss-
ing data

1. Introduction

Mass cytometry data have been used for high-throughput characterization of cell subpopulations
based on unique combinations of surface or intracellular markers that may be expressed by each
cell. Cytometry by time-of-flight (CyTOF) is a decade-old technology that can rapidly quantify
a large number of biological, phenotypic, or functional markers on single cells through use of
metal-tagged antibodies. For example, CyTOF can identify up to 40 cell surface or intracellular
markers in less time and at a higher resolution than previously available methods, such as
fluorescence cytometry (Cheung and Utz, 2011). Because CyTOF can reveal cellular diversity
and heterogeneity that could not be seen previously, it has the potential to rapidly advance the
study of cellular phenotype and function in immunology.

Despite the potential of CyTOF, analysis of the data that it generates is computationally
expensive and challenging, and statistical tools for making inferences about cell subpopulations
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Fig. 1. A stylized overview of the proposed feature allocation model. Z is a binary matrix whose
columns define latent subpopulations, and w is a vector of cell subpopulation abundances. Two sub-
populations are constructed in Z based on their marker expression patterns. Cells are clustered into
the subpopulations based on their observed expression level patterns.

identified by CyTOF are quite limited. Manual “gating” is a traditional method in which ho-
mogeneous cell clusters are sequentially identified and refined based on a given set of surface
markers. Manual gating has several severe shortcomings, however, including its inherent subjec-
tivity due to the fact that it requires manual analysis, and being unscalable for high dimensional
data with large numbers of markers. While manual gating is commonly used in practice, a va-
riety of computational methods that automatically identify cell clusters have been proposed
to analyze high-dimensional cytometry data. Many existing automated methods use dimen-
sion reduction techniques and/or clustering methods, such as density-based or model-based
clustering. For example, FlowSOM, given by Van Gassen et al. (2015), uses an unsupervised
self-organizing map (SOM) for clustering and dimension reduction. A low-dimensional rep-
resentation of the marker vectors is obtained by using unsupervised neural networks for easy
visualization in a graph called a map. FlowSOM is fast and can be used either as a starting
point for manual gating, or as a visualization tool after gating has been performed. Other com-
mon approaches are density-based clustering methods, including DBSCAN (Ester et al., 1996)
and ClusterX (Chen et al., 2016), and model-based clustering methods, including flowClust (Lo
et al., 2009) and BayesFlow (Johnsson et al., 2016). More sophisticated clustering methods
based on Bayesian nonparametric models also have been proposed, see for example by Soriano
et al. (2019). Weber and Robinson (2016) performed a study to compare several clustering
methods for high-dimensional cytometry data. They analyzed six publicly available cytometry
datasets and compared identified cell subpopulations to cell population identities known from
expert manual gating. They found that, in many scenarios, FlowSOM had significantly shorter
runtimes. Moreover, in many studies where manual gating was performed, FlowSOM produced
the best clusterings, in terms of various clustering metrics, when compared to cell clustering by
manual gating.

While conventional clustering methods identify subgroups of cells with similar marker ex-
pression values, they often fail to provide direct inferences that identify and characterize cell
subpopulations. Clustering methods put cells in the same cluster if their expression levels are
similar, and they assume implicitly that underlying cell subpopulations can be identified and
constructed from clusters estimated directly from the marker expression levels. The usefulness
of such conventional clustering approaches is limited by the fact that observed numerical marker
expression values may differ substantially due to between-sample variability, often due to tech-
nical variation in the cytometry measurement process, as well as variability in the expression
measurement process. Fig 1 illustrates a toy example. Suppose that the respective log expres-
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sion levels of markers 1 and 2 are -2 and -4 on a given cell, and that the corresponding values
on a second cell are -6 and -4. A negative (or positive) log expression level implies that it is
unlikely (or likely) that a surface marker is expressed. Although their expression patterns are
qualitatively similar and are from the same subpopulation, a conventional clustering method is
unlikely to include these two cells in the same cluster because their marker 1 expression lev-
els are very different. A deeper problem is that cell clusters based on expression values may
not serve as a useful surrogate for identifying cell subpopulations. As a result, most existing
clustering methods are used to analyze different samples separately.

In this paper, we propose a Bayesian feature allocation model (FAM) to identify and place
probabilities on cell subpopulations based on multiple cytometry samples of a vector of cell sur-
face marker expression values. Our proposed FAM characterizes cell subpopulations as latent
features defined in terms of their expression patterns, and clusters individual cells to one of
the identified subpopulations. We will refer to each latent feature as a “subpopulation.” With
this FAM, a given marker may be expressed in more than one cell subpopulation, and each
subpopulation is characterized by a unique marker expression pattern. To characterize subpop-
ulation configurations, we introduce a random matrix Z with rows corresponding to markers
and columns to subpopulations, with entry 1 denoting expression and 0 denoting non-expression
of a marker in a subpopulation. Unlike traditional clustering methods, the FAM constructs la-
tent subpopulations based on marker expression patterns, as illustrated by the Z matrix in
the top figure in Fig 1. It assigns cells 1 and 2 to subpopulation 1, where neither marker is
expressed, and it assigns cell 3 to subpopulation 2, where marker 1 is expressed and marker
2 is not expressed. We assume a finite Indian buffet process (IBP) as the prior distribution
for Z. The IBP is a popular model for latent binary features, and it may be obtained as the
infinite limit of a Beta-Bernoulli process (Ghahramani and Griffiths, 2006). Applications of the
IBP prior in FAMs for a range of biological applications are given by Hai-son and Bar-Joseph
(2011); Chen et al. (2013); Xu et al. (2013); Sengupta et al. (2014); Xu et al. (2015); Lee et al.
(2015, 2016); Ni et al. (2018). Griffiths and Ghahramani (2011) reviews some earlier applica-
tions of the IBP. Furthermore, we introduce a vector of subpopulation abundances wi for each
sample (i). This approach provides a framework for the joint analysis of multiple samples, and
includes structures to account for large sample-to-sample variation and abnormalities, such as
missing values due to technical artifacts in the cytometry data, while quantifying uncertainty
in posterior inferences.

The model and analyses in this paper are motivated by a dataset comprised of three CyTOF
samples of surface marker expression levels in umbilical cord blood (UCB)–derived natural killer
(NK) cells. NK cells play a critical role in cancer immune surveillance, and are the body’s first
line of defense against viruses and transformed tumor cells. NK cells have the intrinsic abil-
ity to infiltrate cancer tissues. Recently, NK cells have been used therapeutically to treat a
variety of diseases (Wu and Lanier, 2003; Lanier, 2008). In particular, NK cells have emerged
as a potentially powerful treatment modality for advanced cancers refractory to conventional
therapies (Rezvani and Rouce, 2015; Suck et al., 2016; Shah et al., 2017; Miller et al., 2005;
Lupo and Matosevic, 2019; Liu et al., 2020). Because cell-surface protein expression levels are
used as markers to describe the behavior of NK cells, accurate identification of diverse NK-cell
subpopulations along with their composition is crucial to the process of obtaining more com-
plete characterizations of their biological processes and functions. The goal of our statistical
analysis is to identify and characterize NK cell subpopulations and functions across heteroge-
neous collections of these cells. This may provide critical information for guiding selective ex
vivo expansion of UCB-derived NK cells for treating specific cancers.

