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Abstract

A robust Bayesian design is presented for a single-arm phase II trial with an

early stopping rule to monitor a time to event endpoint. The assumed model is

a piecewise exponential distribution with non-informative gamma priors on

the hazard parameters in subintervals of a fixed follow up interval. As an addi-

tional comparator, we also define and evaluate a version of the design based

on an assumed Weibull distribution. Except for the assumed models, the piece-

wise exponential and Weibull model based designs are identical to an

established design that assumes an exponential event time distribution with an

inverse gamma prior on the mean event time. The three designs are compared

by simulation under several log-logistic and Weibull distributions having dif-

ferent shape parameters, and for different monitoring schedules. The simula-

tions show that, compared to the exponential inverse gamma model based

design, the piecewise exponential design has substantially better performance,

with much higher probabilities of correctly stopping the trial early, and shorter

and less variable trial duration, when the assumed median event time is unac-

ceptably low. Compared to the Weibull model based design, the piecewise

exponential design does a much better job of maintaining small incorrect stop-

ping probabilities in cases where the true median survival time is desirably

large.
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1 | INTRODUCTION

Most phase II clinical trial designs are based on a binary or ordinal response outcome that is assumed to be observed
relatively quickly after the start of treatment. For settings where no effective therapy is available, Gehan1 proposed a
design for single-arm phase IIA cancer trials that aim to detect any anti-disease effect, in terms of response probability,
with an experimental treatment, E. Trials where a standard therapy S exists, but it is desired to obtain an improvement
over S with E, are called “phase IIB.” While most phase II trials in oncology are single-arm, randomized phase II trials
have been proposed. See Simon, Wittes and Ellenberg,2 Thall and Sung,3 or Rubinstein et al.4 Fleming5 proposed a
group sequential test based single-arm phase IIB design with rules to stop early for futility or efficacy. Simon proposed
test-based two-stage phase IIB designs,6 which have been used widely in practice. Many other phase IIB designs have
been proposed, including a two-stage design monitoring both efficacy and toxicity by Bryant and Day,7 and three-stage
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designs for binary response outcomes by Ensign et al.8 and Chen et al.9 Zhou et al.10 proposed the Bayesian optimal
phase II (BOP2) design that can handle various categorical endpoints under a uniformed framework.

An important practical issue is that, in many settings, a primary clinical outcome cannot be characterized ade-
quately by a binary or other discrete variable defined so that it can be observed quickly enough to apply a design's
outcome-adaptive monitoring rules. Rather, the time, Z, to a particular treatment failure event may be the most impor-
tant outcome. Examples of failure events in oncology include severe toxicity, disease progression, or death. Other exam-
ples are rejection of a transplanted organ in a patient treated with an immunosuppressive agent, or infection for a
patient who has received a prophylactic antibiotic. In each case, a smaller observed time to the failure event is less
desirable. In such settings, a common practice is to dichotomize Z by defining response as the event [Z > z*] for a short
follow up time z* so that a monitoring rule based on the probability of this event can be applied. This practice, while
convenient, discards important information. As an illustration, suppose that Z = progression-free survival (PFS) time,
Y is defined as the indicator that Z > 28 days, and a conventional phase II design is constructed based on the probabil-
ity Pr(Y = 1). This leads to the problem that, for example, Y = 1 if Z = 29 days while Y = 0 if Z = 27 days, despite the
fact that these two PFS times differ by a trivial amount. Moreover, in most clinical settings, a much longer follow up
time than 28 days is needed to evaluate a PFS time distribution. While one might define Y = 1 (response) if
Z > 12 months, this approach leads to the problem that Y cannot be scored as a “response” until the patient has been
followed for 12 months without observing disease progression or death. This renders any outcome-adaptive rule based
on Y of no practical use, since most or all patients in a trial are likely to have been accrued before such a stopping rule
can be applied. Moreover, two patients who have been followed for one and 10 months, respectively, without experienc-
ing the event both are considered inevaluable, despite the fact that the second patient is much more likely to be a
responder.

Much more informative data can be obtained by monitoring Z for each patient over a prespecified follow up period,
[0, t*], for a reasonably large value of t*. Denoting the time of administrative right censoring by U, Zo ¼ min Z,Uf g,
and δ¼ I Z<Uð Þ, a patient's observed outcome data at any follow up time consist of the pair (Z o,δ), which is the same
information used to construct a Kaplan–Meier (KM)11 estimator. Several single-arm phase II designs for an experimen-
tal treatment have been proposed to monitor time-to-event outcomes subject to administrative right-censoring based on
(Z o,δ). Thall, Wooten, and Tannir12 proposed a design based on a Bayesian exponential-inverse gamma model with an
early stopping rule defined by a posterior probability comparing the medians of Z with E and with a historical standard
treatment, S. We will refer to this as the E-IG design. Huang et al.13 proposed an optimal two-stage phase II design
based on the Nelson-Aalen estimator14 of the event-free rate at each time point. Kwak and Jung15 proposed a two-stage
phase II design based on a one-sample version of the log-rank test.16 Zhou et al.17 extended the BOP2 design to handle
the time-to-event endpoint based on a Bayesian exponential-inverse gamma model.

