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Abstract

This chapter presents general Bayesian concepts and some specific designs for human clinical

trials of targeted agents. The designs employ decision rules that use each patient’s protein or

gene expression biomarkers, and possibly conventional prognostic variables, to choose an in-

dividualized treatment regime that may include one or several targeted agents. The Bayesian

rules are sequentially adaptive in that they are refined repeatedly during the trial by using

posteriors updated as new patient data are acquired. A design’s final conclusion is not one rec-

ommended treatment regime for all patients. Rather, it is a function that maps each patient’s

covariates to a treatment regime targeting that patient’s abnormally expressed biomarkers.

Illustrations include dose-finding trials, extensions of the randomized discontinuation design,

and a variety of randomized comparative group sequential trial designs.

Keywords: Adaptive design; Bayesian design; Dose-finding; Individualized treatment;
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1. Introduction

This chapter provides an overview of Bayesian concepts and methods for design and conduct

of clinical trials of treatment regimes including targeted agents. A targeted treatment regime

may consist of one agent, a combination of agents, or a sequence of agents given over multiple

stages, and it also may specify the dose, schedule, or schedule-dose combinations of each agent.

The illustrations include Bayesian dose-finding based on time to toxicity, dose-finding based

on both toxicity and efficacy, and randomized trials to evaluate effects of multiple targeted

regimes on efficacy or an event time such as progression-free survival (PFS) or overall survival

(OS) time. Patient-specific or subgroup-specific decision rules are defined in terms of a vector,

Z = (Z1, · · · , Zp), of binary or quantitative biomarkers such as gene or protein expressions, and

possibly a vector, X = (X1, · · · , Xq), of conventional prognostic variables such as performance

status or number of prior therapies. The decision rules are refined repeatedly during trial

conduct using updated posteriors as new patient data are acquired, hence are sequentially

adaptive between patients.

Denote the set of agents being evaluated by T = {τ1, · · · , τJ}. Each design’s final conclu-

sion is not a single optimal element or subset of T to be given to all patients. Rather, a design

selects or recommends “individualized” treatment combinations that choose a subset of T

tailored to a given patient’s (Z,X). An individualized treatment regime of targeted agents is

a function, ρ, from the set of all (Z,X) to the set of all 2J subsets of T , with ρ(Z,X) = φ, the

empty set, corresponding to “Do not treat this patient,” DNT . Each set ρ(Z,X) includes

τj’s that are “targeted” at one or more gene or protein biomarkers in Z. In this sense, the

designs and rules are adaptive within patients. For example, temporarily ignoring X, if T =

{τ1, τ2, τ3}, with τ3 conventional therapy, and Z = (Z1, Z2) are two indicators of particular

cancer cell surface markers, the optimal regime may be ρ(0, 0) = {τ3}, ρ(1, 0) = {τ1, τ3},

ρ(0, 1) = {τ2, τ3} ρ(1, 1) = {τ1, τ2, τ3}. Alternatively, if no conventional therapy exists for the

disease, then T = {τ1, τ2} and ρopt(0, 0) = φ, no treatment. An example is well-differentiated

liposarcoma, with τ1 targeting estrogen receptor positive disease (Z1 = 1) and τ2 targeting

androgen receptor positive disease (Z2 = 1). If it is certain that (1) τj can only benefit
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patients with Zj = 1, (2) there are no other agents with established efficacy, and (3) toxicity

is negligible, then an optimal regime would be ρ(1, 1) = {τ1, τ2}, ρ(1, 0) = τ1, ρ(0, 1) = τ2,

ρ(0, 0) = φ. If any of these three assumptions are not true, then one or more clinical trials to

evaluate τ1 and τ2 must be conducted. In early phase I or I-II evaluation, τj may be extended

to a set {τj(d1), · · · , τj(d5)} of the agent given at 5 possible doses.

