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ABSTRACT
A Bayesian group sequential design is proposed that performs survival comparisons within patient sub-
groups in randomized trials where treatment–subgroup interactions may be present. A latent subgroup
membership variable is assumed to allow the design to adaptively combine homogeneous subgroups,
or split heterogeneous subgroups, to improve the procedure’s within-subgroup power. If a baseline
covariate related to survival is available, the design may incorporate this information to improve sub-
group identification while basing the comparative test on the average hazard ratio. General guidelines
are provided for calibrating prior hyperparameters and design parameters to control the overall Type I
error rate and optimize performance. Simulations show that the design is robust under a wide variety
of different scenarios. When two or more subgroups are truly homogeneous but differ from the other
subgroups, the proposed method is substantially more powerful than tests that either ignore subgroups
or conduct a separate test within each subgroup. Supplementary materials for this article are available
online.
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1. Introduction

This article describes a Bayesian adaptive design for random-
ized clinical trials with heterogeneous patients that performs
subgroup-specific group sequential (GS) tests to compare sur-
vival between an experimental treatment, E, and a control, C.
While the proposed methodology is quite general, it may be
motivated by a recent randomized, open-label, phase III trial
in patients with non-small-cell lung cancer (OAK) (Rittmeyer
et al. 2017). In the OAK trial, patients were randomized to
receive either docetaxel, which has been the standard of care
for second-line or third-line treatment, or atezolizumab, an
antibody that targets the humanized antiprogrammed death-
ligand 1 (PD-L1) pathway. Docetaxel has been demonstrated
to have efficacy against lung cancer, but it has substantial toxic
effects. As an immunotherapy, atezolizumab is generally safer
and has been shown to be promising in phase II studies. The
objective of the OAK trial was to perform a confirmatory
comparison of survival between atezolizumab and docetaxel.
Patients were stratified into four subgroups based on PD-L1
expression: subgroup 1 (TC0 or IC0) was defined as PD-L1
expression on ≤1% of tumor cells (TC) or tumor-infiltrating
immune cells (IC); subgroup 2 (TC1 or IC1) was defined as PD-
L1 expression on ≥1% but ≤5% of these cells; subgroup 3 (TC2
or IC2) was defined as PD-L1 expression on ≥ 5% but ≤50%
(or 10%) of TC (or IC); and the remaining patients were strat-
ified into subgroup 4 (TC3 and IC3). Heterogeneity between
subgroups was observed in Rittmeyer et al. (2017): according
to the Kaplan–Meier curves of overall survival (Figure 1), for
patients treated with atezolizumab, median survival time was
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12.6 months in the TC0 or IC0 patients, compared to 20.5
months in the TC3 or IC3 subgroup. In contrast, for patients
treated with docetaxel, both of these subgroups had median
overall survival 8.9 months. Thus, the estimated atezolizumab-
versus-docetaxel differences in median survival were 3.7 months
in subgroup 1, and 11.6 months in subgroup 4. Additional
post hoc analyses were reported by Rittmeyer et al. (2017)
in which the data from different subgroups were combined
iteratively. While the above numerical results may seem com-
pelling because they suggest a much larger atezolizumab-versus-
docetaxel effect in the TC3 or IC3 subgroup, they are a typical
example of post hoc estimation or testing of comparative effects
within subgroups. This common practice has been the subject
of much debate for many years. It may be criticized as data
dredging, because the probability of a false positive conclusion
increases with the number of analyses and a large estimated
subgroup-specific effect detected in this way may be due to
chance. Bechhofer, Santner, and Goldsman (1995) and Hsu
(1996) provided general developments of selection and multiple
testing, and practical recommendations for subset analysis are
given by Pocock et al. (2002) and Wang et al. (2007), among
many others.

Still, in the era of precision medicine, heterogeneity may
be defined by a wide variety of biomarkers, and the goal of
identifying subgroups where targeted agents are most effective
is a central issue. For example, in oncology, due to diverse tumor
genomics, cancer cells may interact differentially with their
surrounding microenvironment, see Seoane and De Mattos-
Arruda (2014). This may cause patients in different biomarker
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Figure 1. Reconstructed Kaplan–Meier survival curves for overall survival under
the atezolizumab and docetaxel arms in the trial reported by Rittmeyer et al. (2017).
Two subgroups are present: the TC0 or IC0 subgroup, defined as PD-L1 expression
on less than 1% of tumor cells or tumor-infiltrating immune cells; and the TC3 or
IC3 subgroup, defined as PD-L1 expression on 50% or more of tumor cells or on
10% of tumor-infiltrating immune cells. The patients treated with docetaxel had
median survival 8.9 months in both subgroups. In contrast, for patients treated with
atezolizumab, median survival time was 12.6 months in the TC0 or IC0 subgroup,
compared to 20.5 months in the TC3 or IC3 subgroup.

subgroups to respond differently to a targeted treatment. Such
biological heterogeneity brings many new challenges to clini-
cal trial design and analysis (Garralda et al. 2019), including
planning a trial where the subgroups are given a priori but het-
erogeneity of treatment effects between subgroups is unknown
(Thall et al. 2003; Chapple and Thall 2018; Murray et al. 2018);
addressing the multiple testing issue if heterogeneity is known
(Rosenblum et al. 2016); and identifying a subgroup that may
respond more fully to a new agent (Simon and Simon 2013).

We consider the problem of designing a randomized trial to
compare survival time of E versus C in settings where, a priori,
the patient population has been partitioned into subgroups,
often defined biologically, but it is not known whether E will
have effects of different magnitudes in the subgroups. Figure 2
illustrates a case where six subgroups are prespecified, but the
data show that, in terms of the E effect on survival, they can

Figure 2. Illustration on induced subgroup classification based on six subgroups. In
this example, there are a total of three induced subgroups. In particular, subgroups
1–3 are homogeneous and thus they are in the induced subgroup A, subgroups
4 and 6 are in induced subgroup B, and induced subgroup C only contains sub-
group 5. Borrowing the notation described in Section 2.2, we have three induced
subgroups S = {1, 4, 5} with the latent subgroup variables z1 = z2 = z3 = 1,
z4 = z6 = 4, and z5 = 5.

be combined into the three induced subgroups, A = {1, 2, 3},
B = {4, 6}, and C = {5}. Combining subgroups 1, 2, and 3 into
A increases the power of the subgroup-specific test while, in
contrast, subgroups 4 and 5 have different treatment effects, so
they are not combined. Our proposed GS procedure will address
two main statistical goals: (1) adaptively determining a subpar-
tition of empirically induced subgroups for which E (or C) has
similar effects on survival within each induced subgroup, but
different effects between induced subgroups, while controlling
the misclassification rate, and (2) carrying out GS comparisons
that control within-subgroup and overall false positive rates
and provide high subgroup-specific power. Our procedure will
address these goals prospectively, thus avoiding the problems
that arise from doing post hoc subgroup analyses, as in the OAK
trial.

Formally, for prespecified subgroups g = 1, . . . , G, we denote
the survival distributions for subgroup g in arms E and C by
Sg,E(t) and Sg,C(t). For each g, we consider the hypothesis

Hg,0 : Sg,E(t) = Sg,C(t), for all t > 0, (1)

with alternative hypothesis Hg,1 : Sg,E(t) �= Sg,C(t) for some
t. This problem is addressed most commonly by either doing
a “one size fits all” test of one global null hypothesis for all
G subgroups based on the combined data, which potentially
may lead to an inflated Type I error rate, or using a multiple
testing procedure to analyze the data from the different sub-
groups independently, which also may result in a loss of power
(Robertson and Wason 2019). An enormous number of different
approaches to the issue of heterogeneity in survival analysis
have been proposed. For instance, Schumacher, Olschewski, and
Schmoor (1987) discussed the effect of ignoring population
heterogeneity when comparing survival time distributions by
considering two heterogeneous populations. Aalen (1988) used
mixture distributions to model the impact of patient hetero-
geneity. Cécilia-Joseph et al. (2015) used an unobserved random
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frailty in the hazard to reflect individual heterogeneity. Smith,
Williamson, and Marson (2005) reviewed some popular meth-
ods that account for heterogeneity. Existing work has focused
mainly on survival analysis based on heterogeneity explained
by prognostic variables (or biomarkers) under a parametric
proportional hazard (PH) assumption (Cox 1972), or under
flexible non-PH survival models (De Iorio et al. 2009; Spara-
pani et al. 2016; Xu et al. 2019). Fitting such survival models
with subgroup–treatment interactions may partially address the
potential heterogeneity in testing (1). However, this approach
sometimes requires strong association assumptions and does
not perform data-adaptive subgroup identification (i.e., infor-
mation borrowing). Conventionally, if subgroups are specified
prospectively, treatment–subgroup interactions are determined
manually by fitting several possible models and choosing a final
model based on some goodness-of-fit criterion. In addition to
its subjectivity, this approach suffers from the limitations that
the number of possible models may be large and, typically, only
a limited number of models are examined. In contrast, we will
provide a flexible survival model and a GS trial design that
includes adaptive subgroup combination, also allowing subse-
quent resplitting, with this done automatically via the latent sub-
group membership variable structure, including testing within
the induced subgroups.