The remainder of this paper is organized as follows. We present the proposed statistical
model in § 2, simulation studies in § 3, and an analysis of the NK cell mass cytometry data in
§ 4. We close with concluding remarks in § 5.



4 Lui et al.

2. Probability Model

2.1. Sampling Model
Index cell samples by i = 1, 2, ..., I. Suppose that Ni cells, indexed by n = 1, . . . , Ni, are
obtained from the ith sample, and the expression levels of J markers on each cell within each
sample are measured. Let ỹi,n,j ∈ R+ denote the raw measurement of the expression level
of marker j on cell n in sample i. While raw measurement values reflect actual expression
or non-expression of markers on cells, they also vary between cells and between samples for
several reasons, including biological heterogeneity in the range of expression among different
populations, as well as experimental artifacts or batch effects, such as instrument fluctuations or
signal crosstalk among channels designed for different markers. While, compared to conventional
flow cytometry and the use of fluorescent antibodies, the use of pure metal isotopes minimizes
spectral overlap among measurement channels in CyTOF, crosstalk still may be observed due to
the presence of isotopic impurity, oxide formation, and properties related to the mass cytometer.
Raw measurements are normalized using cutoff values computed by a flow (rather than mass)
cytometry algorithm called flowDensity (Malek et al., 2014), which aims to gate predefined cell
populations of interest, in settings where the gating strategy is known. This frees practitioners
from the need to manually gate analysis results, but it relies substantially on user-provided
information to produce good results. Consequently, cutoffs obtained from such algorithms are
crude, but useful as a starting point for our analysis. Let ci,j denote the cutoff for marker j in
sample i obtained by flowDensity. A marker of a cell is likely to be expressed if its observed
expression level ỹi,n,j > ci,j , while a value ỹi,n,j < ci,j may imply that marker j is not expressed
on cell n in sample i. To reduce skewness of the marker distributions, we will base our model
on the log transformed values yi,n,j = log (ỹi,n,j/ci,j) ∈ R. This transformation makes 0 the
reference point for dichotomizing marker expression and non-expression. To account for the fact
that some yi,n,j may be missing due to experimental artifacts, we define the binary indicator
mi,n,j = 1 if yi,n,j is observed, and mi,n,j = 0 if missing. Denote the probability that yi,n,j is
missing by Pr(mi,n,j = 0 | yi,n,j) = ρi,n,j(yi,n,j), so 1− ρi,n,j(yi,n,j) is the probability that yi,n,j
is observed. Below, we will define the latent subpopulation membership indicator, λi,n, of cell
n in sample i. For each cell in the ith sample, we assume conditional independence of the cell’s
J marker values given its latent subpopulation, formally yi,n,1, · · · , yi,n,J | λi,n are independent,
and we write the joint model for (yi,n,j ,mi,n.j) as follows;

yi,n,j | µi,n,j , s2i,n, λi,n
ind∼ N(µi,n,j , s

2
i,n), and (1)

mi,n,j | ρi,n,j(yi,n,j), λi,n
ind∼ Ber(1− ρi,n,j(yi,n,j)). (2)

This joint model provides a basis for imputing missing expression levels by drawing yi,n,j from
p(yi,n,j | mi,n,j) if mi,n,j = 0, and it also facilitates posterior simulation. Below, we will relate
the mean expression µi,n,j to the configuration of cell subpopulation λi,n. To reflect expert
biological knowledge of the investigators, a model for ρi,n,j as a function of yi,n,j will be given
in the following section.

2.2. Priors
Priors for latent cell subpopulation
We assume that each sample consists of a heterogeneous cell population, and denote the number
of different latent subpopulations by K. The cell subpopulations are defined by the columns of
the J ×K (marker, subpopulation) stochastic binary matrix Z. The element zj,k ∈ {0, 1} of Z
determines marker expression by subpopulation, with zj,k = 0 if marker j is not expressed and
zj,k = 1 if it is expressed for subpopulation k. We construct a feature allocation prior for Z as
follows: For j = 1, . . . J and k = 1, . . . ,K,

zj,k | vk
ind∼ Ber (vk) and vk | α

iid∼ Be(α/K, 1). (3)

As K → ∞, the limiting distribution of Z in (3) is the IBP (Ghahramani and Griffiths, 2006)
with parameter α, after removing all columns that contain only zeros. We assume hyperprior
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α ∼ Gamma(aα, bα) with mean aα/bα. The IBP, which is one of the most popular FAMs, thus
defines a distribution over binary matrices having an unbounded number of columns (features).
For our purposes, the simpler version of the IBP with finite K provides a very useful statistical
tool for identifying marker expression patterns to define latent cell subpopulations from CyTOF
surface marker data. While zj,k in (3) can be 0 or 1 for non-expression/expression, the model
can be further extended to accommodate ordered categories of a marker expression, such as
no/moderate/high expressions. For example, we may let zj,k = 0, 1, or 2 for no/moderate/high
expressions, and consider the categorical IBP in Sengupta et al. (2014); Lee et al. (2016) as
a prior for such a Z. This extended model may be preferred when a finer categorization of
expression level is more desirable.

We assume that each of the K cell subpopulations may potentially appear in each sample,
but allow their cellular fractions to differ between samples. In addition, we include a special,
(K + 1)st “noisy” cell type, indexed by k = 0, to address the problem that some cells do
not belong to any of the K cell subpopulations. In sample i, let 0 < εi < 1 denote the
proportion of noisy cells and (1 − εi)wik the proportion of cells belonging to subpopulation

k, where wi =(wi,1, . . . , wi,K) with
∑K

k=1wi,k = 1 and wi,k > 0, is a probability distribution

on {1, · · · ,K}. We assume priors εi
iid∼ Be(aε, bε) with fixed hyperparameters aε and bε, and

wi | K
iid∼ DirK(d/K) with fixed hyperparameter d. For cell n = 1, . . . , Ni in sample i = 1, . . . , I,

we introduce stochastic latent subpopulation indicators (equivalently, cell cluster membership
labels) λi,n ∈ {0, 1, . . . ,K}. We set λi,n = 0 if cell n in sample i does not belong to any of the
cell subpopulations in Z, and set λi,n = k > 0 if cell n in sample i belongs to subpopulation
k. For the latent subpopulation indicators, we assume Pr(λi,n = 0 | εi) = εi to account for
noisy cells, and Pr(λi,n = k | λi,n 6= 0,wi) = wik. Within each sample i = 1, · · · , I, assigning
cells to subpopulations using {λi,n, i = 1, · · · , Ni} induces cell clusters. Thus, in contrast
with clustering methods that infer only cell clusters in the ith sample based on {yi,n,j}, our
proposed method produces direct inferences on both characterization of cell subpopulations
and cell clusters simultaneously for all samples. This is highly desirable because a primary aim
is to identify and make inferences about cell subpopulations.