The E-IG design assumes that Z follows an exponential distribution with mean μE, and that μE follows a non-
informative inverse gamma (IG) prior. We denote this by Z j μE �Exp μEð Þ and μE � IG aE,bEð Þ. For this prior, mean
(μE) = bE/(aE� 1) and var μEð Þ¼ b2E= aE�1ð Þ2 aE�2ð Þ� �

with the requirement that aE>2. Denoting mean failure time
with S by μS, an informative prior μS � IG aS,bSð Þ is assumed. In practice, the two priors are specified to have the same
mean, bE/(aE� 1) = bS/(aS� 1), and thus they differ in that the IG(aE,bE) prior is non-informative, to reflect little or no
knowledge about Z jE½ �, while the IG(aS,bS) prior is informative, to reflect experience from treating patients with S.
Many physicians like to think in terms of median rather than mean failure time. Under the exponential distribution,
the median of Z is eμE ¼ ln 2ð ÞμE with prior eμE � IG aE, ln 2ð ÞbEð Þ: The E-IG design thus may be described equivalently in
terms of the median, and its early stopping rule takes the general form

Pr eμSþδ<eμE j Dnð Þ< pL, ð1Þ

where δ ≥ 0 is a targeted improvement, and Dn ¼ Zo
i ,δi

� �
, i¼ 1, � � �,n� �

denotes the observed outcome data from the first
n patients in the trial. The decision cut-off pL is a fixed parameter that is calibrated to obtain a design with good operat-
ing characteristics (OCs), which are computed by simulation. A well-calibrated design should have a small probability
of early termination, PET, such as.10, for a desirably large assumed true fixed median eμtrueE , such as the targeted value
E eμSð Þþδ, and a large PET for an undesirably small eμtrueE , such as E eμSð Þ. The OCs include the PET as well as the trial's
sample size distribution and trial duration distribution for each value of eμtrueE studied.

A limitation of the E-IG design is that, in many settings, assuming an exponential distribution may be an over-sim-
plification. To illustrate this problem, we consider data from a retrospective study of transplant-eligible patients with
transformed indolent B-cell lymphoma (Tr-iNHL) in Australia and the United States.18 For patients who had no
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autologous stem cell transplantation in first complete remission (CR1) (n = 98), the distribution of Z = PFS time was
estimated by the KM method. Plugging in the median obtained from the KM estimate, we estimated the survival distri-
bution of Z assuming that it was exponential. We also estimated the survival distribution assuming that it was Weibull,
with this model fit to the study data using the R function survreg from the survival package.19 Figure 1 shows that the
estimates of the PFS time distribution obtained from the estimated Weibull distribution are closer to the KM curve than
those obtained assuming an exponential distribution. These results suggest that the exponential assumption is not valid
for this dataset.

To address this problem in the context of a phase II trial, in this paper we propose an extension of the E-IG design
that assumes a more robust model. Our extension, which we call the PE-G design, replaces the Bayesian E-IG model
with a Bayesian piecewise exponential (PE) distribution for Z with gamma priors on the hazard parameters in the sub-
intervals of the PE model. As an additional comparator, we also define and evaluate a version of the design based on an
assumed underlying Weibull distribution, with truncated normal priors on its shape and scale parameters. We call this
the W-TN design.

Aside from the assumed models, all other elements of the PE-G and W-TN designs are the same as those of the E-
IG design. All three designs use (1) as an early stopping criterion, with the fixed cutoff pL calibrated for each design so
that, when event times are simulated from a log-logistic distribution with desirably large true median event time eμ,
which is the value 6 months in our simulations, the probability of stopping early incorrectly is.10. The Bayesian PE-G
model provides much greater flexibility and robustness for a large set of possible true event time distributions, including
the Weibull, log-logistic, and gamma, as well as for time-to-event data that do not follow any simple parametric model,
such as multi-modal data. The PE model has been applied widely. See, for example, Aslanidou et al.20; Aitkin et al.21;
Breslow22; and Ibrahim et al.23

The remainder of the paper is organized as follows. In Section 2, we describe the general Bayesian phase II design
paradigm, which includes the E-IG design. In Section 3, details of the Bayesian PE-G and W-TN models are provided.
In Section 4, we summarize simulations to study and compare the OCs of the PE-G, W-TN, and E-IG designs, and also
perform sensitivity analyses including the ones to cohort size. Section 5 gives an illustrative example of a single-arm
phase II trial designed and conducted using the PE-G design, followed by general guidelines for using the Shiny appli-
cation to implement a design. We conclude with a discussion in Section 6.