To provide a basis for adaptive subgroup combination that
allows subgroups that have been combined to be separated
later, we take a Bayesian hierarchical latent variable approach
that facilitates subgroup-specific survival comparisons. At each
Markov chain Monte Carlo (MCMC) step of the posterior com-
putation, we update a vector of latent variables that indicate
each subgroup’s “true” (empirically induced) subgroup. In this
way, the data from different subgroups are combined or split
adaptively, based on whether the observed survival data show
that they are in the same subgroup or different subgroups. To
obtain robustness and allow broad applicability, we assume a
piecewise constant hazard function for survival time in each
treatment arm, with a three-level Bayesian hierarchical Markov-
gamma process prior. Under this model, we propose an adaptive
group-sequential trial design that accommodates the changing
latent subgroup classification during the trial. We optimize the
interim decision rules by explicitly controlling the family-wise
Type I error rate and maximizing the subgroup-specific power,
to obtain desirable frequentist operating characteristics.

The problem that we address here is closely related to that
addressed by basket trials, which investigate the treatment effect
of one drug on a single mutation in a variety of cancer subtypes,
as described by Simon et al. (2016). Recently, basket trials have
received a great deal of attention, in part because they borrow
strength across disease subtypes, which may improve the trial’s
efficiency in terms of sample size and trial duration. Simon
et al. (2016) proposed a Bayesian basket design for phase II
trials for binary efficacy endpoints. Trippa and Alexander (2016)
applied adaptive randomization to basket trials. Cunanan et al.
(2017) developed a two-stage design by assessing heterogeneity
interimly. Chu and Yuan (2018) proposed a Bayesian basket
design that use a calibrated Bayesian hierarchical model for
adaptive information borrowing. Additional basket trial designs
are given by Hobbs and Landin (2018) and Psioda et al. (2019).
In contrast with basket trials, which usually use a simple binary

endpoint in a single-arm phase II trial, we consider the confir-
matory randomized comparative trials with survival time as the
endpoint. In addition, we calibrate our design using simulations
to explicitly control the family-wise Type I error rate under the
global null hypothesis ∩G

g=1Hg,0 in a weak sense, but with the
possibility to be extended to control in a more stringent sense.
Most existing basket trial designs only control subgroup-specific
Type I errors. Our approach also is relevant for the class of
enrichment designs (Simon and Simon 2013; Chen et al. 2016;
Rosenblum et al. 2016; Lai, Lavori, and Tsang 2019; Mehta, Liu,
and Theuer 2019), because our design includes multiple interim
analyses to decide whether to terminate unpromising subgroups
early. Unlike existing enrichment strategies, which mostly deal
with binary or continuous outcomes and dichotomize the pop-
ulation into two subgroups, treatment-sensitive and nontreat-
ment sensitive patients, our design treats overall survival time
as the primary endpoint and determines multiple subgroups
adaptively and repeatedly.

The remainder of the article is organized as follows. In Sec-
tion 2, we present the data structure and propose a flexible
Bayesian hierarchical latent variable model for survival time.
In Section 3, we propose a GS design that adaptively tests
for a survival difference between treatment arms within each
empirically induced subgroup, and we discuss how to calibrate
prior hyperparameters and design parameters to obtain a design
with desirable properties. In Section 4, we apply the proposed
design to the motivating OAK trial, and conduct simulation
studies to evaluate the design’s performance. We close with a
brief discussion in Section 5.

2. Probability Model

2.1. Data Structure

Let gi,j ∈ {1, . . . , G} denote the subgroup of patient i = 1, . . . , nj
in arm j = E, C, where nj is the number of patients in arm j. We
focus on two-arm randomized trials where it is desired to test
for possible interactive treatment–subgroup effects on survival
time. If the subgroups refer to different cancer subtypes having a
common genetic mutation, then the trial may be called a “basket
trial.” If, instead, the subgroups are defined in terms of one
or more prespecified biomarkers, then the trial may be called
“biomarker-stratified.” In our illustrative example, patients were
stratified into G = 4 subgroups based on PD-L1 expression, as
described in Section 1.

We denote survival time of the ith patient in arm j by
Ti,j, and assume that each patient is followed until death or
administrative right-censoring. For current trial time t where
a decision is made, denote ri,j = I(Ti,j < t), so ri,j = 1
indicates that death was observed before time t and ri,j = 0
denotes the event that Ti,j was administratively censored at t.
Thus, the observed time to death or censoring is Yi,j(t) =
min(Ti,j, t). We also allow the possibility that a covariate, Xi,j,
that is associated with Ti,j, may be available at enrollment. Here,
Xi,j refers to additional patient characteristics other than those
utilized for defining subgroups. For example, for oncology trials
in patients with solid tumors, Xi,j may be a biomarker related
to Ti,j. In immunotherapy trials, Xi,j may be a binary or real-
valued immune response variable. Specifically, in the OAK trial
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example, Xi,j can be defined as the expression of the T-effector
gene signature such as interferon gamma (IFNG). In addition
to regression of Ti,j on Xi,j, we allow the possibilities that the
distributions of Ti,j and Xi,j each may differ between two or more
subgroups, and may include treatment–subgroup interactions.
The efficiency and accuracy of our proposed adaptive subgroup
identification process may be improved by borrowing strength
from Xi,j. To focus on the main ideas of our proposed design,
we will consider a one-dimensional continuous Xi,j and assume
that Xi,j can be observed quickly. Our proposed method can be
generalized easily, however, to accommodate cases where Xi,j is
multivariate or late-onset.

2.2. Model Specification

We will assume a Bayesian hierarchical model for the survival
time distribution, including a latent subgroup membership vari-
able that we will exploit to adaptively collapse homogeneous
subgroups or identify heterogeneous subgroups. We consider
the data from the C and E groups to be independent, and we
do not borrow information between treatment arms. This inde-
pendent modeling procedure is generally flexible, and has good
performance under nonproportional hazard structures (Berry
et al. 2004).

For most oncology trials, a common assumption is that the
standard of care under C induces response distributions that are
homogeneous across subgroups. Following this, we assume that
the distributions of Ti,C and Xi,C, i = 1, . . . , nC, are identical
for all g = 1, . . . , G. In contrast, we assume potential hetero-
geneity of the distributions of Ti,E and Xi,E between subgroups.
However, we make this assumption to simplify the presentation,
and our proposed approach is not restricted to this homogeneity
assumption under C and can readily be extended to the general
case where the survival distributions for the control patients also
may be heterogeneous. Discussion about such a generalization
will be given at the end of this section, and in the supplementary
materials.

For illustrative purposes, we first present our modeling
assumptions for (Ti,E, Xi,E | g), and then describe our simpler
model for (Ti,C, Xi,C). We temporarily suppress the treatment
arm index j = E to reduce notation. To account for patient
heterogeneity in arm E and define the spike-and-slab priors
that will be discussed later, we introduce a latent subgroup
membership variable zg ∈ {1, . . . , G} for each patient subgroup
g, and denote the indicator ξg = I(zg = g). Thus, if zg = zg′ = g′
for g �= g′, then ξg = 0 and ξg′ = 1, subgroups g and
g′ are homogeneous, and these two subgroups are combined
into one induced subgroup g′. As a result, the distributions of
(Ti, Xi) and all parameters associated with subgroups g and
g′ are identical. To deal with the label switching issue arising
from data-adaptive clustering, when subgroups g and g′ are
homogeneous, we artificially take zg = zg′ = min(g, g′)
as an identifiability constraint. If z1 = · · · = zG = 1,
then this corresponds to the completely homogeneous case. At
the other extreme, if zg = g for all g ∈ {1, . . . , G}, then
the G subgroups are fully heterogeneous. Taking zg = zg′
allows the data from these two subgroups to be combined as
one induced subgroup in the likelihood function, reducing the

number of treatment–subgroup interaction parameters. If the
two subgroups are truly homogeneous, such a combination in
turn increases the power of the subgroup-specific E-versus-
C survival comparison in the combined subgroup. However,
there always is uncertainty in identification of these subgroups,
especially when the sample signal-to-noise ratio is low, and
incorrect subgroup combinations may lead to an increase in
false positive rates as well as a decrease in true positive rates. In
Section 3, we will discuss a general design calibration procedure,
that accounts for this identification uncertainty, to ensure a low
(misclassification) error rate and a desired true positive rate.