While a great deal of science motivates use of Z, in clinical practice it often is important

to include common, well understood prognostic covariates, X. For example, an agent τ1

may target an overexpressed protein represented by Z1 with the aim to disrupt a signaling

pathway leading to cancer cell growth. If τ1 also causes immunosuppression and a patient

has received X1 = 2 previous immunosuppressive therapies then potential adverse effects of

τ1 in that patient must be considered along with its potential benefits. Statistical formalisms

and genomic/proteomic data notwithstanding, physicians have been choosing individualized

treatment regimes based on patient prognostic variables for thousands of years.

To provide a concrete frame of reference, many of the designs discussed here will refer

to the problem of clinically evaluating a new molecule, M, targeting the KRAS pathway

in patients with locally advanced non-small-cell lung cancer (NSCLC). The patients have

approximate median DFS time 8 months with standard therapy comprised of chemotherapy

with carboplatin + paclitaxel and radiation therapy (chemoradiation, C). Each component

of C is given at an established dose/schedule. The two patient subgroups are KRAS+ (Z = 1,

abnormal expression, caused by a mutated KRAS gene) and KRAS- (Z = 0, normal KRAS

gene expression or “wild type”). Two treatments are considered, C and C +M .

2. Design Issues for Trials of Targeted Agents

In developing a targeted anti-cancer therapy, conventionally it first is demonstrated that a

molecule designed to activate or de-activate a particular target can kill cancer cells in vitro,

then that it can shrink tumors or extend survival in rodents that have been given the targeted

cancer. Such results are not sufficient to imply that the agent will be either safe or effective in

humans, or what the best dose or schedule of the agent, or possibly a combination including

the agent, may be. This can be assessed only by giving the agent to humans who have the
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disease and observing their outcomes in a clinical trial. While this empirical point is obvious

to biostatisticians and clinical oncologists, it often is missed by laboratory-based researchers

who may be overly optimistic based on pre-clinical data. Because many new targeted agents

turn out to be ineffective in humans, researchers should be prepared for failure, not just

success. Because many new agents are not as safe as anticipated and may have severe adverse

effects, formal safety monitoring/stopping rules are essential to protect patients enrolled in

clinical trials. For targeted agents showing substantive anti-disease effects in humans, this

may not be due to the precise mechanism initially believed, and there may be anti-disease

effects in patients not having the targeted gene or protein abnormality. Trial designs must

anticipate such unexpected outcomes.

As new targeted agents flood the clinical trial arena, it is essential to utilize resources

efficiently. A major feasibility issue is the time required to evaluate Z for each newly enrolled

patient, since it is undesirable to delay therapy unduly. It also is important to harvest as

much useful information per patient as possible. In addition to OS time, a patient’s actual

clinical outcome often is a vector of longitudinal and event time variables. In treatment of

solid tumors, these often include some combination of ordinal severities of different types of

toxicity (cf. Bekele and Thall, 2003), time-to-toxicity (Cheung and Chappell, 2000; Yuan

and Yin, 2009), and an ordinal response, such as PD = progressive disease, SD = stable

disease, PR = partial response, CR = complete response for solid tumors. These variables

often are evaluated repeatedly, subject to informative discontinuation of follow up due to

patient drop-out or the decision by the attending physician that toxicity or PD precludes

further treatment (cf. Wang, et al., 2012). In chemotherapy of acute leukemia or lymphoma,

typical outcomes include the times to infection, CR, or resistant disease (Thall, Estey and