2 | BAYESIAN PHASE II TRIAL DESIGN PARADIGM

A well-designed single-arm phase IIB trial of an experimental treatment, E, should include an interim futility monitor-
ing rule to stop the trial early if the treatment is found to be ineffective compared to standard therapy based on the
observed data. A phase IIB design also may include a superiority rule to stop early if E is seen to be greatly superior to
S. Because phase IIB superiority rules seldom are used in practice, however, we will not consider them here. To con-
struct a Bayesian single-arm phase IIB design, an early stopping rule for futility must be calibrated to have a low
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probability of early termination (PET) if E is sufficiently effective in terms of an assumed fixed true parameter value,
θtrue2 , compared to a smaller value θtrue1 which typically is an estimate of the mean of θ obtained from historical data on
S. Given a fixed targeted improvement δ>0, one may define θtrue2 ¼ θtrue1 þδ: In general, we will denote by PET(θ true)
the probability of early termination by a design if the assumed true parameter value is θ true. For example, consider a
phase IIB trial with a binary response outcome, where θE and θS denote the respective response probabilities with treat-
ments E and S. If a point estimate is bθS ¼ 0:30 and it is considered desirable to achieve an improvement of δ = 0.20,
then the desired fixed target response probability is θtrue2 ¼bθSþδ¼ 0:50. The design parameters include pL in a rule of
the form (1), but with the random probabilities θE and θS in place of eμE and eμS. Additional design parameters are the
monitoring schedule, which may be specified in terms of a time interval such as 1month or a cohort size such as
10 patients, and maximum sample size, N. These design parameters should be calibrated to obtain a small PET(θtrue2 ),
such as.10, for θtrue2 ¼ θtrue1 þδ, the targeted value. It also is desirable to have large PET(θtrue1 ) for θtrue1 an undesirably
low value. Given pL, this may be obtained by choosing sufficiently large N. If, instead, N is fixed, then pL may be cali-
brated by preliminary simulations to obtain a specified small PET(θtrue1 þδ) value.

Under a Bayesian model, prior distributions are assumed for θE and θS. The prior p(θS) is informative, computed
from either historical data or elicited values, whereas the prior p(θE) is non-informative to reflect little or no knowledge
about E. Because a single-arm trial treats all patients with E, p(θS) does not change, but the posterior p θE j Dnð Þ based
on data Dn becomes increasingly more informative as n increases. The early stopping rule (1) may be applied after suc-
cessive cohorts of a given size, or periodically at scheduled times during the trial. Under this Bayesian design paradigm,
there are no hypotheses and no tests. Rather, there is a stopping rule with a monitoring schedule. To validate the
design's behavior, values of PET(θtrueE ), the achieved sample size distribution, and trial duration distribution are com-
puted via simulation for two or more assumed values of θtrueE and fixed values of the other parameters of the assumed
underlying distribution.

This Bayesian phase II design paradigm first was established by Thall and Simon24 for phase IIB trials with binary
outcomes. Extensions have been given, for example, by Thall, Simon, and Estey25 for multiple discrete outcomes using
a multinomial-Dirichlet model, by Jiang et al.26 to incorporate sample-size dependent decision cut-offs, and by Zhou
et al.10 to accommodate complex multiple outcomes and maximize power by evaluating a set of posterior probabilities
computed under a multinomial-Dirichlet model. The PE-G, W-TN, and E-IG designs all follow the same general para-
digm given above based on medians, with the only difference being the assumed underling model.

A phase IIB design also may be constructed by considering θE to be a fixed unknown constant, casting the early
stopping rule in the context of frequentist group sequential hypothesis testing with null hypothesis H0 : θE ¼ θtrue1 , one-
sided alternative H1 : θE > θtrue1 , and computing the test's power at a value θtrue2 > θtrue1 : The trial is stopped early if H0 is
accepted interimly. As noted above, this hypothesis test based approach has been taken by Fleming5 with group sequen-
tial tests, by Simon6 with two-stage tests, and many others. Using this frequentist formulation, setting θtrue1 ¼ 0:3 and
θtrue2 ¼ 0:5, in the above example one would define 1� PET(0.30) to be the test's type I error probability and 1� PET
(0.50) to be the test's power, both computed by also including a final test after the maximum of N patients have been
treated and evaluated if the trial is not stopped early.