Let S = {g : zg = g} denote the set of induced subgroups,
with |S| denoting the cardinality of S , so |S| ≤ G. As an
illustration for G = 4, if S = {1, 2} then subgroups 1 and 2
are heterogeneous and are in different induced subgroups, while
each of subgroups 3 and 4 belongs to either induced subgroup
1 or induced subgroup 2, and |S| = 2. As another example,
for the partitions in Figure 2, there are three induced subgroups
S = {1, 4, 5} with latent subgroup variables z1 = z2 = z3 = 1,
z4 = z6 = 4, and z5 = 5.

Mimicking Chapple and Thall (2018), we assume the fol-
lowing distribution for (ξg , zg), which will be utilized at each
MCMC posterior sampling step for adaptive subgroup combi-
nation:

ξg ∼ Bernoulli(pg),
zg | ξg ∼ ξgδg(zg) + (1 − ξg)Cat(S), (2)

where pg = Pr(ξg = 1) = Pr(zg = g), δg(·) is the Dirac
distribution with point mass on g, and Cat(S) is a uniform
categorical distribution with Pr(zg = g′) = 1/|S| for g′ ∈ S .
As a result, when ξg = 1, subgroup g is in the its own induced
subgroup g. If ξg = 0, then zg = g′ �= g for some g′ ∈
S\{g}, and in this case subgroups g and g′ are homogeneous
and both are in the induced subgroup g′. According to the
prior (2), different subgroups are likely to be collapsed into the
same induced subgroup if the observed data indicate strong
evidence for collapsing. This would lead to the model dimen-
sion being changed adaptively. When the number of subgroups
is relatively large, it generally is not feasible to enumerate all
possible models. To tackle the problem of repeatedly changing
model dimension, we adopt a Bayesian reversible jump MCMC
approach to adaptively identify the latent subgroup indicators
based on the observed data (Green 1995). Details of the MCMC
sampling steps are provided in the supplementary materials.

We next discuss how to jointly model the marker and survival
outcomes. For simplicity, we consider a continuous marker Xi
following a normal distribution,

Xi | gi = g ∼ N(μg , σ 2
x ), (3)

where μg is the population mean for patients in subgroup g and
σ 2

x is a common variance. While we assume the same variance
σ 2

x for all subgroups, if desired, our proposed model and method
can be generalized easily to accommodate different variances
across subgroups. Because the sample size of a randomized con-
firmatory study typically is large, any vague prior distribution
for σ 2

x will work well. For example, one may assume an inverse
gamma prior σ 2

x ∼ IG(a0, b0), where (a0, b0) are fixed hyper-
parameters. To account for cases where some subgroups are
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homogeneous while others are heterogeneous with respect to Xi,
given the latent subgroup membership prior (2) on (zg , ξg), we
assume a spike-and-slab prior on μg ,

μg | zg , ξg ∼ ξgN(μ0, σ 2
μ0) + (1 − ξg)δμzg (μg), (4)

where (μ0, σ 2
μ0) are prespecified hyperparameters. When there

are some homogeneous subgroups, that is, some ξg = 0,
this prior facilitates adaptively borrowing information across
subgroups that belong to the same induced subgroup.

Let hg,i(t) denote the hazard function of patient i in subgroup
g. We assume a Cox PH model to quantify association between
Ti and the marker Xi, with hazard function

hg,i(t) = h̃g(t) exp(βxi),

where h̃g(t) is the baseline hazard for subgroup g, and β is the
log-hazard-ratio regression parameter. Any vague prior distri-
bution can be placed on β , for example, β ∼ N(β0, σ 2

β0
) with

hyperparameters (β0, σ 2
β0

), for a suitably large σ 2
β0

. Here, we
only use the PH assumption to characterize the marker effects
on Ti. In contrast, no PH assumption is imposed on the E-
versus-C treatment effect because we fit the survival models
for E and C independently. In general, covariate effects can
be modeled using more flexible Bayesian nonparametric sur-
vival models, such as those proposed by De Iorio et al. (2009),
Sparapani et al. (2016), and Xu et al. (2019). However, such
an extension, which is technically more interesting, and would
require further investigation and is beyond the scope of this
article.

To construct flexible survival distributions, we assume a
piecewise constant hazard (Ibrahim, Chen, and Sinha 2001)
by partitioning the time scale (0, ∞) into L intervals, 0 =
s0 < s1 < · · · < sL = ∞, and assuming a constant
hazard λg,l on interval [sl−1, sl) for each subgroup g = 1, . . . , G,
and interval l = 1, . . . , L. In subgroup g, denoting λg =
(λg,1, . . . , λg,L), the baseline piecewise hazard function is h̃g(t |
λg) = ∑L

l=1 λg,lI(sl−1 ≤ t < sl), and the baseline survival
function is S0,g(t | λg) = exp

{
−∑L

l=1 λg,l�(t, sl−1, sl)
}

, t >

0, where �(t, sl−1, sl) = max{0, min(t, sl) − sl−1}. It follows
that the survival function for patient i in subgroup g is Sg(t |
xi, λg) = exp

{
−∑L

l=1 λg,l�(t, sl−1, sl) exp(βxi)
}

.
To obtain a survival model that is robust and tractable, we

assume a spike-and-slab prior on the each subinterval’s hazard,

λg,l | zg , ξg ∼ ξgπ(λg,l) + (1 − ξg)δλzg ,l(λg,l), (5)

where π(λg,l) denotes the following three-level hierarchical
Markov gamma process (HMGP) (Nieto-Barajas and Walker
2002) :

λg,l | γg,l−1, ηg,l−1 ∼ Gamma(ag,l + γg,l−1, bg,l + ηg,l−1),
γg,l | λg,l, ηg,l ∼ Poisson(ηg,lλg,l), (6)

ηg,l | wg ∼ Gamma(1, wg), l = 1, . . . , L
wg ∼ Gamma(cg , dg), g = 1, . . . , G.

Here, ag,l, bg,l, cg , and dg are prespecified hyperparameters. The
assumed priors (5) and (6) for the piecewise hazard facilitate
borrowing information across homogeneous subgroups within

the same induced subgroup, and also between adjacent subin-
tervals in the partition of the survival time domain. Condi-
tional on λg,l−1 and wg , the prior mean of λg,l under (6) is

wg
wg+1/bg,l

ag,l
bg,l

+
(

1 − wg
wg+1/bg,l

)
λg,l−1. Thus, the parameter wg

controls the smoothness of the estimated piecewise hazard. As
wg → 0, the conditional prior mean of λg,l converges to
λg,l−1 and the prior variance converges to zero. As wg increases,
information borrowing between each pair of adjacent intervals
decreases. As default values, we recommend ag,1 = · · · =
ag,L = 1/L, bg1 = · · · = bgL = ag,l/λ0, cg = 0.5, and
dg = cg/λ0 with λ0 being the prior mean for all λg,l’s. Based on
this hyperparameter specification, the conditional prior mean
of λg,l | λg,l−1 is 1

L+1λ0 + L
L+1λg,l−1. This piecewise baseline

hazard and hierarchical prior formulation leads quite generally
to reliable convergence of the MCMC computations, a robust
survival model, and good performance of the proposed design.

Let Dn = {(yi, xi, gi, ri), i = 1, . . . , n} denote the observed
data for the first n patients enrolled in the trial. Under the
proposed model, the likelihood function takes the form

L(μ1, . . . , μG, λ1, . . . , λG, β , σx | Dn)

∝
n∏

i=1

1√
2πσ 2

x
exp

{
− (xi − μgi)

2

2σ 2
x

} L∏
l=1

{
λg,l exp(βxi)

}δi,l

exp
{−λg,l exp(βxi)�(yi, sl−1, sl)

}
,

where δi,l = 1 if ri = 1 and yi ∈ [sl−1, sl), and δi,l =
0 otherwise. In the proposed method, both the marker and
survival outcomes contribute to the identification of subgroups.
We implement a Gibbs sampler and reversible jump MCMC to
compute posteriors. The detailed full conditional distributions,
and the posterior sampling algorithms, are provided in the
supplementary materials.