Sung, 2002) and, among patients who initially achieve a CR, subsequent DFS time (Shen

and Thall, 1998). In stem cell transplant (SCT), common outcomes include the times to

engraftment, disease recurrence, infection, graft-versus-host-disease, or death. SCT trial data

also routinely include longitudinal counts of a variety of blood cells defined in terms of their

surface biomarkers. In such settings, the common practice in trial design of characterizing
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patient outcome as either one binary “response” or one right-censored event time wastes a

great deal of useful information. Ignoring covariates, multiple outcomes, longitudinal data, or

adaptive treatment decisions made by physicians may lead to misleading conclusions about

treatment effects (cf. Hernan, Brumback, and Robins, 2000; Wahed and Thall, 2013). With

complex outcomes and treatment-biomarker interactions, “treatment effect” becomes a high-

dimensional object, and conventional statistical methods become inadequate. Utilizing all

or most of the available information is very challenging, very time consuming, and typically

leads to complex statistical models and trial designs (cf. Thall and Wathen, 2005; Thall, et

al., 2007; Saville, et al., 2009; Zhao, et al. 2011).

Bayesian models and posterior decision criteria provide a practical paradigm to account

for multiple sources of variability, borrow strength between related subgroups, and construct

designs with multiple, sequentially adaptive decision rules (cf. Thall, Simon, and Estey,

1995). Such decision rules may (1) select an optimal treatment regime or a set of regimes;

(2) terminate one or more regimes, or the entire trial, due to excessive toxicity or poor

efficacy; (3) change sample size based on updated estimates of design or model parameters;

or (4) change randomization probabilities adaptively within subgroups to favor empirically

more successful regimes (cf. Thall and Wathen, 2005, 2007). With targeted agents, each

of these decisions may be made differently for individual patients or subgroups depending

on (Z,X). Optimizing each patient’s regime as a function of (Z,X) is the ultimate goal of

individualized, targeted treatment. Since the combination of decision rules used in a trial

may be quite complex, in practice it is necessary to use computer simulation of the trial as

a design tool to calibrate fixed prior or hyperprior parameters, and design parameters, to

ensure that the design has good frequentist properties.

In clinical research, false negative conclusions may be far more destructive errors than false

positives. Despite the deeply ingrained requirement to control Type I error in conventional

clinical trials, a false positive conclusion almost certainly will be discovered if an ineffective or

unsafe new treatment receives regulatory approval and subsequently is used to treat patients.

How detrimental this is to patients during this second, so-called “phase IV” evaluation process
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depends on what other treatments are available. Because the medical research community

avidly seeks therapeutic improvements, any treatment advanced by a false positive must

compete with promising new treatments, and often with previous “standard” treatments. In

contrast, a putatively ineffective new agent that actually could provide substantive benefit

is unlikely to be explored further or given to future patients. One prominent cause of false

negatives is that, because immense resources are spent on large scale trials of very few agents,

many new agents simply are not evaluated clinically. A less obvious problem is the common

failure to do a good job of optimizing a new agent’s dose and schedule. If an ineffective or

suboptimal dose or schedule is chosen in a small early phase trial, this may cripple a new

agent’s ability to hit its target, and subsequent evaluation of the agent’s long-term anti-disease

effects may be doomed to failure (cf. Thall, 2013, Section 2).

In trials of targeted agents, these problems are more severe. Because many regime-

biomarker interaction parameters must be estimated, the risks of incorrect decisions are

much greater. Rather than two C + M and C treatment effect parameters to be evaluated

and compared, the NSCLC trial has four effects on each outcome, corresponding to (ρ, Z)

= (C + M, 1), (C + M, 0), (C, 1), (C, 0), and the effect of M must be evaluated in each of

the two biomarker subgroups. With J targeted agents and p binary biomarkers, there are

J × p agent-biomarker interactions, and potentially 2J regimes. Since even moderately large

J and p produce intractably large numbers of targeted regimes and parameters to be evalu-

ated, inevitably clinical trial strategies must include practical, reliable methods for dimension

reduction that select agents, biomarkers, and agent-biomarker combinations to evaluate.