3 | BAYESIAN PIECEWISE EXPONENTIAL MODEL

Let n < N denote an interim sample size where the monitoring rule (1) will be applied, with corresponding dataset Dn.
Among the first n patients, denote the maximum of the observed times to failure or censoring by
Tn ¼ max Zo

i : i¼ 1, � � �,n� �
, and denote the number of observed failure times by mn ¼

Pn
i¼1δi: To specify a PE model,

for fixed integer J, we partition the interval 0, Tn½ � into J disjoint sub-intervals, 0,d1½ Þ, d1,d2½ Þ,…, dJ�1,dJ ¼Tn½ � by using
the 1/J, 2/J,� � �, (J� 1)/J quantiles of the set of mn observed failure times. Thus, while J is fixed, Tn and the sub-intervals
change stochastically as the interim sample size n increases and the dataset Dn expands. Let tj denote the 100� j=Jð Þth
percentile of the mn observed event times in Dn, and let t0j > tj denote the smallest observed event time following tj. The
jth interval cut-off is defined as the statistic dj ¼ 1

2

� �
tjþ t0j

� �
, where j¼ 1,…,J�1. The PE model assumes a constant haz-

ard, λj, on the jth interval, and that λ1,…,λJ are independent a priori. We denote λ¼ λ1,…,λJð Þ. To complete the PE
model's hazard specification on 0,∞½ Þ, since there are no event times observed beyond Tn based on the data from
n patients, one may assume any fixed value λJ+1 > 0 for the event rate on (Tn,∞) since this will not affect the posterior
computations for (λ1,…,λJ).

Under the Bayesian PE-G model, we assume that each λj follows a non-informative gamma prior with hyper-
parameters αj and βj, denoted by λj �Gamma αj,βj

� �
: Due to the relatively small sample size of most phase IIB studies,
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we recommend J = 3 to 5 for applications. When no event is observed interimly, it is possible that either a small num-
ber of patients are enrolled, or that the true event rate with E is very low. In such cases, we will continue the trial due
to a lack of information or potential effectiveness of E.

Let δi,j ¼ 1 if the ith patient experiences the event in the jth interval dj�1,dj
� �

, and δi,j ¼ 0 otherwise. Let ei,j denote
the observed event time in dj�1,dj

� �
, formally

ei,j ¼
dj�dj�1 if Zo

i ≥ dj
Zo
i �dj�1 if Zo

i � dj�1,dj
� �

0 otherwise:

8><
>:

Denoting the data vector for event times in the jth interval by Dn,j ¼ e1,j,δ1,j,…,en,j,δn,j
� �

, the likelihood for all of the
data DJ ¼ Dn,1,…,Dn,Jf g is

L DJ jλð Þ¼
YJ
j¼1

L Dn,jjλj
� �¼YJ

j¼1

Yn
i¼1

λ
δi,j
j e�λjei,j :

Due to conjugacy of the exponential distribution and gamma prior, the posterior distribution of the failure rate on
the jth sub-interval is

λj j Dn,j �Gamma αjþΔn,j,βjþMn,j

� �
,

where Δn,j ¼
Pn
i¼1

δi,j is the total number of events and Mn,j ¼
Pn
i¼1

ei,j is the total time to an event or last follow up in the jth

time interval. The posterior of the median eμ is calculated as follows. The distribution of the hazard λ uð Þ is derived from

posterior sampling of λ. Since the survivor function is Pr T > tð Þ¼ S tð Þ¼ exp �R t
0λ uð Þdu

n o
, we solve for eμ¼ S�1 1

2

� �
numerically.

On the jth sub-interval, we assume that λj �Gamma
bλj
c ,

1
c

	 

a priori, so the hyperparameter bλj is the prior mean, the

hyperparameter c quantifies dispersion, and cbλj is the variance. We recommend using a large value, such as c = 100, to

ensure that the prior is non-informative. We determine bλ1, � � �,bλJ as follows. First, we approximate the PE distribution
by a Weibull or log-logistic distribution. For the remainder in this section, we illustrate the design using a Weibull dis-
tribution with survival function S tð Þ¼ exp � t=βWð ÞαWð Þ, hazard function λ tð Þ¼ αWβ�αW

W tαW�1, and median

βW ln 2ð Þf g1=αW . The design with the log-logistic distribution can be shown similarly. For two distinct fixed time points,

t1 and t2, we elicit survival probabilities bS t1ð Þ and bS t2ð Þ from the physician(s) planning the trial, and solve the two

resulting equations for the hyperparameter estimates bαW and bβW : Approximating the PE with the resulting Weibull

bαW ,bβW� �
distribution, we solve for the prior means bλ1, � � �,bλJ of λ1,� � �,λJ using the sub-interval average

bλj ¼ 1

dj�dj�1
� � Z dj

dj�1

bλ tð Þdt¼ dbαWj �dbαWj�1

bβbαWW dj�dj�1
� � ,

for each j. Because bλ tð Þ!∞ as t! 0 when the shape parameter is less than 1, bλ1 is defined as the median of bλ tð Þ for the
first interval j = 1.