In what follows, we will turn the task of subgroup identifica-
tion into a Bayesian model selection problem. To do this, we first
denote z = (z1, . . . , zG) with posterior distribution f (z | Dn).
Essentially, different combinations of z create different induced
subgroups for the effects of E, and thus different models. By enu-
merating all possible combinations of z based on the posterior
samples, we can assign each unique combination a model index,
M1, M2, . . . , MK , with K denoting the total number of unique
models sampled from the posterior. Denote the value of z under
Mk by z(k). We use maximum a posteriori (MAP) estimation
to select the most plausible model Mk∗ , that is, the most likely
possible induced subgroup combination,

k∗ = argmax
k=1,...,K

f (z(k) | Dn). (7)

Letting |Mk| denote the number of induced subgroups under
model Mk, it follows that |Mk∗ | = ∑G

g=1 I(z(k∗)
g = g) =∑G

g=1 ξ
(k∗)
g . For each subgroup g with ξ

(k∗)
g = 1, we also can

enumerate the members of the induced subgroup, given by {g′ :
z(k∗)

g′ = g}.
We now reintroduce the treatment index j = E, C, and

describe the model for C. We assume complete homogeneity
across subgroups in C, so all subgroups in C should share the
same distribution, and there is no need to introduce latent
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subgroup variables. In particular, we assume μ1,C = · · · =
μG,C = μC and λ1,C = · · · = λG,C = λC, and replace the spike-
and-slab priors (4) and (5) utilized for the subgroup-specific
distributions under E with the simpler piecewise hazard distri-
bution priors μC ∼ N(μ0, σ 2

μ0), λC,l ∼ π(λC,l), l = 1, . . . , L,
where π(λC,l) denotes the HMGP (6). As aforementioned,
when response homogeneity is not guaranteed across subgroups
in C, then the same estimation procedure for E can be applied
to C. Although data-adaptive subgroups can be identified in
C, a caveat is that, potentially, it would lead to a loss of power
when the subgroups in C are truly homogeneous, which is often
the case for standard control treatments. This is because the
subgroup identification may suffer from moderate uncertainty,
especially when the sample size is limited. Investigation of the
proposed method without the stringent homogeneity assump-
tion for C is provided in the supplementary materials.

3. Trial Design

3.1. Group Sequential Survival Comparison

Our Bayesian adaptive GS survival comparative test, which we
call BAGS, relies on the model introduced in Section 2, with
the goal to sequentially compare the survival difference between
E and C for each subgroup g = 1, . . . , G. In general, GS
designs (Pocock 1977; Jennison and Turnbull 1999) provide a
flexible, practical way to repeatedly examine observed data as
it accumulates for comparing treatments. In our setting, using
BAGS provides a way to reliably combine similar subgroups,
identify promising subgroups, and drop subgroups having small
E-versus-C effects much earlier than the fixed-sample design.
GS designs also can be generalized to accommodate multiple-
endpoints (Kosorok, Yuanjun, and DeMets 2004; Ye et al. 2013),
and trials with more than two treatment arms (Maurer and Bretz
2013; Urach and Posch 2016).

The BAGS design records each patient’s subgroup gi and
covariate Xi at enrollment, randomizes them between E and
C, and follows them for survival time. At each interim deci-
sion time, the BAGS procedure has two steps: the first step
identifies the induced subgroups S = {g : zg = g} based
on all currently available data, and the second step then tests
the null hypothesis for each induced subgroup g ∈ S . Let
Dn = {(yi,j, xi,j, gi,j, ri,j), i = 1, . . . , nj, j = C, E} denote the
observed data for the first n patients. Let N be the maximum
sample size, and denote interim sample sizes by nE, nC with
n = nE + nC. To classify the G subgroups in E into induced
subgroups S based on Dn, we compute posterior samples of z
and evaluate k∗ using the MAP formula (7). According to the
prior distributions (3) and (5), if z(k∗)

g = z(k∗)
g′ , then subgroups

g and g′ are homogeneous and in the same induced subgroup,
and thus they share the same survival distribution, Sg(t) =
Sg′(t). Under the homogeneity assumption for C, this means
that our procedure is essentially testing |Mk∗ | hypotheses, each
of which corresponds to an induced subgroup under E, where
the value |Mk∗ | is random at each decision-making time. On the
other hand, when the subgroups under C are heterogeneous, the
essential hypotheses to be tested should account jointly for the
induced subgroups under C and E.

In the second step, we use the average hazard ratio (AHR)
(Kalbfleisch and Prentice 1981; Schemper, Wakounig, and
Heinze 2009) to sequentially test the survival difference between
E and C for each induced subgroup g ∈ S . The AHR is a more
valid measure of treatment effect than the standard hazard ratio
under nonproportional hazards, and the corresponding test pro-
vides greater power than the standard logrank test (Rauch et al.
2018). For arm j = C, E, let hg,j(t) denote the hazard function
for subgroup g, and let f (λg,j, μg,j, βj | Mk∗ ,Dn) denote the con-
ditional posterior distribution of the parameters (λg,j, μg,j, βj)
under model Mk∗ given Dn. Given (λg,j, μg,j, βj), the average
arm E to “total” hazard ratio (Kalbfleisch and Prentice 1981) is

θg,E = −
∫ ∞

0

hg,E(t)
hg,E(t) + hC(t)

dS1/2
g,E (t)S1/2

g,C (t)

= −
∫ ∞

0
S1/2

g,C (t)dS1/2
g,E (t)

=
L∑

l=1

λgEleβEμg,E

λgEleβEμg,E + λgCleβCμgC

[
exp

{
−λg,E,leβE μg,E + λg,C,leβC μg,C

2
sl−1

}

− exp

{
−λg,E,leβE μg,E + λg,C,leβC μg,C

2
sl

}]
,

for each subgroup g = 1, . . . , G. We define the average arm C
to “total” hazard ratio, θg,C, similarly. Based on these definitions
of AHR for E and C, if Sg,E(t) = Sg,C(t), then θg,E = θg,C =
0.5. Ideally, one may expect θg,E + θg,C = 1, but this equality
does not always hold for the piecewise exponential structure.
To accommodate this, we define standardized versions of the
AHRs,

θ̃g,E = θg,E + (1 − θg,C)

2
, θ̃g,C = θg,C + (1 − θg,E)

2
,

which guarantees that θ̃g,E + θ̃g,C = 1. If θ̃g,E = 0.5, then there is
no survival difference between the two arms. If θ̃g,E < 0.5, then
E is superior to C in terms of survival; and if θ̃g,E > 0.5, then
E is inferior. We also note that θ̃g,E < 0.5 is also equivalent to
AHR < 1 with AHR = θg,E/θg,C denoting the average hazard
ratio.

Denote the conditional posterior distribution of θ̃g,j by f (θ̃g,j |
Mk∗ ,Dn), which can be computed based on f (λg,j, μg,j, βj |
Mk∗ ,Dn). When |Mk∗ | > 1, the issue of multiple testing arises,
and a multiplicity adjustment is needed to control the family-
wise Type I error rate. To do this in our BAGS design, at each
interim analysis we adopt a Holm-like sequential testing pro-
cedure to gain more power. The general idea of our sequential
testing procedure is as follows: at each test for induced subgroup
g ∈ S , we compute the specified “Bayesian test statistic” and
the number of active hypotheses, denoted by m, and require
the probability cutoff for the test statistic to be a decreasing
function of m. As a result, the larger the value of m, that is, as
the multiplicity increases, the more difficult it is to reject the
hypothesis.
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To do this, for each GS test we use a cutoff c(n, m) that is
dependent on both the current sample size n and number of
active hypotheses, m. At each decision-making time, we first
recalculate m, and then test the hypotheses for each induced
subgroup g ∈ S with ξg = 1, which includes its homogeneous
subgroups, that is, Sg = {g′; z(k∗)

g′ = g}. The three possible
subgroup-specific decisions are as follows:

1. Superiority of E: For each g ∈ S , if Pr(θ̃g,E < 0.5 | ξg =
1, Mk∗ ,Dn) > c(n, m), then reject the composite null (CN)
hypothesis ∪g′∈Sg Hg′,0 and conclude that arm E is superior to
arm C in the induced subgroup Sg .