3. Dose Finding Trials

3.1 A Phase I Trial With KRAS+ Patients

An optimal dose of M, when combined with C, may be determined in several ways, depending

on clinical outcomes, ethics, and feasibility. A 24-patient phase I trial was designed to choose

an “optimal” dose, dopt, from four levels, based on toxicity. Toxicity was defined to include

grade 4 esophagitis, esophageal perforation, dermatitis, or nausea/vomiting; and grade 3 or 4
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non-hematologic toxicities including anorexia, fatigue, infection, and pneumonitis, occurring

within 70 days from the start of therapy. With C + M, most of the risk of toxicity may be

attributed to C. Due to logistical difficulties with the long, 70-day toxicity evaluation period,

the TiTE-CRM was used, with target toxicity probability 0.60. This unusually high target

was chosen because there is a baseline rate of .35 with C and, as in most toxicity-based

phase I trials, it was believed that a dose associated with this higher toxicity rate would also

provide higher efficacy in terms of longer DFS. Accrual was restricted to KRAS+ patients,

motivated by the belief that it would be unethical to include KRAS- patients since they do

not have the biomarker targeted by M and thus should not be exposed to potential toxicity

of M before dopt has been determined. The plan was to conduct a subsequent randomized

trial of C versus C +M(dopt) including both KRAS+ and KRAS- patients, where M(dopt) is

M given at the dopt determined in phase I. Excluding KRAS- patients from phase I implies

that it is more desirable to deprive KRAS- patients of potential benefit of M as a trade-off

for excluding the additional risk of toxicity, due to M and beyond that of C, before dopt has

been determined. At the same time, it was believed that, given the dopt for M for which the

probability of toxicity with C +M(dopt) was closest to 0.60, it would be ethical to randomize

patients between C and C +M(dopt).

3.2 A Phase I Trial With KRAS+ and KRAS- Patients

It may be argued that, given the 8 month median DFS with C, potential improvement in

DFS due to adding M is a desirable trade-off for the risk of toxicity in KRAS- patients in

phase I. If both KRAS+ and KRAS- patients are included in phase I, one may consider the

possibility that these two subgroups may have different toxicity rates and hence different dopt

values. The following phase I design accommodates this.

DefineG subgroups in terms of (Z,X), indexed by g = 0, 1, ..., G−1 with g = 0 the baseline

subgroup. The goal is to determine doptg for each g. Denote the numerically standardized

doses by D = {d1, · · · , dm}. Let T = time to toxicity, T o = observed time to toxicity or right-

censoring, and δ = I(T o = T ), so (T o, δ) is the observed outcome. Let T ∗ be a fixed reference

time, specified by the physician, and denote π(d, g, θθθ) = Pr(T ≤ T ∗ | d, g, θ), the probability
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of toxicity by T ∗ for a patient in subgroup g given dose d ∈ D, where θθθ is the model parameter

vector. In the NSLC trial, m = 4 doses, and T ∗ = 70 days. One might use Z = I(KRAS +),

X1 = I(good PS), and X2 = 0, 1, or 2 previous treatments to determine G = 12 subgroups.

Since it is not feasible to reliably determine G = 2 × 2 × 3 = 12 optimal doses with Nmax

= 24, either a larger Nmax is needed or G must be reduced. One may obtain G = 4 by

collapsing (X1, X2) into X1,2 = I[X1 = 1 and X2 = 0], an indicator of favorable prognosis. In

practice, a design’s reliability should be investigated for several (G,Nmax) pairs by computer

simulation during the design process. The trade-off between practical limitations on Nmax

and the desire to investigate larger G or Z is central to trial design for individualized therapy

and targeted agents.

The pdf and survivor function of [T | d, g, θ] are f(t | d, g, θ) and F(t | d, g, θθθ) = Pr(T ≥

t | d, g, θθθ) for t > 0, so π(d, g, θθθ) = 1 - F(T ∗ | d, g, θθθ). The distribution of T may be chosen

based on prior knowledge about the form of the toxicity hazard function over [0, T ∗]. Some

practical choices are a Weibull, which has a monotone increasing, decreasing, or constant

(exponential) hazard, a gamma, or a lognormal, which may have a non-monotone hazard.