4 | SIMULATION STUDY

This section describes a computer simulation study to compare the OCs of the PE-G, W-TN, and E-IG designs. Our sim-
ulation study design follows the design structured similarly as Thall et al.,12 which was based on a trial of
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Xeloda + Gemzar for patients with advanced kidney cancer who previously received immunotherapy and either did
not respond or relapsed. We assume throughout that the maximum sample size is 104, and that accrual follows a Poisson
process with rate two patients per month. Using a cohort size of c = 26, three interim analyses applying the early stopping
rule are performed, when 1/4 (n = 26), 2/4 (n = 52), and 3/4 (n = 78) patients are enrolled. The event times are generated
from a log-logistic distribution, with pdf given by f t αLL,βLLjð Þ¼ βLL=αLLð Þ t=αLLð ÞβLL�1 1þ t=αLLð ÞβLL

� ��2
, where αLL and

βLL are the scale and shape parameters, respectively. Each simulation scenario is characterized by assumed fixed values
of the shape parameter βtrueLL and median survival time, eμtrueE , given in Table 1. The value eμtrueE ¼ 6 months is considered
promising, while eμtrueE ¼ 3 months is considered unacceptably low. We calibrated the probability cutoff pL of each design
so that PET(6) = 0.10 under the assumed log-logistic distribution with shape parameter βtrueLL ¼ 0:8. These assumed true
values, used for simulating data, should not be confused with the random parameters in the Bayesian E-IG and PE-G
models.

For the E-IG design, we assumed a vague inverse-gamma prior eμE � IG 4:442,16:326ð Þ, obtained by assuming that
median survival time has prior mode 3 months and the prior predictive probability Pr T >6 months jαE,βEð Þ¼ 0:365.
For the PE-G design, the priors of λ1,…,λJð Þ were determined using the method with log-logistic distribution described
in Section 3, calibrated for comparability with the E-IG design so that the expected median survival time = 3 months
and the prior predictive probability Pr T >6 months j λð Þ¼ 0:365. Similarly, for the Weibull priors, αW was assumed to
follow a truncated normal distribution on 0,þ∞ð Þ, calibrated to have mean 0.54 and standard deviation 10, and βW was
assumed to follow a truncated normal distribution on 0,þ∞ð Þ, calibrated to have mean 5.91 and standard deviation 10.
MCMC methods were applied to compute posteriors under each model. Each combination of design and scenario was
simulated 1000 times.

To avoid confusion, we note that three different roles are played by event time distributions in our simulations. The
first is the assumed underlying distribution used by the stopping rule, which here are exponential, piecewise exponen-
tial, or Weibull. The second is the distribution used to simulate the data used to calibrate the cutoff pL of each rule, and
we used the log-logistic throughout the simulations reported in Tables 1 and 2 to do this. The third is the assumed true
distribution, with given fixed median either 3 or 6, used to simulate the data in each scenario, and for this we used
either a log-logistic (Table 1) or a Weibull (Table 2).

Table 1 summarizes the simulation results for data generated from a log-logistic with shape βtrueLL ¼ 0:8. Thus, in the
desirable scenario where eμtrueE ¼ 6, all three methods have the same PET = 0.10, as designed. In most cases, for eμtrueE ¼ 3,
the PE-G design outperforms the E-IG design, with substantially larger PET values, smaller average sample size (num-
ber of patients, “No. Pts.”), and shorter average trial duration (“Trial Duration”). While the PE-G design has a much

TABLE 1 Operating characteristics of designs with assumed exponential-inverse gamma (E-IG), piecewise exponential-gamma (PE-G),

or Weibull-truncated normal (W-TN) model, based on data generated from a log-logistic distribution with median either 3 or 6 and shape

parameter between 0.5 and 1.2. Each design was calibrated to have lower cutoff pL giving PET = 0.10 under a log-logistic distribution with

median eμtrue ¼ 6 and shape parameter βtrueLL ¼ 0:8

Scenario PET No. Pt. (SD) Trial duration (SD)

βtrueLL eμtrueE E-IG PE-G W-TN E-IG PE-G W-TN E-IG PE-G W-TN

0.8 3 0.62 0.82 0.84 58.7 (36.8) 54.1 (29.1) 51.7 (28.6) 31.5 (21.8) 28.1 (16.8) 26.8 (16.6)

6 0.10 0.10 0.10 96.3 (23.3) 97.3 (20.7) 97.1 (21.2) 53.4 (14.6) 53.9 (13.2) 53.8 (13.5)

0.5 3 0.46 0.60 0.73 68.8 (38.6) 68.2 (32.8) 57.6 (32.8) 37.6 (23.1) 36.4 (19.7) 30.3 (19.2)

6 0.17 0.13 0.20 90.9 (29.1) 95.2 (23.3) 90.2 (28.3) 50.4 (17.9) 52.7 (14.6) 49.7 (17.2)