2. Inferiority of E: For each g ∈ S , if Pr(θ̃g,E > .5 |
ξg = 1, Mk∗ ,Dn) > c(n, m), then reject the CN hypothesis
∪g′∈Sg Hg′,0 and conclude that E is inferior to C in the induced
subgroup Sg .

3. Inconclusive: Otherwise, there is insufficient evidence in the
current data to reject the union of null hypotheses.
Additional design actions: If the CN hypothesis ∪g′∈Sg Hg′,0 is
rejected for some induced subgroup Sg , then the trial stops
recruiting patients from this induced subgroup, and also drops
the union of hypotheses ∪g′∈Sg Hg′,0 for the remainder of the
trial. The trial continues recruiting patients in the remaining
induced subgroups until the maximum sample size N has been
enrolled. In this regard, BAGS is an enrichment design. If at
some point there are no remaining induced subgroups, then
the trial is terminated. Figure 3 provides a flowchart to illus-
trate the process of how a trial is conducted using the BAGS
design.

The probability cutoff c(n, m) plays a central role in the
BAGS design, and it must be calibrated to ensure good operating
characteristics in the multiple-testing framework. To facilitate

calibration of c(n, m), we assume the flexible two-parameter
functional form

c(n, m) = 1 − κ

m
(n/N)ε ,

where κ > 0 and ε > 0 are tuning parameters. The cutoff
function c(n, m) has two prominent features. First, similar to the
α-spending function for a standard GS design (Lan and DeMets
1983; Jennison and Turnbull 1999) and adaptive cut-off function
utilized in Bayesian GS testing (Wathen and Thall 2008; Lin,
Coleman, and Yuan 2020), c(n, m) is monotonically decreasing
in the interim sample size n. At the beginning of the trial, we
impose a more stringent stopping rule to control the risk of false
discoveries due to sparseness of the early data. As more patients
are accrued and longer follow-ups are observed, more survival
time information is accumulated and there is less uncertainty,
and thus the changing values of c(n, m) can graduate promising
subgroups more reliably. A second feature of c(n, m) is that it
depends on the number of active hypotheses, m, which also
must be updated for each GS decision.

For example, suppose there are G = 4 subgroups initially,
and at an interim analysis with sample size n, the induced
subgroups are {1, 2}, {3}, and {4}. Consider testing the CN
hypothesis for induced subgroup {1, 2} first. Because there are
three induced subgroups, the number of active CN hypotheses
is m = 3, and the cutoff is c(n, 3). If the CN hypothesis for
induced subgroup {1, 2} is rejected, then the number of CN
hypotheses is reduced to m = 2. As a result, provided that the
induced subgroups {3}, and {4} are not subsequently combined,
the cutoff c(n, 2) is utilized next to test the remaining two active
CN hypotheses. Similarly, if subgroup {4} is rejected next, then
c(n, 1) is utilized for testing the last null hypothesis for the final
induced subgroup {2}. This sequential procedure is similar to
the Holm multiple-testing procedure for frequentist GS designs

Figure 3. Flowchart of the proposed BAGS design, where n is the interim sample size, m is the number of active hypotheses, c(n, m) is the probability cutoff, Mk∗ is the
most plausible model (i.e., subgroup classification), and homogeneous subgroups constitute an induced subgroup.
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(Maurer and Bretz 2013; Ye et al. 2013), and is generally more
powerful than the parallel testing procedure using the cutoff
c′(n, m) = 1 − κ(n/N)ε that ignores m.

There is an important difference between the decision-
making procedure of the BAGS design and existing GS pro-
cedures. For an existing GS design with G hypotheses, the
number of active hypotheses at an interim point in the trial
equals G minus the number of previously rejected hypotheses.
In contrast, since the BAGS procedure requires the induced
subgroups to be identified before each test, the essential number
of hypotheses is bounded by |Mk∗ |. As a result, for the BAGS
design, m depends on both |Mk∗ | and the number of previ-
ously rejected hypotheses. Consequently, the BAGS design adds
another layer of randomness to the number of active hypotheses,
which is one of its key features.

3.2. Design Calibration

As mentioned earlier, the BAGS procedure not only accounts
for variation of parameter estimates, but also the uncertainty
in data-adaptive subgrouping. The performance of BAGS is
highly dependent on the classification accuracy induced by the
subgroup combination priors in (2), (4), and (5). To obtain good
operating characteristics, we propose a general simulation-
based calibration procedure to establish the design parameters
of BAGS. The use of simulations to optimize design parameters
is well documented in the FDA’s recent draft guidance (U.S. Food
and Drug Administration 2019).

For each Hg,0, g = 1, . . . , G, the subgroup-specific Type I
error rate (SSER) is αg = Pr(reject Hg,0 | Hg,0). Because we
simultaneously test Hg,0 for different subgroups in one trial,
there also is a family-wise Type I error rate (FWER), defined as

α̃ = Pr(reject at least one Hg,0 | ∩G
g=1Hg,0).

The FWER is very important for a subgroup-specific compara-
tive trial, since it is important to control false discoveries when
testing multiple hypotheses. On the other hand, if Hg,1 holds for
some subgroup g, it also is desirable to have large subgroup-
specific power (SSP), defined as 1 − βg = Pr(reject Hg,0 |
Hg,1). The SSP quantifies a design’s ability to correctly identify
a promising subgroup. For BAGS, in addition to these test error
probabilities, there also is a misclassification rate (MCR), since
BAGS includes adaptive determination of induced subgroups as
part of its GS procedure. The MCR is defined as αc = Pr(at
least one subgroup g is misclassified). Because BAGS combines
classification and testing in each GS step, we also define the
generalized family-wise power (GFWP) as

1 − β̃ = Pr(obtain correct induced subgroups and
make correct test decisions).

Having a high GFWP is a very important property for the BAGS
design, since correct induced subgroup selection is a key ele-
ment of the decision-making process. Obtaining a good GFWP
depends on well-calibrated design parameters and a sufficiently
large sample size. An important point is that the event in the
definition of the GFWP is a subset of the event (make correct
test decisions), so, for a given N, it is more difficult to achieve a
large GFWP than a large Pr(make correct test decisions).

Next, we discuss how to choose the design parameters κ , ε,
and N. The elicitation guidelines for other parameters, including
the fixed prior hyperparameters in the Bayesian models and the
partition scheme of the time scale, are provided in the supple-
mentary materials. In general, a larger N gives larger SSP and
GFWP, as well as a smaller MER. Determination of the number
of interim analyses depends on the specific trial requirements
and available resources. We suggest performing the first interim
analysis at n = N/2. This choice can prevent a high false
discovery rate caused by sparse data, while still preserving the
efficiency of the trial.

The design parameters κ , ε, and N can be determined based
on a grid search over all possible combinations, so that the
performance of the BAGS design can be nearly optimized. In
the motivating trial, we did this for the three values ε = 1, 2, 3,
six values κ = 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, and five
values N = 600, 650, 700, 750, 800. In total, this gave a grid of
3×6×5 = 90 combinations to study. Our strategy was to choose
(κ , ε, N) to maximize the GFWP of the BAGS design over the
grid while controlling the FWER and SSP at prespecified levels.
This can be done using the following steps:

Step 1: Ask the clinicians to specify desirable FWER and SSP
values. Our procedure requires statisticians to work with clin-
icians to establish three sets of hypotheses: (1) Homogeneous
null: Under H0 = ∩G

g=1Hg,0, all subgroups are homogeneous
and there is no treatment effect. (2) Heterogeneous null: Under
H′

0 = ∩G
g=1H′

g,0, the subgroups are heterogeneous and there
is no treatment effect. (3) Alternative: Under H1, there are two
induced subgroups, with one subgroup containing the respon-
ders, defined as patients who have a lower death rate with E,
while the other subgroup contains nonresponders. In addition,
other trial parameters, such as patient accrual rate and follow-up
time, also should be determined.

Step 2: Choose one sample size N, carry out simulation studies,
and search all possible combinations of (κ , ε) that control the
FWER under both H0 and H′

0. According to our study, we found
that, given a set of (κ , ε), the FWER is generally unchanged
regardless of the sample size N. Therefore, one just needs to
consider one value of N in this step.