Model choice depends on flexibility, tractability and robustness, and should be studied by

computer simulation. A linear term characterizing how T varies with (d, g) is

η(d, g, θ) = µ+ αd+
G−1∑
g=1

(βg + dγg),

with θθθ = (µ, α, β1, · · · , βG−1γ1, · · · , γG−1), so dim(θθθ) = 2G. For the lognormal, η(d, g, θ) is the

mean of log(T ), for the exponential or Weibull η(d, g, θ) acts on the log hazard domain, etc.

The baseline subgroup (g = 0) dose effect is α and, in each subgroup g ≥ 1, µ + βg is the

main effect and α+γg is the dose effect, so γg is the dose-subgroup interaction. It is essential

to include the γg ’s since, if in fact γtrueg 6= 0, then assuming a model without the γg ’s can

lead to erroneous conclusions and a design with poor performance. Each patient’s data are

(T o, δ, d, g), and the likelihood is the usual form for right-censored event time data,

L(T o, δ|d, g, θ) = {f(T o | d, g, θ)}δ {F(T o | d, g, θ)}1−δ.

For n patients, datan = {(T oi , δi, d[i], gi), i = 1, ...n}, the likelihood is Ln =
∏
i L(T oi , δi|d[i], gi, θ),
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and given prior p(θθθ | θ̃θθ), the posterior is p(θθθ | datan) ∝ Ln × p(θθθ | θ̃θθ), computed by Monte

Carlo Markov chain methods (Robert and Cassella, 1999).

For priors, one may assume µ ∼ N(µ̃, σ̃2
µ), α ∼ N0(α̃, σ̃

2
α), a normal truncated below

at 0 to ensure that α > 0, β1, · · · , βG−1 ∼ iid N(β̃, σ̃2
β) and γ1, · · · , γG−1 ∼ iid N(γ̃, σ̃2

γ),

with the additional constraints that all α + γg > 0. In the lognormal case where log(T ) ∼

N(η(d, g, θ), σ2
T ) the variance σ2

T may have an inverse gamma or uniform prior. There are

several strategies for establishing θ̃θθ (cf. Thall and Cook, 2004; Thall et al. 2011). One

approach is to elicit prior means of π(dr, g, θθθ) for all mG pairs of (dr, g), use nonlinear least

squares or pseudo-sampling (Thall and Nguyen, 2012) to solve for the hyperparameter means,

and calibrate the hyperparameter variances during the computer simulation to obtain θ̃θθ that

gives sensible priors for the π(d, g, θθθ)’s, and a design with good operating characteristics.

Prior effective sample size (Morita, Thall and Mueller, 2008, 2010) may be used as a tool in

this process.

Generalizing the TiTE-CRM, given a fixed target π∗, each dopt(g) = dopt(g, data) may be

defined as the dose minimizing |π∗−π(dr, g, data)|, where π(dr, g, data) =E{π(dr, g, θ) | data},

r = 1, ...,m. If desired, different subgroup-specific fixed targets π∗(g), g = 0, 1, ..., G− 1 may

be specified. E.g., in the NSCLC trial with G = 4 based on Z = {+1,−1} and X1,2, one may

use π∗g = .35 in the two subgroups with X1,2 = 1 and π∗g = .50 in the two subgroups with

X1,2 = 0. The simplest model ignores X and has G = 2, so θθθ = (µ, α, β1, γ1).

The trial may be conducted as follows. In subgroup g, treat the first 3 patients en-

rolled at that subgroup’s specified starting dose, and for each patient thereafter give the

dose dopt(g, datan) based on the current posterior using datan from all subgroups. One also

may impose the constraint that, within each subgroup, an untried dose level may not be

skipped when escalating. In subgroup g, if the lowest dose is unacceptably toxic, formally

Pr{π(d, g, θθθ) > π∗g | datan} > pg,U , then accrual to that subgroup is terminated with no dose

selected; otherwise, at the end of the trial, dopt(datag,Nmax) is chosen.