0.7 3 0.54 0.75 0.79 63.1 (38) 58.6 (31.1) 55 (30.7) 34.2 (22.7) 30.8 (18.3) 28.7 (17.8)

6 0.12 0.10 0.11 95 (24.8) 97 (21.2) 96.4 (22.2) 52.7 (15.4) 53.7 (13.4) 53.3 (13.9)

1.0 3 0.76 0.93 0.93 50.4 (32.5) 45.6 (23.8) 44.3 (23.9) 26.6 (19.1) 23.3 (13.4) 22.6 (13.5)

6 0.07 0.09 0.09 98.5 (19.9) 98.3 (19.3) 98 (20) 54.7 (12.7) 54.4 (12.5) 54.3 (12.8)

1.1 3 0.83 0.96 0.96 45.6 (29.3) 41.8 (20.7) 40.5 (21) 23.8 (17.1) 21.2 (11.4) 20.5 (11.7)

6 0.05 0.07 0.08 100 (16.9) 99 (18.1) 98.7 (18.8) 55.5 (11.1) 54.9 (11.9) 54.8 (12.2)

1.2 3 0.90 0.99 0.98 41.8 (25.5) 39.3 (17.9) 37.6 (18.7) 21.5 (14.7) 19.8 (9.7) 19 (10.4)

6 0.05 0.07 0.08 100.3 (16.3) 99.1 (17.9) 98.5 (19.4) 55.7 (10.9) 54.9 (11.7) 54.7 (12.5)
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larger PET than the E-IG design, differences in mean sample size and trial duration are small. The standard deviations
of the sample size and trial duration are smaller for the PE-G design. Compared to the W-TN design, the PE-G design
generally had similar or smaller PET values for both eμtrueE ¼ 6 and 3. The most prominent exception is the case where
βtrueLL ¼ 0:5, with the W-TN model giving PET(3) = 0.73 and PET(6) = 0.20, compared to PET(3) = 0.60 and PET
(6) = 0.13 for the PE-G. Thus, the W-TN model gives a larger PET for either eμtrueE value, so calibrating it for good perfor-
mance across all scenarios does not appear to be possible.

Table 2 shows the OCs of the three designs under several Weibull distributions. The PET(6) values of the PE-G
design are reasonably close to 0.10 in all scenarios as αtrueW is varied, but the E-IG and W-TN designs have much larger
PET(6) values in many cases. For eμtrueE ¼ 3, compared to the E-IG, the PE-G design again has much larger PET values
for shape parameter values αW = 0.4 and 0.6, and both methods have PET ≥0.99 for larger values of αW. The W-TN
design generally has both larger PET(6) and larger PET(3) values than the PE-G design, so it appears that calibrating
the W-TN design using data generated from a log-logistic gives a design with undesirable properties. The achieved sam-
ple sizes and trial durations reflect the PET values in each case.

We evaluated the sensitivity of the proposed PE-G design to (i) the cohort size (or equivalently the number of
interim looks), and (ii) the number of partition intervals for the piecewise exponential model. Tables 3 and 4 provide
the results, showing that the PE-G design is generally robust to these two factors.

5 | ILLUSTRATION

In this section, we illustrate how a trial may be designed and conducted using either the PE-G or E-IG design. Suppose
that the PE-G design includes up to R � 1 interim applications of the rule (1) when the proportions 1/R, 2/R, …,
(R � 1)/R of the planned maximum sample size of N patients have been enrolled. To calibrate pL, in the illustration of
the PE-G method, we use the estimated Weibull parameters bαW and bβW , for each candidate pL value, simulate the trial
assuming that the Zi's follow a Weibull bαW ,bβW� �

distribution, compute PET(eμtrue), and iterate this until a value of pL is
obtained that gives the pre-specified desired small value of PET(eμtrue) = 0.10, where eμtrue ¼ 6:5 is the desirably large
value in this application. The value of pL for the E-IG method was calibrated similarly, to give PET(eμtrue) = PET
(6.5) = 0.10, simulating the data from a Weibull.

Suppose from historical data on standard treatment, S, the mean of the median survival time is 2.5 months and the
PFS rate at 6.5 months is 32.7%. Assuming that PFS time follows a Weibull distribution, we solved for the shape and

TABLE 2 Operating characteristics of designs with assumed exponential-inverse gamma (E-IG), piecewise exponential-gamma (PE-G),

or Weibull truncated normal (W-TN) model, based on data generated from a Weibull distribution with median 3 or 6 and shape parameter

between 0.4 and 1.3. Each design was calibrated to have lower cutoff pL giving PET = 0.10 under a log-logistic distribution with medianeμtrue ¼ 6 and shape parameter βtrueLL ¼ 0:8

Scenario PET No. Pt. (SD) Trial duration (SD)