Step 3: Among the admissible set of (κ , ε) values identified
in Step 2, carry out simulation studies under H1 for different
values of N, and select the combination (N, κ , ε) that yields the
desired SSP while maximizing the GFWP as the optimal design
parameters.

Based on simulations, we simultaneously control the FWER
under the null and maximize the GFWP under the alternative,
which in turn can control the MCR to a satisfactory level.
Although we consider using both the homogeneous null and
the heterogeneous null for FWER control, due to the subgroup
identification uncertainty, the aforementioned calibration pro-
cedure can only control the FWER in a weak sense, that is,
Pr(reject at least one Hg,0 | ∩G

g=1Hg,0) does not exceed the
nominal level (Hochberg 1988). Because of misclassification,
the aforementioned calibration procedure cannot guarantee a
well-controlled false positive rate under situations where some
subgroups benefit but others do not. However, when there is no
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subgroup identification error, according to the closure principle
and the proposed Holm-like sequential testing procedure, the
oracle BAGS design (by assuming that the subgroup classifica-
tion is always true) can control the FWER in a strong sense.
More details about the FWER control of BAGS are explored in
the simulation study. While the FWER control can be gradually
enhanced with an increasing sample size and thus a decreasing
MCR, it is also possible to obtain a relatively strong FWER
control by controlling the SSER when only one Hg,0 is true and
the other subgroups have homogeneous promising treatment
effects. However, the accompanying high price to pay is a loss
of power. See the supplementary materials for a discussion of
the more stringent calibration procedure.

4. Numerical Studies

4.1. Comparative Study

In the simulation study, we aim to control the FWER ≤ 0.05
and the SSP ≥ 0.90. We utilized the published data from the
OAK trial (Rittmeyer et al. 2017) to construct the simulation
scenarios, and describe details of the data generating process in
the supplementary materials. We assumed identical prevalence
rates for the four subgroups, 0.25 each, although we examine the
performance of the BAGS design for different true prevalences
in additional sensitivity analyses. We specified a total of ten sce-
narios, given in Table 1, to thoroughly examine the performance
of BAGS. We performed two interim analyses, when n = N/2
and n = 3N/4 patients had been accrued, and a final analysis
at the end of follow-up. The calibration procedure described in
Section 3.2 resulted in N = 700, κ = 0.02, and ε = 3.

In our simulation study, we compared the BAGS design
to several common approaches utilized in multiple subgroup
settings. The first, referred to as the LRhomo design, assumes
that all subgroups are homogeneous and implements a logrank
test based on a GS design. The second approach, called the
LRhetero design, does a separate logrank test in each subgroup
and does not borrow information between subgroups. The third
approach, referred to as LRenrich, implements a logrank test
based adaptive enrichment strategy in a three-stage design such
that only the patients who are likely to benefit from E are
enrolled in subsequent trial stages (Lai, Lavori, and Tsang 2019).
As benchmarks, we also included two oracle designs, LRO and

BAGSO, which always use the correct subgroup classification
in their inferences. Furthermore, we considered a more general
BAGS design, denoted by BAGS∗, which conducts data-adaptive
subgroup combination under C without assuming homogene-
ity across subgroups. For the logrank test based GS designs,
we utilized O’Brien–Fleming boundaries (O’Brien and Fleming
1979) and applied the Holm procedure to adjust for multiplicity
(Ye et al. 2013). The BAGS∗ and BAGSO designs use the same
set of design parameters as the original BAGS design. Since
the original LRenrich design was not proposed for time-to-event
outcomes, we outline the implementation procedure of LRenrich
in the supplementary materials.

4.2. Simulation Results

Tables 2 and 3 report the operating characteristics of the designs
based on 5000 simulated trials under each of the ten scenarios
given in Table 1. Scenario 1 is the homogeneous null case, where
all subgroups have the same distributions and Atezolizumab
gives no survival benefit over Docetaxel. All seven designs con-
trol the probability of making one or more Type I errors near
5%. The BAGS design has a particularly low misclassification
rate, as low as 0.3%. This nearly ignorable misclassification rate,
together with the FWER, leads to a high GFWP for BAGS. On
the other hand, the LRhetero design assumes complete hetero-
geneity among the subgroups and uses a multiplicity adjustment
to control the FWER. As a result, the SSER of the LRhetero design
is lower than that of the other designs. In scenario 2, where all
subgroups are different, it is desirable to not borrow information
across subgroups. The BAGS design preserves the FWER at the
prespecified level while maintaining a low MCR. In the first
two null scenarios, the performance of the more general BAGS∗
design, which conducts data-adaptive subgroup identifications
under C, is very similar to that of the original BAGS design.
This is related to the fact that BAGS∗ also possesses accurate
subgroup identification under C, which can be inferred from
the MCR of BAGS under scenario 1 by symmetry. In contrast,
LRenrich selects the best promising subgroup at each interim
analysis, which always leads to two induced subgroups. Thus,
the MCR of LRenrich is almost 100% and the GFWP is close
to 0. Scenario 3 is the alternative hypothesis, where there is
one induced subgroup, {3, 4}, with responders and another

Table 1. Configurations of the ten simulation scenarios.

Scenario Subgroups − log(λg,E) μg,E AHRg

1 {1, 2, 3, 4} (2.5, 2.5, 2.5, 2.5) (0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1)

2 {1}, {2}, {3}, {4} (2.5, 2.3, 2.1, 1.9) (0.5, 1.3, 2.1, 2.9) (1, 1, 1, 1)

3 {1, 2}, {3, 4} (2.5, 2.5, 2.7, 2.7) (0.5, 0.5, 1.22, 1.22) (1, 1, 0.7, 0.7)

4 {1, 2, 3}, {4} (2.5, 2.5, 2.5, 2.7) (0.5, 0.5, 0.5, 1.22) (1, 1, 1, 0.7)

5 {1}, {2, 3, 4} (2.5, 2.7, 2.7, 2.7) (0.5, 1.22, 1.22, 1.22) (1, 0.7, 0.7, 0.7)

6 {1}, {2}, {3, 4} (2.5, 2.1, 2.7, 2.7) (0.5, 2.1, 1.22, 1.22) (1, 1, 0.7, 0.7)

7 {1}, {2}, {3}, {4} (2.5, 2.3, 2.1, 2.7) (0.5, 1.3, 2.1, 1.22) (1, 1, 1, 0.7)

8 {1}, {2}, {3}, {4} (2.5, 3.2, 2.7, 2.5) (0.5, 0.5, 1.22, 2.0) (1, 0.5, 0.7, 0.7)

9 {1, 2, 3, 4} (2.7, 2.7, 2.7, 2.7) (1.22, 1.22, 1.22, 1.22) (0.7, 0.7, 0.7, 0.7)

10 {1}, {2, 3, 4} (2.2, 2.7, 2.7, 2.7) (0, 1.22, 1.22, 1.22) (1.5, 0.7, 0.7, 0.7)

NOTE: We simulated data for the Docetaxel patients with baseline covariates Xi,C
iid∼ N(μC , 1), survival times Ti,C | Xi,C

iid∼ Exp(λC exp(βC Xi,C)) with βC = −0.25, μC = 0.5
and λC = exp(−2.5), such that the median survival time under C mimics the published results (i.e., 9.6 months). Similarly, the data for the Atezolizumab patients were

generated from (Xi,E | g)
iid∼ N(μg,E , 1), and (Ti,E | g, Xi,E)

iid∼ Exp(λg,E exp(βE Xi,E)) with βE = −0.25. log(λg,E) is the log baseline hazard rate for each subgroup
g = 1, 2, 3, 4, μg,E is the population mean for the marker outcomes, AHRg is the average hazard ratio between arms E and C.
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Table 2. Operating characteristics of the proposed BAGS design and the comparators under the scenarios 1–5 given in Table 1.