3.3 A Phase I-II Trial With Both KRAS+ and KRAS- Patients

A Bayesian phase I-II method that bases dose-finding on Y = (YE, YT ), where YT indicates
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toxicity and YE indicates efficacy, accounting for prognostic covariates X, was proposed by

Thall, Nguyen, and Estey (2008). This may be extended to include a binary biomarker,

Z, as follows. For a patient with covariates (Z,X) treated with dose d, let πk(d, Z,X, θθθ)

= Pr(Yk = 1 | d, Z,X, θθθ), k = E, T, with πππ(d, Z,X, θθθ) = (πE(d, Z,X, θθθ), πT (d, Z,X, θθθ)).

Denote these for brevity by πE, πT and πππ when no meaning is lost. The method requires an

informative prior on X effect parameters, obtained from historical data. In contrast, non-

informative priors on any effects associated with either Z or d should be used. Rather than

choosing one best dose, the trial data are used to select optimal (Z,X)-specific doses.

The data from the trial’s first n patients are Dn = {(Yi, Zi,Xi, d[i]), i = 1, · · · , n}. Denote

the historical data by H = {(Yi,Xi, τ[i]), i = 1, · · · , nH}, where {τ1, · · · , τm} are historical

treatments and τ[i] is the ith patient’s treatment. Unsubscripted τ denotes either a dose

or historical treatment. Denote X+= (Z,X). The following Bayesian model provides a

basis for using H to learn about covariate effects and, during the trial, account for joint

effects of (d,X+) on πππ based on DHn = Dn ∪ H. For a patient with covariates X+= (Z,X)

treated with τ , let πa,b(τ,X
+, θθθ) = Pr(YE = a, YT = b | τ,X+, θθθ), for a, b ∈ {0, 1}, with

πk(τ,X
+, θθθ) = Pr(Yk = 1 | τ,X+, θθθ) for k = E, T. For link function φ, denote the linear

terms ηk = φ(πk). A model is determined by the marginals πE = φ−1(ηE) and πT = φ−1(ηT )

and one association parameter, ψ. For a bivariate model, one may use Gumbel-Morgenstern

copula to obtain

πa,b = πaE (1− πE)1−a πbT (1− πT )1−b + (−1)a+b ψ πE (1− πE) πT (1− πT ), (1)

with −1 ≤ ψ ≤ 1. For fitting H, the linear terms are

ηk(τr,X, θθθ) = µk,r + βββkX + ξξξk,rX, for r = 1, · · · ,mH and k = E, T. (2)

The covariate main effects are βββk = (βk,1, · · · , βk,q), interactions between X and historical

treatment τr are ξξξk,r = (ξk,r,1, · · · , ξk,r,q), and the mH historical treatment main effects are µµµk

= (µk,1, · · · , µk,mH
). For the trial data, the linear terms are

ηk(d,X
+, θθθ) = φk(d,αααk) + βββ+

k X+ + dγγγ+k X+, for k = E, T. (3)
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For each k, covariate main effects are βββ+
k = (βk,Z , βββk), and dose-covariate interactions are γγγ+k

= (γk,Z , γγγk). Main dose effects on πE and πT are characterized by φE(d,αααE) and φT (d,αααT ),

which should be formulated to reflect the application. For cytotoxic agents, φT (x,αααT ) =

αT,0 + αT,1x with Pr(αT,1 > 0) = 1 ensures πT (d,Z, θθθ) increases in d, while πk non-monotone

in d may be appropriate for biologic agents.