Since the number of columns containing non-zero entries under the IBP is random, the
dimensions of Z and wi may vary during posterior computation. Because this dimension
change may cause a high computational cost, especially for big datasets such as those obtained
by CyTOF, we use a finite version of the IBP with fixed K. Because the number of latent
subpopulations is not known a priori, we consider a set of different values for K, from which
we select one value of K using Bayesian model selection criteria. We will discuss this selection
process below.

Priors for mean expression level

The mean expression level µi,n,j of marker j for cell n in sample i in (2) is determined by the
cell’s latent subpopulation. For cells in the noisy cell subpopulation where λi,n = 0, we fix
µi,n,j = 0 for all j and s2i,n = s2ε , where s2ε is a large constant. For a cell with λi,n ∈ {1, · · · ,K},
if the marker is not expressed in cell subpopulation λi,n (i.e., zj,λi,n = 0), we restrict its mean
expression level to be a negative value, µi,n,j < 0. Specifically, for (i, n, j) with zj,λi,n = 0,

we introduce a set of means for expression levels of markers not expressed, µ?0,` =
∑`

r=1 δ0,r,

where δ0,`
iid∼ TN−(ψ0, τ

2
0 ), ` = 1, . . . , L0 with fixed L0. Here TN−(ψ, τ2) denotes the normal

distribution with mean ψ and variance τ2 truncated above at zero. This construction induces
the ordering 0 > µ?0,1 > . . . > µ?0,L0

. We then let µi,n,j = µ?0,` with probability η0i,j,`. Note
that even for a marker not expressed, positive yi,n,j can be observed due to measurement
error or estimation error in the cutoff ci,j , and the model accounts for such cases through s2i,n.
Similarly, we assume that the mean expression level of marker j takes a positive value (µi,n,j > 0)
if the marker is expressed (zj,λi,n = 1). For cases with zj,λi,n = 1, we construct another

set of δ, with distribution δ1,`
iid∼ TN+(ψ1, τ

2
1 ), ` = 1, . . . , L1 for fixed L1, where TN+(ψ, τ2)
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denotes the normal distribution truncated below at zero with mean ψ and variance τ2. We let
µ?1,` =

∑`
r=1 δ1,r, so 0 < µ?1,1 < . . . < µ?1,L1

. We then let µi,n,j = µ?1,` with probability η1i,j,`, and

let s2i,n = σ2i for λi,n > 0 and assume σ2i
ind∼ IG(aσ, bσ). This leads to a mixture of normals for

yi,n,j whose location parameters are determined by the cell’s latent subpopulation,

yi,n,j | zj,λi,n = z,µ?
z ,η

z
i,j , σ

2
i

ind∼ F zi,j =

Lz∑
`=1

ηzi,j,` ·N(µ?z,`, σ
2
i ), z ∈ {0, 1}, k > 0. (4)

Finally, we let ηzi,j
iid∼ DirLz(aηz/Lz), for z = 0, 1, i = 1, . . . , I, and j = 1, . . . , J .

The mixture model in (4) encompasses a wide class of distributions, which may be multi-
modal or skewed. It captures virtually any departure from a conventional distribution, such as a
parametric exponential family model, that may appear to give a good fit to the log-transformed
expression values. A key property of (4) is that it allows cells with very different numerical
expression values to have the same subpopulation if their marker expression/non-expression
pattern is the same. The mixture model can also account for batch effects through model-based
centering and scaling of observed expression levels, in addition to sample and marker-specific
cutoff values ci,j . If considered more desirable, other batch adjustment approaches can be
applied prior to analyses. For example, Schuyler et al. (2019) estimates batch effect explicitly
and adjusts samples within a batch for datasets including technical replicates. This provides a
basis for obtaining a succinct representation of cell subpopulations. Because the locations µ?z
in (4) are shared for all (i, n, j), the model borrows strength across both samples and markers,
while ηzi,j = (ηzi,j,1, . . . , η

z
i,j,Lz) allows the distribution of yi,n,j to vary across both samples and

markers. The construction of µ?z,` through δz,` also ensures ordering in µ?z,` and circumvents
potential identifiability and label-switching issues that may be present in conventional Bayesian
mixture models (Celeux et al., 2000; Stephens, 2000; Jasra et al., 2005; Frühwirth-Schnatter,
2006).

Model for the data missingship mechanism
We next build a model for the data missingship distribution. To do this, we incorporate informa-
tion provided by a subject area expert, that a marker expression level is recorded as “missing”
in a cell (mi,n,j = 0) when the marker’s signal is very weak, which strongly implies that the
marker is not expressed on that cell. In (2), we model missingship mi,n,j conditional on yi,n,j ,

i.e., mi,n,j | ρi,n,j(yi,n,j)
ind∼ Ber(1 − ρi,n,j(yi,n,j)). We assume a logit regression model for the

probability ρi,n,j that mi,n,j = 0,

logit(ρi,n,j) = β0i + β1iyi,n,j + β2iy
2
i,n,j . (5)

We take an empirical approach to specify values of βi = (β0i, β1i, β2i) in (5) for each sample
i = 1, · · · , I by using the minimum, first quartile, and median of negative observed expression
levels, setting their ρi,n,j values to .05, .80 and .50, respectively, and solving for βi. More details
of the specification of βi are in Supp. § 2. The proposed specification of βi reflects the key fact
that when mi,n,j = 0, its potentially observed numerical value is very likely negative. The
dataset does not contain information for inferring the missingness mechanism, and it cannot be
anticipated that the imputed values are close to their potentially observed values. However, our
construction of subpopulations is based on patterns of expression levels, not actual expression
levels, and the task of recovering Z, w and λ, which is the primary aim of the analyses, is not
affected by particular imputed values. We performed sensitivity analyses to the specification
of the βi’s to examine robustness of the estimation of Z, w, and λ. Additionally, in our
simulation studies, missing values were generated under a mechanism different from that in (5).
The underlying cell subpopulations were well recovered even with the misspecified missingness
mechanism, indicating the model’s robustness. § 3 and § 4 provide details of the sensitivity
analyses. There is an extensive literature on analyzing data with observations missing not at
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random, including methods for Bayesian data imputation and frequentist multiple imputation
(Rubin (1974, 1976); Allison (2001); Schafer and Graham (2002); Franks et al. (2016)). We
refer to them for alternative models for the missingship mechanism.

Selection of K

Instead of estimating K, we cast the problem of selecting a value for K as a model comparison
problem. This reduces computational burden, especially for large datasets. To identify a value
of K that optimizes model fit while penalizing for high model complexity, we choose K using
the deviance criterion information (DIC, Spiegelhalter et al. (2002)) and log pseudo marginal
likelihood (LPML, Geisser and Eddy (1979); Gelfand and Dey (1994)). The DIC and LPML are
commonly used to quantify goodness-of-fit for comparing Bayesian models. The DIC measures
posterior prediction error based on deviance penalized by model complexity, with lower values
corresponding to a better fit. The LPML is a metric based on cross-validated posterior predictive
probability, and is defined as the sum of the logarithms of conditional predictive ordinates
(CPOs), with larger LPML corresponding to a better fit. Details of the computation of DIC
and LPML are given in Supp. §3. In addition, we count the number of subpopulations having
negligible weights,

∑
i,k I(wi,k < 1%), for each value of K and plot the LPML against the

number of such subpopulations. A model with larger K may produce cell subpopulations with
very small wi,k that only make subtle contributions to model fit in terms of LPML. We thus
search for a value of K, where the change rate of the increase in LPML drops. Miller and Dunson
(2018) used a similar calibration method to tune a model hyperparameter that determines how
much coarsening is required to obtain a model that maximizes model fit while maintaining low
model complexity.