Scenario Method % Reject Hg,0 FWP (FWER) MCR GFWP Sample size

1 2 3 4

1 BAGS 5.3 5.4 5.3 5.4 5.6 0.4 94.2 696
BAGS∗ 3.9 3.9 3.9 3.9 4.0 0.9 95.2 697
BAGSO 5.2 5.2 5.2 5.2 5.2 0.0 94.8 696
LRhomo 6.2 6.2 6.2 6.2 6.2 0.0 93.8 695
LRhetero 1.5 1.3 1.7 1.6 5.8 100.0 0.0 700
LRenrich 3.7 3.6 3.4 3.5 5.4 98.5 0.0 696
LRO 6.2 6.2 6.2 6.2 6.2 0.0 93.8 695

2 BAGS 1.5 1.4 1.6 1.7 5.9 4.2 90.2 700
BAGS∗ 1.4 0.9 1.0 1.1 3.0 4.4 92.0 700
BAGSO 1.9 1.9 1.7 1.9 6.6 0.0 93.4 700
LRhomo 6.2 6.2 6.2 6.2 6.2 100.0 0.0 695
LRhetero 1.5 1.3 1.7 1.6 5.8 0.0 94.2 700
LRenrich 3.8 3.6 3.5 3.5 5.4 100.0 0.0 696
LRO 1.5 1.3 1.7 1.6 5.8 0.0 94.2 700

3 BAGS 8.2 8.2 92.3 92.5 93.6 (9.0) 9.2 80.6 693
BAGS∗ 7.0 6.8 91.6 90.6 92.2 (7.3) 9.3 81.2 696
BAGSO 5.7 5.7 94.4 94.4 94.6 (5.7) 0.0 88.9 698
LRhomo 66.5 66.5 66.5 66.5 66.5 (66.5) 100.0 0.0 647
LRhetero 1.7 1.7 64.2 63.3 84.1 (3.5) 100.0 0.0 700
LRenrich 52.8 52.8 86.6 86.6 91.2 (52.8) 66.0 29.8 658
LRO 4.4 4.4 92.6 92.6 92.8 (4.4) 0.0 90.3 699

4 BAGS 5.6 5.2 5.2 77.9 78.3 (7.0) 9.7 68.9 697
BAGS∗ 5.3 5.0 4.9 76.1 76.5 (5.8) 9.3 67.5 698
BAGSO 4.6 4.6 4.6 79.2 79.6 (4.6) 0.0 75.4 699
LRhomo 23.7 23.7 23.7 23.7 23.7 (23.7) 100.0 0.0 685
LRhetero 1.5 1.3 1.7 62.1 64.4 (4.0) 100.0 0.0 700
LRenrich 16.5 16.6 16.5 69.5 69.7 (18.6) 26.0 51.1 689
LRO 3.9 3.9 3.9 71.8 72.4 (4.3) 0.0 68.5 699

5 BAGS 21.1 96.0 95.1 95.1 97.2 (21.1) 23.2 69.1 675
BAGS∗ 19.7 95.1 94.7 94.6 96.3 (19.7) 21.4 70.8 682
BAGSO 5.9 97.9 97.9 97.9 98.0 (5.9) 0.0 92.6 697
LRhomo 93.7 93.7 93.7 93.7 93.7 (93.7) 100.0 0.0 583
LRhetero 3.1 68.3 67.2 66.8 91.0 (3.1) 100.0 0.0 700
LRenrich 87.4 91.7 91.9 91.8 94.8 (87.4) 96.0 0.0 591
LRO 4.7 97.6 97.6 97.6 97.7 (4.7) 0.0 95.2 699

NOTE: All values except sample sizes are given as percentages. Hg,0 is the subgroup-specific null hypothesis for g = 1, . . . , 4, FWP(FWER) is the family-wise power or
Type I error rate. When there is mixture of responder and nonresponder subgroups, the numbers in parentheses denote Pr(reject at least one Hg,0) for the nonresponder
subgroups. MCR is the subgroup misclassification rate, and GFWP is the generalized family-wise power. BAGS is the proposed Bayesian adaptive subgroup-specific group
sequential design; BAGS∗ is the more general version of BAGS that conducts data-adaptive subgrouping under C; LRhomo is the GS design based on the logrank test and
the homogeneity assumption; LRhetero is the GS design based on the logrank test and the heterogeneity assumption; LRenrich is the adaptive enrichment design based
on the logrank test; The oracle methods (i.e., BAGSO and LRO) assume that the subgroup classifications are correct under all scenarios.

induced subgroup, {1,2}, with nonresponders. In this scenario, it
is desirable to combine the data within each of the two induced
subgroups to make inferences more efficient. In this scenario, (1)
fully borrowing information across all subgroups, which is what
the LRhomo does, leads to a high subgroup-specific error rate,
SSER, which in this case is % Reject Hg,0 for each g, while (2)
no borrowing of information, which is what the LRhetero does,
results in low power for detecting promising subgroups. In con-
trast, because the BAGS design adaptively determines subgroup
heterogeneity or homogeneity and reliably creates induced com-
bined subgroups, it can adaptively exploit borrowed information
in its tests. In fact, BAGS is as powerful as the oracle designs
in identifying the promising subgroup {3,4}. However, since
there is a nonzero chance of misclassification (around 9.8%), the
BAGS design has a slightly higher SSER and lower GFWP than
the oracle designs. In contrast, the LRenrich fails to identify the
true underlying subgroups accurately, resulting in high SSERs
for g = 1, 2 and low SSPs for g = 3, 4. In scenario 4, only patients
in subgroup 4 have a higher response rate with Atezolizumab.
We use this scenario to assess whether the decision for subgroup

4 based on BAGS would be contaminated by the majority of
patients, which includes the nonresponder subgroups. Surpris-
ingly, the BAGS design still is able to detect subgroup 4 reliably
and achieve subgroup-specific power similar to that of oracle-
BAGS, and better than that of oracle-logrank. In addition, the
SSERs for subgroups 1–3 also are close to the 5% nominal level.

In scenario 5, the majority of subgroups are responders,
which can be regarded as an opposite case of scenario 4. BAGS
still yields a GFWP of 69.1% in scenario 5, compared to GFWP
= 0 for LRhomo, LRhetero, and LRenrich. Scenarios 6 and 7 mimic
scenarios 3 and 4, respectively. The only difference is that the
nonresponder subgroups all are heterogeneous in scenarios 6
and 7. Scenario 8 mimics scenario 5 but with four heterogeneous
subgroups under E. Scenarios 5–8 are included to examine
whether the designs considered can control the FWER in a
strong sense. We report Pr(reject at least one Hg,0) for the
nonresponder subgroups, that is, g = 1, g = 1, 2, g =
1, 2, 3, and g = 1 in scenarios 5, 6, 7, and 8, respectively.
The simulation results show that the LRhetero, oracle LRO, and
BAGSO designs can maintain the 5% nominal error rate, while
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Table 3. Operating characteristics of the proposed BAGS design and the comparators under the scenarios 6–10 given in Table 1.

Scenario Method % Reject Hg,0 FWP (FWER) MCR GFWP Sample size

1 2 3 4

6 BAGS 3.8 2.8 91.6 90.8 92.2 (6.3) 2.6 83.1 700
BAGS∗ 3.5 2.3 88.7 88.1 89.3 (5.5) 2.8 81.4 700
BAGSO 3.3 3.1 92.5 92.5 92.7 (5.8) 0.0 86.6 700
LRhomo 64.8 64.8 64.8 64.8 64.8 (64.8) 100.0 0.0 651
LRhetero 2.0 1.7 64.3 63.3 82.8 (3.4) 100.0 0.0 700
LRenrich 52.8 52.8 86.6 86.6 92.0 (52.9) 100.0 0.0 655
LRO 2.5 2.1 89.6 89.6 89.6 (4.5) 0.0 85.5 700

7 BAGS 3.2 2.0 2.3 70.9 71.7 (7.1) 5.9 63.5 700
BAGS∗ 2.6 1.5 1.1 64.6 65.3 (4.8) 5.4 59.4 700
BAGSO 2.0 2.3 2.2 72.2 73.4 (6.1) 0.0 67.2 700
LRhomo 22.3 22.3 22.3 22.3 22.3 (22.3) 100.0 0.0 687
LRhetero 1.4 1.4 1.6 60.9 62.5 (3.9) 0.0 58.4 700
LRenrich 16.5 16.6 16.5 69.5 69.6 (20.1) 100.0 0.0 688
LRO 1.3 1.3 1.7 60.9 62.5 (4.0) 0.0 58.5 700

8 BAGS 27.3 98.8 81.7 81.9 99.7 (27.3) 28.0 41.9 686
BAGS∗ 21.6 97.8 77.6 78.1 98.5 (21.6) 24.0 43.7 693
BAGSO 4.5 99.9 80.3 79.0 100.0 (4.5) 0.0 62.9 699
LRhomo 99.3 99.3 99.3 99.3 99.3 (99.3) 100.0 0.0 524
LRhetero 3.9 99.8 71.3 69.4 99.9 (3.9) 0.0 52.0 700
LRenrich 97.9 99.8 98.4 98.4 99.8 (97.9) 100.0 0.0 525
LRO 3.9 99.8 71.3 69.4 99.9 (3.9) 0.0 52.0 700