αtrueW eμtrueE E-IG PE-G W-TN E-IG PE-G W-TN E-IG PE-G W-TN

0.4 3 0.53 0.72 0.85 64 (38.3) 61.8 (31.5) 50.4 (28.5) 34.8 (22.9) 32.5 (18.5) 25.9 (16.1)

6 0.17 0.13 0.26 90.8 (29.2) 95.3 (23.1) 86.9 (30.3) 50.3 (17.9) 52.7 (14.4) 47.8 (18.2)

0.6 3 0.81 0.95 0.98 47.1 (30.4) 45.6 (22.6) 41.9 (19.7) 24.6 (17.8) 23.2 (12.6) 21.1 (10.6)

6 0.12 0.12 0.17 94.9 (24.8) 96.3 (21.6) 94.4 (23.4) 52.6 (15.4) 53.3 (13.7) 52.1 (14.6)

0.8 3 1.00 1.00 1.00 33.6 (14) 36.2 (14.7) 33.9 (12.9) 16.8 (7.6) 18.2 (7.8) 17 (7)

6 0.10 0.12 0.15 96.9 (22) 97 (20.6) 95.3 (22.3) 53.8 (13.8) 53.7 (13.1) 52.6 (14)

1.0 3 1.00 1.00 1.00 30.4 (10) 31.5 (11.2) 29.8 (9.2) 15.2 (5.6) 15.7 (6.2) 14.9 (5.2)

6 0.11 0.12 0.17 97.3 (20.1) 97 (20.3) 94.6 (22.7) 53.8 (12.7) 53.6 (12.9) 52.1 (14.1)

1.1 3 1.00 1.00 1.00 28.9 (8.2) 30.1 (9.5) 28.2 (7.2) 14.5 (4.7) 15.1 (5.4) 14.2 (4.3)

6 0.11 0.10 0.14 97.9 (18.8) 98.2 (18.7) 95.6 (22.2) 54.1 (12.1) 54.3 (12.1) 52.8 (13.9)

1.3 3 1.00 1.00 1.00 27.6 (6.2) 27.9 (6.8) 26.8 (4.6) 13.8 (3.8) 14 (4.1) 13.5 (3.3)

6 0.20 0.09 0.16 95.8 (18.4) 98.8 (17.6) 95.1 (22.4) 52.6 (12.1) 54.7 (11.7) 52.5 (14.1)
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scale parameters 0.50 and 5.2025. A maximum of 78 patients will be enrolled with an assumed accrual rate of 3 patients
per month, and the last patient will be followed for an additional 6 months. We conduct interim analyses for cohorts of
c = 26, when 1/3 (n = 26) and 2/3 (n = 52) of the patients have been enrolled. The prior of the PE-G model is based on
the historical data using the Weibull distribution, as described in Section 3. The prior of the median PFS for E-IG is
assumed to be IG 3,5ð Þ, which has mean 2.5 and variance 6.25. We calibrated pL to obtain PET = 0.10 at eμtrueE ¼ 6:5 for
both the PE-G and E-IG design. Given these calibrated pL values, we calculated the PET(eμtrueE ) = PET(2.5) = 0.85 for
the PE-G design and 0.72 for E-IG design. Thus, in this case, the PE-G design is much more desirable than the E-IG
design in terms of PET for an undesirably small eμtrueE .

To mimic a real-world scenario for trial conduct, we simulated a dataset with underlying median time-to-disease
progression or death following a Weibull distribution with shape parameter 0.5 and scale parameter 5.2025, which cor-
responds to a median PFS of 2.5 months. Based on the interim data from 52 patients, the KM estimate of the median
PFS is 2.41. The posterior mean of the median PFS under the E-IG model is 4.66. For the PE-G model, the estimated
median PFS is 2.41, derived from the posterior mean of the empirical hazards in the sub-intervals. Figure 2 shows that

TABLE 3 Operating characteristics of the designs with exponential-inverse gamma (E-IG) or piecewise exponential-gamma (PE-G)

models, when patients are monitored in cohorts of size 2 or 4, under log-logistic distributions with median 3 or 6 and shape

parameter βLL = 0.8

Scenario PET No. Pts. SD (No. Pts.) Trial duration SD (Trial duration)

Cohorts of size 2eμtrueE E-IG PE-G E-IG PE-G E-IG PE-G E-IG PE-G E-IG PE-G

3 0.54 0.69 57.6 59.0 44.12 38.19 31.3 31.2 25.43 21.75

6 0.10 0.10 94.7 94.8 27.86 27.88 52.6 52.6 16.45 16.51

Scenario PET No. Pts. SD (No. Pts.) Trial duration SD (Trial duration)