2.3. Posterior Computation
Let θ =

{
Z,w, δ0, δ1,σ

2,η0,η1,λ,v, ε, α
}

denote all model parameters. Let y and m denote
the vectors of yi,n,j and mi,n,j values for all (i, n, j). The posterior distribution of θ is

p(θ | y,m,K) ∝ p(θ | K)
∏
i,n,j

p(mi,n,j | yi,n,j ,θ,K)p(yi,n,j | θ,K)

∝ p(θ | K)
∏
i,n

∏
j

ρ
1−mi,n,j

i,n,j

Lzj,λi,n∑
`=1

η
zj,λi,n
i,j,` φ(yi,n,j | µ?zj,λi,n ,`, σ

2
i )

1(λi,n>0)

×

∏
j

ρ
1−mi,n,j

i,n,j × φ(yi,n,j | 0, s2ε )

1(λi,n=0)

, (6)

where φ(y | µ, σ2) denotes the density of a normal distribution with mean µ and variance σ2

evaluated at y. Since ρi,n,j is a constant for a given y with fixed β’s, the terms p(mi,n,j = 1) =
(1 − ρi,n,j)mi,n,j for observed yi,n,j do not appear in (6). Posterior simulation can be done via
standard Markov chain Monte Carlo (MCMC) methods with Gibbs and Metropolis steps. Each
parameter is updated sequentially by sampling from its full conditional distribution. Details of
the posterior simulation are described in Supp. §1.

Summarizing the joint posterior distribution p(θ | y,m,K) is challenging, especially for
Z, which may be susceptible to label-switching problems common in mixture models. More-
over, the distributions of wi and λi depend on Z. To summarize the posterior distribution of
(Z,wi,λi) with point estimates, we extend the sequentially-allocated latent structure optimiza-
tion (SALSO) method in Dahl and Müller (2017) to incorporate wi. To summarize random
feature allocation matrices, we first construct Ai = {Ai,(j,j′)(Z)}, the J × J pairwise allocation
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matrix corresponding to a binary matrix Z, where

Ai,(j,j′)(Z) =

K∑
k=1

wi,k × 1(zj,k = 1)× 1(zj′,k = 1), for 1 ≤ j, j′ ≤ J, (7)

is the number of active features that markers j and j′ have in common in sample i, weighted
by wi,k. The form of (7) encourages selection of entries in Z based on subpopulations that are

prevalent in the samples. We find a point estimate Ẑi for sample i that minimizes the sum of
the element-wise squared distances,

argminZ

J∑
j=1

J∑
j′=1

(A(Z)i,(j,j′) − Āi,(j,j′))2

where Āi,(j,j′) is the pairwise allocation matrix averaged by the posterior distribution of Z

and wi. We use posterior Monte Carlo samples to obtain posterior point estimates Ẑi as
follows. Suppose that we obtain B posterior samples simulated from the posterior distribution
of θ. For the bth posterior sample of Z and wi, we compute the J × J adjacency matrix,

A
(b)
i = {A(b)

i,(j,j′)}, b = 1, . . . , B and then the mean adjacency matrix Āi =
∑B

b=1A
(b)
i /B. We

determine a posterior point estimate of Z for sample i by minimizing the sum of squared

deviation, Ẑi = argminZ

∑
j,j′(A

(b)
i,j,j′ − Āi,j,j′)2, where Ẑi ∈

{
Z(1) . . .Z(B)

}
. For Ẑi = Z(b),

we report the posterior point estimates ŵi = w
(b)
i and λ̂i,n = λ

(b)
i,n. Alternatively, we can find

estimates Ẑ common for all samples by finding Ẑ such that

Ẑ = argminZ

I∑
i=1

J∑
j=1

J∑
j′=1

(A(Z)i,(j,j′) − Āi,(j,j′))2.

Similar to Ẑi, we use posterior samples obtained through MCMC simulation, and report poste-
rior sample b′ that achieves the minimum as point estimates common for all i, Ẑ = Z(b′). We

then let ŵi = w
(b′)
i and λ̂i,n = λ

(b′)
i,n .

Because the model is complex and the dataset is large, as an alternative method for pos-
terior computation we explored the use of variational inference (VI), which approximates the
posterior distribution of θ through optimization (Wainwright et al., 2008; Blei et al., 2017;
Zhang et al., 2018). Because VI tends to be faster than MCMC, it is a popular emerging
alternative, especially for complex models and/or large datasets. We used automatic differ-
entiation variational inference (ADVI) (Kucukelbir et al., 2017) to simplify the process of im-
plementing variational inference for differentiable models. ADVI requires no model-specific
analytical derivations of derivatives, and it is relatively simple to implement using an auto-
matic differentiation library such as PyTorch (Paszke et al., 2017), TensorFlow (Abadi et al.,
2015), and Flux (Innes, 2018). Details of the VI implementation using ADVI are included
in Supp. § 1.2. A Julia package CytofResearch implementing this methodology is available at
https://github.com/luiarthur/CytofResearch. The repository also includes a brief demon-
stration of how to use the software at https://github.com/luiarthur/CytofResearch/tree/
master/demos/minimal-example.

3. Simulation Studies

In this section, we present simulation studies to assess the performance of the proposed FAM
based method for identifying features and clustering cells within each sample, and we compare
the FAM to an alternative model and method. We simulated data for I = 3 samples, each with
20 markers, consisting of Ni = 4000, 500, and 1000 cells, for i = 1, 2, and 3, respectively. We
set the true number of latent features (subpopulations) to be KTR = 5 and specified a J × 5

https://github.com/luiarthur/CytofResearch
https://github.com/luiarthur/CytofResearch/tree/master/demos/minimal-example
https://github.com/luiarthur/CytofResearch/tree/master/demos/minimal-example
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Fig. 2. Design of Simulation 1. ZTR and wTR are illustrated in (a) and (b), respectively. KTR = 5, J = 20,
and I = 3 are assumed. In (a), black represents zTR

j,k = 1 (marker expression) and white represents
zTR
j,k = 0 (marker non-expression).

binary feature-allocation matrix ZTR and 5-dimensional vectors wTR

i as follows: We first sim-
ulated ZTR by setting zTR

j,k = 1 with probability 0.6. If any column or row in ZTR consisted of
all 0’s, the entire matrix was re-sampled. We then simulated wTR

i from a Dirichlet distribution
with parameters being random permutations of (1, . . . , 5) for each i. This was done so that the
resulting elements of wTR

i would be likely to contain both large and small values. The assumed
ZTR and wTR

i are given in Table 2. We set εTR

i = 5% of the cells to be noisy for all i. We
specified the mixture models for the expression levels by setting µ?,TR