9 BAGS 99.6 99.2 99.2 99.1 99.6 0.4 98.6 567
BAGS∗ 99.3 98.9 99.0 99.0 99.3 0.6 98.3 603
BAGSO 99.6 99.6 99.6 99.6 99.6 0.0 99.6 569
LRhomo 99.4 99.4 99.4 99.4 99.4 0.0 99.4 504
LRhetero 71.9 72.9 71.8 71.6 94.5 100.0 0.0 699
LRenrich 98.8 98.9 98.9 98.8 99.3 1.5 98.5 506
LRO 99.4 99.4 99.4 99.4 99.4 0.0 99.4 504

10 BAGS 91.3 97.9 96.2 96.2 99.8 8.7 83.7 678
BAGS∗ 88.1 97.2 96.1 96.1 99.6 6.0 80.1 684
BAGSO 92.6 98.7 98.7 98.7 99.8 0.0 91.6 672
LRhomo 79.3 79.3 79.3 79.3 79.3 100.0 0.0 637
LRhetero 87.8 75.3 74.4 73.9 99.1 100.0 0.0 698
LRenrich 56.7 70.9 70.9 70.2 79.8 80.0 0.0 663
LRO 95.5 98.4 98.4 98.4 99.9 0.0 93.9 649

NOTE: All values except sample sizes are given as percentages. Hg,0 is the subgroup-specific null hypothesis for g = 1, . . . , 4, FWP(FWER) is the family-wise power or
Type I error rate. When there is mixture of responder and nonresponder subgroups, the numbers in parentheses denote Pr(reject at least one Hg,0) for the nonresponder
subgroups. MCR is the subgroup misclassification rate, and GFWP is the generalized family-wise power. BAGS is the proposed Bayesian adaptive subgroup-specific group
sequential design; BAGS∗ is the more general version of BAGS that conducts data-adaptive subgrouping under C; LRhomo is the GS design based on the logrank test and
the homogeneity assumption; LRhetero is the GS design based on the logrank test and the heterogeneity assumption; LRenrich is the adaptive enrichment design based
on the logrank test; The oracle methods (i.e., BAGSO and LRO) assume that the subgroup classifications are correct under all scenarios.

LRhomo and LRenrich have severely inflated Type I error rates.
Although BAGS and BAGS∗ can adaptively identify combined
subgroups, they still cannot achieve strongly control of FWER.
Especially in scenarios 5 and 8, the high MCR of BAGS (or
BAGS∗) leads to a higher SSER for subgroup 1. Scenario 8 is
a difficult case for the BAGS design, because there are four
heterogeneous subgroups, and the low sample size per subgroup
tends to lead to a higher MCR, which in turn causes a higher
SSER for subgroup 1. Scenario 9 is a completely homogeneous
case where patients in all subgroups respond to Atezolizumab.
Compared to the LRhetero design, BAGS has much higher power
and lower achieved sample size. In this case, the performances
of BAGS or BAGS∗ are almost identical to those of the oracle
designs. In scenario 10, subgroup 1 and subgroups 2–4 have
opposite treatment effects, with Atezolizumab inferior to Doc-
etaxel in subgroup 1, and Atezolizumab superior in subgroups
2–4. Despite this, the BAGS design still maintains a high GFWP.

Overall, this comparative simulation study indicates that,
when the MCR is low, the operating characteristics of the

BAGS design are nearly identical to those of its oracle coun-
terpart. There are some scenarios that cause a higher MCR
for BAGS, and thus a higher SSER. This is mainly due to the
fact that sample sizes for misclassified subgroups typically are
small. Nevertheless, the BAGS design shows greatly superior
performance compared to the LRhomo, LRhetero, and the LRenrich
designs, which are by far the most commonly utilized designs in
real applications. Although similar to BAGS, the more general
version, BAGS∗, has slightly lower SSPs across all scenarios.
This is because BAGS∗ elicits a noninformative prior for sub-
grouping under C and does not fully borrow information across
subgroups. Therefore, the posterior distributions under C based
on BAGS∗ are slightly flatter compared to those based on the
original BAGS.

We provide more simulation studies in the supplementary
materials. Specifically, (1) we additionally tested the sensitiv-
ity of the BAGS design to different sample sizes, subgroups
prevalences, interval partitions, and also different data gener-
ating mechanisms, including model misspecification. (2) We
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investigated a more stringent version of BAGS, which attempts
to control FWER in a stronger way. The simulation results
show that the more stringent BAGS design can maintain the
false positive rates at the 5% level, but at the cost of a loss
of power. (3) We also examined the BAGS∗ design when the
subgroups under C have heterogeneous treatment effects and
different survival curves. Overall, the additional studies further
confirm the flexibility, generalizability, and robustness of the
BAGS design.

5. Conclusions

We have proposed a Bayesian adaptive subgroup-specific GS
design that addresses the challenges of making subgroup-
specific survival comparisons when the true subgroup-specific
effects are unknown and some predefined subgroups may have
similar treatment effects. The proposed BAGS design accom-
modates a survival outcome and a baseline marker variable
that may be related to survival time, with both variables hav-
ing distributions possibly heterogeneous between subgroups.
We introduce a latent subgroup variable to facilitate adaptive
subgroup combination or splitting. As a result, when homoge-
neous subgroups are combined adaptively to form an induced
subgroup, the resulting test for the induced subgroup is more
efficient. At each interim analysis, the proposed design tests the
subgroup-specific survival differences between two treatments
using the posterior distribution of the average hazard ratio. To
deal with control of Type I error rate in multiple testing, we also
have developed a sequential Holm-like procedure which yields a
higher power of detecting induced subgroups with responders.
The simulation study given in Section 4 shows that, compared to
standard methods for dealing with multiple subgroups, under a
range of scenarios, the proposed BAGS design has much higher
subgroup-specific power and generalized family-wise power,
while the family-wise Type I error rate is maintained. In some
cases, such as scenarios 5 or 8, there is a relatively large SSER
for subgroup 1. One also can control the SSER by adding an
extra step in the calibration procedure that adjusts the test cutoff
c(n, m) to obtain a smaller SSER, but it should be kept in mind
that such a recalibration has the risk of decreasing the SSP for
other subgroups.

While we have considered only the case of complete homo-
geneity for the control arm, generalization to the heteroge-
neous control case is straightforward, although this requires
estimating the latent subgroup indicators {zg} for the control
patients. By combining the estimated latent subgroups from
both groups, the proposed subgroup-specific approach still can
be applied. A potential limitation of the proposed design is that
we assume that the marker outcome is observed before death.
In immunotherapy trials, such an assumption may not hold if
the marker outcome is an immune-response, which may be late-
onset (Lin, Coleman, and Yuan 2020). In this case, late-onset
marker outcomes may be censored by death. The BAGS design
may be generalized to accommodate such late-onset variables
by treating the unobserved marker values as missing data. For
example, the Bayesian data augmentation approach of Liu, Yin,
and Yuan (2013) may be used to sample both missing marker
data and model parameters from their posterior full conditional
distributions. In addition, the proposed method requires an

adequate sample size within each subgroup for reliable estima-
tion. In a case where a subgroup has very low prevalence, if this
subgroup has a high death rate and the other subgroups have
substantively lower death rates, it might be the case that param-
eter estimates in the low prevalence subgroup are unreliable and
thus the FWER might be inflated.

Finally, the BAGS design is developed based on a parametric
piecewise constant hazard assumption. In the MCMC compu-
tations to obtain the posterior at each group-sequential stage
of the trial, we repeatedly iterate between (1) determining the
subgroups using the latent variables and (2) model fitting condi-
tional on the grouping. Once this posterior has been determined
by this iterative MCMC process, the design bases its decisions
and actions on the posterior. We do not include a treatment–
subgroup interaction parameter in our model and we perform
splitting and recollapsing within each arm, because we want
our model to be robust against nonproportional hazards. As
a future research project, under a robust Bayesian nonpara-
metric approach (Xu et al. 2019), we may consider inclusion
of treatment–subgroup interaction parameters, which would
provide a more flexible model.

Supplementary Materials

Supplementary materials contain detailed MCMC sampling steps, the prior
elicitation procedure, simulation configurations, and additional simulation
results.
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