Cohorts of size 4eμtrueE E-IG PE-G E-IG PE-G E-IG PE-G E-IG PE-G E-IG PE-G

3 0.54 0.74 58.1 55.9 43.63 36.79 31.6 29.4 25.17 20.83

6 0.10 0.10 94.9 94.9 27.40 27.47 52.7 52.7 16.31 16.32

TABLE 4 Operating characteristics of PE-G design, when number of subinterval partition (J) is 4 or 5, based on data generated from a

log-logistic distribution with median either 3 or 6 and shape parameter between 0.5 and 1.2. The design was calibrated to have lower cutoff

pL giving PET = 0.10 under a log-logistic distribution with median eμtrueE ¼ 6 and shape parameter βtrueLL ¼ 0:8

Scenario PET No. Pt. (SD) Trial duration (SD)

βtrueLL eμtrueE J = 4 J = 5 J = 4 J = 5 J = 4 J = 5

0.8 3 0.83 0.84 55.2 (28.3) 54.7 (28.1) 28.6 (16.3) 28.3 (16.2)

6 0.10 0.10 97.7 (19.8) 98 (19.1) 54.1 (12.8) 54.2 (12.4)

0.5 3 0.55 0.56 72.1 (32.4) 72.2 (32.3) 38.6 (19.5) 38.6 (19.4)

6 0.11 0.11 96.8 (21.4) 97.1 (20.7) 53.6 (13.6) 53.8 (13.2)

0.7 3 0.74 0.76 60.5 (30.7) 59.9 (30.2) 31.7 (18) 31.3 (17.6)

6 0.09 0.10 98.2 (19.4) 97.8 (19.4) 54.4 (12.6) 54.2 (12.6)

1.0 3 0.94 0.95 45.9 (23.2) 45.7 (22.7) 23.3 (12.8) 23.1 (12.5)

6 0.10 0.11 98.1 (19.2) 97.5 (19.8) 54.3 (12.4) 53.9 (12.9)

1.1 3 0.98 0.97 41.9 (20.2) 41.9 (20.1) 21.1 (11) 21.1 (10.8)

6 0.09 0.11 98.3 (19) 97.3 (20.1) 54.4 (12.3) 53.8 (12.9)

1.2 3 0.99 0.99 39.2 (17.8) 39.3 (18.3) 19.7 (9.6) 19.7 (9.9)

6 0.09 0.12 98.5 (18.5) 97.1 (20.5) 54.5 (12.1) 53.6 (13.1)
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the PFS probability estimates under the PE-G model are much closer to the KM estimates than the estimates under the
E-IG model. The early stopping thresholds pL are 0.046 for the PE-G design and 0.0015 for the E-IG design. The poste-
rior probability Pr eμSþδ<eμE j Dnð Þ is 0.0072 for the PE-G design and 0.0218 for the E-IG design. Therefore, the trial
would be stopped early at n = 52 by the PE-G design, but not by the E-IG design. Since the treatment is ineffective if
the underlying median PFS of eμtrueE ¼ 2:5, stopping the trial early is the correct decision in this case. This example illus-
trates that the PE-G and E-IG designs may behave very differently, with different median estimates and different
go/no-go decisions.
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FIGURE 2 Estimation of the progression-free survival distribution by the Kaplan–Meier method, or assuming either a piecewise

exponential or exponential distribution

FIGURE 3 User interface for the Shiny application of PE-G method
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We are developing a Shiny app to facilitate the application of the proposed design. Figure 3 shows the user interface
of the software under development, which will be deployed at www.trialdesign.org.

6 | DISCUSSION

We have proposed a Bayesian phase II design for a single-arm trial to monitor one event time. The design is motivated
by the desire to obtain a more robust version of the design proposed by Thall, Wooten, and Tannir,12 which is based on
an exponential-inverse gamma model. By replacing this model with a piecewise exponential with gamma priors on the
hazard parameters in the model's subintervals, a design with much more desirable OCs is obtained. We also defined
and studied a third design, based on an assumed Weibull distribution with parameters following truncated normal
priors. Simulations show that, compared to the E-IG, the PE-G based design has much larger PET values in many cases
where the true median event time is small and it is desirable to stop the trial for futility. Additionally, the new design
obtains smaller sample sizes and shorter, less variable trial durations when the assumed median event time is unaccept-
ably low. Compared to the Weibull based design, the PE-G design does a better job of controlling incorrect stopping
probabilities to be small when the true median event time is desirably large. Computer software, including a user inter-
face, will be provided for implementing the new design.

While the proposed PE-G design is useful for the simple setting that it addresses, there are several limitations. It
accommodates one time-to-event outcome, so trials with multiple event times or some combination of discrete and con-
tinuous outcomes would require a more complex design. Our results suggest that assuming a piecewise exponential
likelihood for each event time in such a setting is likely to produce a robust design. A final point is that we have
assumed patients are homogeneous. Constructing a generalization that accommodates patient heterogeneity with
subgroup-specific stopping rules is an area for future research.
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