0 = (−1,−2.3,−3.5) and
µ?,TR

1 = (1, 2, 3) with L0,TR = L1,TR = 3, and simulating mixture weights ηz,TR

i,j from a Dirichlet

distribution with parameters a random permutation of (1, . . . , Lz,TR), for z ∈ {0, 1} and each

(i, j). The values of σ2,TR

i were set to 0.2, 0.1, and 0.3 for samples 1, 2, and 3, respectively. We
then simulated latent subpopulation indicators λTR

i,n with probabilities Pr(λTR

i,n = 0) = εTR

i and

Pr(λTR

i,n = k | λTR

i,n 6= 0) = wTR

i,k. We generated yi,n,j
iid∼ N(0, 9) for all (i, n, j) with λTR

i,n = 0. Other-

wise, we generated yi,n,j from a mixture of normals,
∑Lz,TR

`=1 ηz,TR

i,j ·N(µ?,TR

z` , σ2,TR

i ) given zTR

jλTR
i,n

= z

for each (i, n, j). To simulate the missingship indicators, mi,n,j , we first generated the propor-

tions pi,j of missing values for each (i, j) from a Unif
(

0, 0.7 ·
∑

k w
TR

i,k(1− zTR

j,k)
)

and sampled

pi,j×Ni cells without replacement with probability proportional to {1+exp (−9.2− 2.3yi,n,j)}−1.
We let yi,n,j=NA if mi,n,j = 0. Under the true missingness mechanism, a marker having a lower
expression level has a higher chance of being recorded as missing. Note that the true mechanism
is different from that assumed in (5). As the results will show, the model’s performance of recov-
ering the true cell subpopulation structure is robust to misspecification of the data missingship
mechanism model. Heatmaps of the simulated y are shown in Figs 4(b), (d) and (f). The yi,n,j ’s

are sorted within a sample according to their posterior subpopulation indicator estimates λ̂i,n,
which we explain below. The colors red, blue, and black represent high expression levels, low
expression levels, and missing values, respectively.

We fit a separate model for each K = 2, 3, . . . , 10, fixing L0 = L1 = 5 and s2ε = 10 for each
K. We specified the remaining fixed hyper-parameters as follows: aα = bα = 0.1 for α; ψz = 1
and τ2z = 1 for δz,`; aσ = 3 and bσ = 2 for σ2i ; aηz = 1 for ηi,j ; d = 1 for wi; aε = 1 and
bε = 99 for εi. The specification implies a weakly informative prior, except for εi. The values
of aε and bε are used to strongly imply that only a small fraction of cells belongs to the noisy
cell type, k = 0. We used the empirical approach described in § 2 to obtain values of β for
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Fig. 3. Results of Simulation 1. Plots of (a) LPML = log pseudo marginal likelihood, (b) DIC = deviance
information criterion , and (c) calibration metric, for K = 2, . . . , 10.

the missingship mechanism. For each i, we initialized the missing values at −β2i/(2β1i), which
corresponds to the largest missing probabilities a priori. To initialize λi,n, wi, Z, α and ηzi,j , we
applied density-based clustering via finite Gaussian mixture models using the MClust package
(Scrucca et al., 2016), and used the resulting clustering of yi,n,j . Other reasonable methods
can be used for the Markov chain initialization. We then drew samples of θ and imputed
missing values of yi,n,j using MCMC simulation based on 16,000 iterations, discarding the first
10,000 iterations as burn-in for each model, and then thinned by keeping every other draw. We
monitored convergence and mixing of the MCMC posterior simulation by inspecting trace plots
of the log-likelihood. Supp. Fig 2 shows trace plots of the log-likelihood from two independent
chains with different initial values. The plots show only minor differences, indicating that
the two chains traced out a common distribution. The burn-in period was chosen via visual
inspection of the trace plots of the log-likelihoods. Posterior inference for a model with K = 5
took 10 hours for 16000 iterations on an interactive Linux server with four Intel Xeon E5-4650
processors and 512 GB of random access memory.

For each value of K, we computed the LPML and DIC, and obtained point estimates Ẑi, ŵi

and λ̂i using the method described in § 2.3. Figs 3(a) and (b) respectively show plots of LPML
and DIC as functions of K. Fig 3(c) plots LPML against the number of subpopulations with
ŵi,k < 1%. The increase in LPML is very minimal, while negligible subpopulations are added

for values of K > 5. The plots clearly indicate that K̂ = 5 yields a parsimonious model with
good fit. Fig 4 illustrates Ẑi, ŵi and λ̂i,n for K̂ = 5. Panels (a), (c) and (e) show Ẑi and ŵi

for samples 1, 2, and 3, respectively. The subpopulations with ŵik > 1% are included in the
plots of Ẑi. The estimates Ẑi and ŵi are close to their truth values in Table 2 for all samples,
implying that the true cell population structure is well recovered. We quantified the proximity
between the point estimates, Ẑi and ŵi and their truth using the metrics, dZi and dwi defined
in Supp. § 4. The metrics also indicate that the point estimates are close to their truth. More
details are in Supp. § 4.

We compared the resulting clustering of the cells by λ̂i,n,j to the truth. We used the adjusted
Rand index (ARI) (Hubert and Arabie, 1985), which measures the agreement between two sets
of clusterings. A larger value implies greater agreement, and in the case of random clusterings,
ARI is expected to be 0. ARI can be negative in cases where the agreement between clusters is
less than what is expected from random clusterings. The obtained ARIs are above 0.99 for all
samples, indicating that the model recovers the true cell clusters very well. The heatmaps of y
rearranged by cell clustering membership estimates λ̂i,n are shown in panels (b), (d), and (f) of
Fig 4, where the colors, red, blue, and black represent high, low, and missing expression levels,
respectively. The horizontal yellow lines separate cells by λ̂i,n. The figures also show that the
cell clustering based on the estimated subpopulations captures the true clustering of y quite
well.
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Fig. 4. Results of Simulation 1. In (a) and (c), the transpose Ẑ ′
i of Ẑi and ŵi are shown for samples 1

and 2, respectively, with markers that are expressed denoted by black and not expressed by white. Only
subpopulations with ŵik > 1% are included. Heatmaps of yi are shown for sample 1 in (b) and sample
2 in (d). Cells are given in rows and markers are given in columns, with cells ordered by posterior point
estimates of their subpopulation indicators, λ̂i,n. High and low expression levels are represented by red
and blue, respectively, and black represents missing values. Yellow horizontal lines separate cells into
five subpopulations.

We also fit the model to the simulated data using ADVI, with a mini-batch size of 2000,
K = 30, and 20000 iterations. The time required to fit the model was approximately 6 hours
for 20000 iterations, which is substantially faster than that of the analogous MCMC method.
Supp. Fig 3 shows the posterior estimates of Z, w and λi,n obtained via ADVI. Inferences for
model parameters using ADVI are similar to those using MCMC. The simulation truth for the
model parameters θ are well recovered, as in the MCMC implementation.

We assessed sensitivity of the model to the data missingship mechanism by fitting the FAM
using different specifications of β with K = K̂, and comparing the inferences. The two different
specifications of β are given in Supp. Table 3. The estimates of θ do not change significantly
across different specifications of β. Point estimates of Z, wi, and λi,n are shown in Supp. Figs
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(e) Ẑ ′3 & ŵ3 (f) heatmap of y3nj

Fig. 4. (continued). Results of Simulation 1 (continued). In (e), the transpose Ẑ ′
i of Ẑi and ŵi are

shown for sample 3, with markers that are expressed denoted by black and not expressed by white.
Only subpopulations with ŵik > 1% are included. Heatmaps of yi for sample 3 is shown in (f). Cells
are given in rows and markers are given in columns, with cells ordered by posterior point estimates
of their subpopulation indicators, λ̂i,n. High and low expression levels are represented by red and
blue, respectively, and black represents missing values. Yellow horizontal lines separate cells into five
subpopulations.

(a) Sample 1 (b) Sample 2 (c) Sample 3

Fig. 5. Results of Simulation 1 (continued). Heatmaps of yi for clusters estimated by FlowSOM, with
cells ordered by the cluster labels λi,n. Cells are in rows and markers are in columns. High, low, and
missing expression levels are in red, blue, and black, respectively. Yellow horizontal lines separate the
identified cell clusters.

4 and 5. The estimates Ẑ remain the same for all specifications of β, and the ŵi values also
are very similar. Supp. Table 3 shows that LPML and DIC are slightly better for the data
missingship mechanisms that encourage imputing smaller missing values yi,n,j . This results
in µ?0,L0

, the smallest of the mixture component locations for non-expressed markers, being
smaller than that obtained under the other specifications, accidentally more closely resembling
the simulation truth. Details of the sensitivity analysis are in Supp. §4.

We compared our model via simulation to FlowSOM in (Van Gassen et al., 2015), which
is implemented in the R package FlowSOM (Van Gassen et al., 2017). FlowSOM fits a model
with a varying number of clusters and selects a value of K that minimizes the within-cluster
variance while also minimizing the number of clusters via an “elbow”criterion, an ad hoc graph-
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Table 1. Adjusted Rand index (ARI) for FAM and the
comparators, FlowSOM, FlowMeans, and PhenoGraph, by
sample for Simulation 1. Higher ARI is better, and values
closer to 1 indicate that estimated clusters are closer to the
truth.

Method Sample 1 Sample 2 Sample 3
FAM (K = 5) 0.999 0.993 0.999

FlowSOM 0.945 0.738 0.935
FlowMeans 0.949 0.732 0.938

PhenoGraph 0.977 0.912 0.968

ical method that chooses K such that K + 1 does not substantially increase the percentage of
variation explained. FlowSOM does not impute missing values, so we used all y assuming that
there is no missing y. In practice, missing values could be pre-imputed, or multiple imputation
could be employed. Note that FlowSOM does not account for variability between samples. We
combined the samples for analysis to avoid a further ad-hoc process of finding common clusters
among the samples. If desired, one might do separate analyses for each of the samples. Flow-
SOM was considerably faster than our model, with a computation time of 6 seconds on the
simulated dataset. FlowSOM identified four cell clusters, as summarized in Fig 5, where the
cells are rearranged by their cluster membership estimates in each sample. The fourth cluster
(shown near the top of the heatmaps) is a mix of the cells having the true subpopulations 1
and 2 that differ only by markers 4 and 17, and its performance of cell clustering deteriorates.
We again computed the ARI to compare the clustering estimates obtained by FlowSOM to the
truth. The ARIs obtained under FlowSOM are 0.945, 0.738, and 0.935 for samples 1, 2, and
3, respectively. The ARI in sample 2 is especially low for FlowSOM because the two cell sub-
populations combined by FlowSOM have large abundances in the sample. Table 1 summarizes
the ARIs from FAM with K = 5 and FlowSOM, and shows that our FAM outperforms Flow-
SOM in estimation of cell clustering. More importantly, FlowSOM does not provide a model
or inferences for the latent structure of cell subpopulations. For this simulation scenario, the
FAM easily recovers the truth, but a clustering-based method such as FlowSOM may perform
poorly in cell clustering. In addition, we compared our FAM to FlowMeans (Aghaeepour et al.,
2011) and PhenoGraph (Levine et al., 2015b,a). Similar to FlowSOM, they are cell cluster-
ing algorithms based on marker expression levels and available in R and Python, respectively.
Specifically, FlowMeans is a K-means based clustering algorithm and automatically selects the
number of clusters using a change point detection algorithm. PhenoGraph constructs a nearest-
neighbor graph of cells that represents the phenotypic relationships between cells and partitions
the graph into subpopulations of similar cells. As summarized in Table 1, compared to the
FAM, these methods yield lower ARI values for all samples. FlowMeans found four cell clusters
by combining the true subpopulations 1 and 2, resulting in poor cell clustering. On the other
hand, PhenoGraph found seven clusters by including two redundant clusters. More discussion
of the comparison is included in Supp. § 4.1.

We further examined the performance of our FAM in an additional simulation study, Sim-
ulation 2, in which we kept most of the set-up used in Simulation 1, but assumed a more
complex subpopulation structure with much larger numbers of cells, by assuming KTR = 10
and N = (40000, 5000, 10000). ZTR and wTR

i are illustrated in Supp. Fig 8. We considered
ten models with K = 2, 4, · · · , 20. For the fixed hyperparameters, we let L0 = L1 = 5, and
the remaining specifications for hyperparameters were the same as those in Simulation 1. The
model comparison metrics strongly suggest K̂ = 10, for which the posterior point estimates of
the underlying structure including Z, w and λi,n recover the simulation truth quite well, as
shown in Supp. Fig 11. In contrast, in this case FlowSOM groups cells into two subpopulations
that have similar configurations, similarly to Simulation 1, and estimates nine cell clusters. The
FAM provides direct inference on cell subpopulations, and the cell clustering by subpopulations
is superior to that obtained by the comparators. Details of Simulation 2, including a sensitivity
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analysis for the data missingship mechanism and fast computation using ADVI, are given in
Supp. § 4.2.

4. Analysis of Cord Blood Derived NK Cell Data

We next report an analysis of the CyTOF dataset of surface marker expression levels on UCB-
derived NK cells. Identifying and characterizing NK cell subpopulations in terms of marker
expression may serve as a critical step to identifying NK cell subpopulations to develop disease-
specific therapies for a variety of severe hematologic malignancies. To gain insight into the
phenotype of cord blood derived NK cells, CyTOF was used with a customized panel including
32 antibodies against well-established inhibitory and activating receptors, as well as differenti-
ation, homing, and cytotoxicity markers relevant to NK cell biology and function. Our NK cell
dataset consists of three samples collected from different cord blood donors, containing 41,474,
10,454, and 5,177 cells, respectively. We first obtained the cutoff values ci,j using flowDensity
and computed the transformed raw expression levels, yi,n,j = log(ỹi,n,j/ci,j) if mi,n,j = 1 as
explained in § 2.1. We let yi,n,j =NA if mi,n,j = 0. Because markers that are either expressed
or not expressed in most of cells are not informative for constructing subpopulations under our
FAM, we removed markers having positive values in more than 90% of the cells in all samples,
or with missing or negative values in over 90% of the cells in all samples. We also removed
all cells with an expression level yi,n,j < −6 for any marker. This accounted for only a very
small number of cells, and it encourages imputed marker expression levels to be in a reasonable
range. Thus, we recommend removing outliers in this fashion. After this preprocessing, J = 20
markers remained and the numbers of cells in the samples were Ni = 38,636, 9,555, and 4,827
for subsequent analysis. Supp. Table 6 lists the markers included in the analysis. Figs 7(b),

(d) and (e) show heatmaps of y after rearranging the cells by posterior estimates λ̂in of the
cell clusterings for each sample. Using a threshold of 90% to remove some markers yields a
reasonable set of markers, but may seem arbitrary. We performed the analyses with different
choices of the threshold, such as 0.85 and 0.95. The results are presented in Supp. § 5. We
also plotted the data using the data visualization technique “t-SNE (t-Distributed Stochastic
Neighbor Embedding)” in Supp. Fig 18(a)-(c). t-SNE is a popular method for visualization of
high-dimensional data in a two- or three-dimensional map through stochastic neighbor embed-
ding (Maaten and Hinton, 2008; Van Der Maaten, 2014). It also is used for detecting clusters
in data. We used Barnes-Hut-SNE implemented in the Python library sklearn to obtain two-
dimensional t-SNE embeddings separately for each sample. For comparison, Fig 18(d)-(`) plots
the obtained two-dimensional t-SNEs color-coded by the clusterings estimated by the compara-
tors. We fit our FAM over a grid for K from 3 to 33 in increments of 3, as opposed to increments
of 1, due to constraints on computational resources available to us. We set L0 = 5 and L1 = 3.
We set priors and the data missingship mechanism as outlined in § 3. The specified values of
the fixed hyperparameters allow a reasonable amount of prior uncertainty, and with the large
values of Ni, the prior has a small effect on the posterior inference. Also, as will be shown
below, the model’s performance is not sensitive to the specification of βi. Random parameters
θ also were initialized in a similar manner. 6000 samples from the posterior distribution of
the model parameters were obtained after a burn-in of 10000 iterations. The posterior samples
were thinned by selecting every other sample to yield a total of 3000 samples. As done in the
simulation study, we monitored convergence and mixing of the MCMC posterior simulation by
inspecting trace plots of the log-likelihood. Supp. Fig 17 shows trace plots of the log-likelihood
from two independent chains with different initial values. The plots show only minor differ-
ences, indicating that the two chains traced out a common distribution. The burn-in period
was, again, chosen via visual inspection of the trace plots of the log-likelihoods.

Figs 6 (a) and (b) display LPML and DIC as functions of K. The LPML changes sharply

for small values of K, and tapers at K = 21, indicating that K̂ = 21. A similar pattern is
seen for DIC. As depicted in Fig 6 (c), our additional calibration method also indicates that
the models with K > 21 include more cell subpopulations comprising less than one percent of
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Fig. 6. Analysis of UCB-derived NK cell data. Plots of (a) LPML, (b) DIC, and (c) calibration metric, for
K = 3, 6, . . . , 33.

a sample (i.e.
∑

i,k ŵi,k < 1% is larger), and improve fit only minimally.

Fig 7 summarizes posterior inference on the latent cell population structure with K̂ = 21.
The cells are grouped by their estimated cell subpopulation indicators λ̂i,n. The figure shows

the estimated cell subpopulations Ẑi (in the left column) and clustered marker expression levels
yi (in the right column) for the samples. Cells having subpopulations with larger ŵi,k are shown
at the bottom of the heatmaps. The subpopulations with the two largest ŵi,k are different in
the samples. The resulting inference indicates that the composition of the NK cell population
varies across the samples, pointing to variations in the phenotype of NK cells among different
cord blood donors. We observe similarities in the phenotypes of NK cells from samples 2 and
3, however, while sample 1 displays a different phenotype and a distinct distribution of cell
subsets. NK cells from all three samples express 2B4, CD94, DNAM-1, NKG2A, NKG2D,
Siglec-7, NKp30 and Zap70 in the majority of their identified subpopulations. These markers
dictate NK cell functional status. While their interactions are very complicated, taken together
they provide a basis for determining whether NK cells have a normal function, and whether
they are mature or not.

Despite great variability between cord blood sample 1 and the other two cord blood samples,
all three had a significant subset of cells with an immature phenotype. Cord blood 1 Cluster 7,
cord blood 2 Cluster 17 and cord blood 3 Cluster 6 comprise the largest population of immature
cells, defined as EOMES (-), TBET (-), and KIR (-). Markers KIR2DL3 and KIR3DL1 belong
to killer-cell immunoglobulin-like receptors (KIRs). These immature clusters of NK cells still
retain expression of 2B4, NKG2A, NKG2D, CD94 and NKp30. In particular, NKp30 is a
natural cytotoxicity receptor, while KIR is not. This implies that, despite great variability
between sample 1 and the other two samples, all three have a significant subset of cells with an
immature phenotype. Markers EOMES, TBET, Zap70 and KIR are not expressed in the largest
subpopulation of each sample, indicating that those are subsets of immature cells. An immature
phenotype of NK cells usually is associated with low diversity and low effector function in the
absence of exogenous cytokines, (Li et al., 2019; Sarvaria et al., 2017), while a mature NK
cell phenotype has been linked to superior cytotoxicity and better clinical outcomes in cancer
patients (Ilander et al., 2017; Carlsten and Jaras, 2019). These immature clusters of NK cells
still retain expression of 2B4, CD94, NKG2A, NKG2D, and NKp30.

In addition, we identified three subpopulations (12, 15, and 21) that are conserved among
the three samples, although at lower percentages in sample 1. In these subpopulations, EOMES
and TBET are expressed, indicating that they are a more mature phenotype. The subset with
expression of EOMES and TBET could be further divided into three subpopulations based on
the expressions of markers CD8, CD16, TIGIT, and KIR. Subpopulations 12 and 21 are very
similar, sharing positivity for CD16, CD8 and TIGIT, and are differentiated by KIR expression,
which are negative in subpopulation 21 and positive in subpopulation 12. Subpopulation 15,
however, is negative for CD16, CD8, TIGIT and KIR, making EOMES and TBET its only
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(c) Ẑ ′2 and ŵ2 (d) Clustering of y2nj

Fig. 7. Analysis of the UCB-derived NK cell data. Ẑ ′
i and ŵi of samples i = 1 and 2 are illustrated in

panels (a) and (c), respectively, with markers that are expressed denoted by black and not expressed
by white. Only subpopulations with ŵik > 1% are included. Heatmaps of expression level yi are shown
in panels (b) and (d) for samples 1 and 2, respectively, with cells in rows and markers columns. Each
column thus contains the expression levels of one marker for all cells in a sample. High, low, and missing
expression levels are red, blue, and black, respectively. Cells are ordered by the posterior estimates of
their clustering memberships, λ̂i,n. Yellow horizontal lines separate cells by different subpopulations.

differentiation markers. These novel subsets of cord blood NK cells have not been described
in the literature previously, and may need to be further validated. We also identified cluster 3
as an important conserved cluster among all 3 samples, which is positive for NKG2C, CD62L
and CD27, which could indicate a memory subset in cord blood NK cells which has not been
well described previously. Taken together, these data indicate that the FAM allows not only
the definition of biologically recognized subsets of NK cells, but also may be applied for the
discovery of novel NK cell subpopulations.

Model sensitivity to the specification of the data missingship mechanism in the NK cell data
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(e) Ẑ ′3 and ŵ3 (f) Clustering of y3nj

Fig. 7. (continued). Analysis of the UCB-derived NK cell data (continued) Ẑ ′
i and ŵi of sample 3 are

illustrated in panel (e), with markers that are expressed dented by black and not expressed by white.
Only subpopulations with ŵik > 1% are included. Heatmaps of yi are shown in panel (f) for sample 3.
Cells are in rows and markers in columns. Each column contains the expression levels of a marker for
all cells in the sample. High, low, and missing expression levels are red, blue, and black, respectively.
Cells are ordered by the posterior estimates of their clustering memberships, λ̂i,n. Yellow horizontal
lines separate cells by different subpopulations.

analysis was assessed by fitting the FAM under two additional specifications of β, which we call
data missingship mechanisms (MM) I and II. We will refer to the previous (default) missingship
mechanism as MM-0. Supp. Tables 7 and 8 list the different data missingship mechanism
specifications and the corresponding β values, respectively. Under the different specifications of
β, the estimates Ẑi and ŵi are similar, as shown in Supp. Figs 20 and 21. The subpopulations
estimated under MM-I and MM-II are identical to or differ by no more than three markers,
when compared to those under MM-0. We also fit the model to the UCB-derived NK cell
data computing posteriors using ADVI with a mini-batch size of 2000 and K = 30 for 20000
iterations. The runtime was approximately 6 hours on the previously described machine. Supp.
Fig 22 summarizes the posterior distribution of Z and the posterior mode of cell clusterings
λ̂i,n. The cell subpopulations inferred by ADVI are similar to those obtained by MCMC, but
the cell clustering estimates are quite different. Notably, subpopulations with large ŵik can
be found in the estimates obtained by both methods, e.g., the subpopulations with the largest
abundances in sample 1. For subpopulations with smaller ŵik, we do not find clear matches.
The cluster sizes obtained by ADVI are larger than those obtained from MCMC and cells in
the clusters are less homogeneous. It thus appears that ADVI should be used very cautiously in
this type of setting, and that its shorter runtime compared to MCMC may be a false economy.

For comparison, we also applied the comparators to the UCB data. We fixed the missing
values of yi,n,j at the minimum of the negative observed values of y for each (i, j) prior to
analysis. FlowSOM identified 13 cell clusters in the samples. Heatmaps of yi,n,j rearranged by
cell clustering estimates by FlowSOM are given in Fig 8 (a)-(c). Heterogeneity between cells
within clusters estimated under FlowSOM is noticeably greater than that under the proposed
FAM shown in Fig 7. For example, marker 10 shows a mix of red, blue, and black colors for
cluster 1, the largest cluster. The proportions of cells assigned to the clusters are summarized
in Fig 8(d). The clusters obtained by FlowSOM are much larger than those obtained by the
FAM. In particular, cluster 1 under FlowSOM contains 36.7%, 53.8% and 54.1% of the cells in



18 Lui et al.

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

(a) Clustering of y1nj (b) Clustering of y2nj

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

Clusters	 Sample	1	 Sample	2	 Sample	3	
1	 0.367	 0.538	 0.541	
2	 0.320	 0.154	 0.112	
3	 0.102	 0.152	 0.089	
4	 0.068	 0.055	 0.058	
5	 0.035	 0.030	 0.044	
6	 0.031	 0.027	 0.043	
7	 0.030	 0.011	 0.027	
8	 0.029	 0.008	 0.026	
9	 0.011	 0.008	 0.023	
10	 0.004	 0.006	 0.012	
11	 0.002	 0.004	 0.011	
12	 0.001	 0.003	 0.010	
13	 0.000	 0.003	 0.005	

(c) Clustering of y3nj (d) Proportions

Fig. 8. [CB Data: Comparison to FlowSOM] Heatmaps of cells in (a)-(c) for samples 1-3, respectively.
Cells are arranged by the cluster membership estimates by FlowSOM. The clusters are separated by
yellow horizontal lines, with the most abundant clusters in each sample closer to the bottom. High, low,
and missing expression levels are red, blue, and black, respectively. The proportions of the cells in the
estimated clusters are shown in (d).

samples 1-3, respectively. The cluster estimates by FlowMeans and PhenoGraph are presented
in Supp. Figs 18 and 19. FlowMeans produces a cluster that contains 74.82%, 66.44% and
74.77% of the cells in the samples, respectively. On the other hand, the clustering estimate by
PhenoGraph has many small clusters, with the largest clusters of the samples containing 7.53%,
13.09%, and 15.02% of the cells. More details are presented in Supp. § 5 Lastly, note that the
comparators do not produce an explicit inference on the characterization of subpopulations.
Supp. Table 1 summarizes the time required to fit each of the various models (FAM-MCMC,
FAM-ADVI, PhenoGraph, FlowSOM, FlowMeans) to each of the two simulated data sets and
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the real UCB data.

5. Discussion

We have proposed a Bayesian FAM to identify and estimate cell subpopulations using CyTOF
data. Our FAM identifies latent subpopulations, defined as functions of the marker expression
levels, and fits the data in multiple samples simultaneously. The model accounts formally
for missing values and between-sample variability. The fitted FAM assigns each cell in each
sample to exactly one subpopulation, but each surface marker can belong to more than one
subpopulation. The method also yields cell clusters within each sample that are defined in terms
of the inferred subpopulations. We constructed a data missingship mechanism based on expert
knowledge, and we examined the robustness of the model to the specification of the missingship
mechanism through simulation. This showed that inferences were not sensitive to changes in
the specification of the missingship mechanism. Compared to established clustering methods,
including FlowSOM, the proposed FAM is more effective at discovering latent subpopulations
when the underlying cell subpopulations are similar.

Our proposed FAM can be extended to accommodate similar but more complex data struc-
tures, in particular data including covariates. For example, samples with similar covariates may
also have similar cell subpopulation structures. The model can incorporate such information
by incorporating appropriate regression submodels, to enhance inferences and study how the
structures may change with covariates. One also may introduce the concept of “ repulsiveness”
to latent features and obtain a more parsimonious representation of the latent subpopulations
by discouraging the creation of redundant subpopulations. Repulsive models, which are more
likely to produce features that differ from each other substantially, have been developed mostly
in the context of mixture models (e.g., see Petralia et al. (2012); Quinlan et al. (2018); Xie and
Xu (2019)). Xu et al. (2016) used the detrimental point process (DPP) for a repulsive FAM that
uses the determinant of a matrix as a repulsiveness metric. A model that explicitly penalizes
the inclusion of similar features also can be developed to replace the IBP in our model.

Supplementary Materials
Supplementary materials are available under the Paper Information link at the journal website.

Data Availability
The umbilical cord blood data used in this work is publicly available at https://github.com/
luiarthur/cytof-data.
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