The likelihood for the current trial data is

L(Dn | θθθ) =
n∏
i=1

1∏
a=0

1∏
b=0

{πa,b(d[i],Zi, θθθ)}1{Yi=(a,b)}.

and the posterior based on DHn is

p(ααα,γγγ+, βββ+, ψ | DHn ) ∝ L(Dn | θθθ) p(ααα,γγγ+) p(βββ, ψ | H). (4)

To determine a prior for the model used in trial conduct, one starts by fitting H to

obtain an informative posterior p(µµµ,βββ, ξξξ, ψ | H). The marginal posterior p(βββ, ψ | H) for the

prognostic covariates is used as an informative prior on (βββ, ψ) at the start of the trial. Since

nothing is known about effects ααα, γγγ of the experimental agent, and βk,Z , γk,Z are biomarker

effects, their priors all should be non-informative. For prior means, set E(γγγ+) = 0, and obtain

prior E(ααα) by eliciting means of πE(dj,X
+, θθθ) and πT (dj,X

+, θθθ) at several values of dj and

solving for E(ααα), using one of the least squares or pseudo sampling methods noted earlier. As

before, prior variances may be calibrated to control the ESS of the priors on p{πk(dj,X+, θθθ)}

for all k = E, T and dj, and obtain a design with good OCs.

During the trial, (Z,XXX)-specific doses are chosen adaptively using quantities computed

from the posterior, p(ααα,γγγ+, βββ+, ψ | DHn ). To account for both d and X+, two decision criteria

are used. The first determines whether d is acceptable for given (Z,X). The second is the

desirability of each d given (Z,X), using a function quantifying trade-off between πE and

πT . Constructing covariate-specific acceptability bounds from elicited values, while straight-

forward, is somewhat involved. Several possible geometric methods may be used to define

the desirability ζn(d, Z,X) of d for a patient with biomarker Z and prognostic covariates X,

based on efficacy-toxicity trade-offs. Detailed explanations are given in Thall, Nguyen and

Estey (2008). Given Dn, the set An(X+) of acceptable doses for a patient with covariates
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X+ = (Z,X) consists of all d satisfying

Pr[πE(d,X+, θθθ) < πE(X+) | DHn ] < pE and Pr[πT (d,X+, θθθ) > πT (X)+ | DHn ] < pT . (5)

The cut-offs pT and pE should be calibrated to obtain good OCs. During the trial, An(X+)

changes adaptively for each X+ = (Z,X1,2), and if An(X+) is empty no dose is acceptable

for that patient. To conduct the trial, An(X+) is computed for each new patient, and the

following decision rules are applied. If An(X+) is empty, the patient is not treated. If An(X+)

consists of a single dose then that dose is used by default. If two or more dose are acceptable,

the the dose maximizing ζn(d, Z,X1,2) is given.

As an illustration, using (Z,X1,2) from the NSCLC trial, suppose the doses of M are

{100, 200, 300, 400, 500} mg/m2. A possible set of optimal doses if the agent is active in

both biomarker subgroups, the KRAS+ patients need less of the agent to obtain the same

anti-disease effect, and Good prognosis patients can tolerate a higher dose, is as follows:

Z X1,2 dopt(Z,X1,2)

KRAS+ Good 400

KRAS+ Poor 200

KRAS- Good 500

KRAS- Poor 300

Using dopt(Z,X1,2) is an individualized version of targeted agent M when administered in

combination with C.

4. A General Structure for Learning, Refining, and Confirming

It is useful to think about the process of developing and clinically evaluating new treatment

regimes as having “learning” and “confirmation” stages (cf. Sheiner, 1997). In the conven-

tional paradigm, one may be consider phases I and II learning and phase III confirmation.

A sequence of trials of targeted agents is more complex, with more stages, that may overlap.

Learning what belongs in Z via genomics/proteomics, “discovery,” is not the same thing as

using Z to learn about effects of ρ on clinical outcomes, although they certainly are related.

A possible multi-stage strategy for the process of clinical evaluation is as follows. In practice,
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each ρ must include a small number of elements of T in order to be therapeutically feasible.

E.g., a five-agent combination may be suggested by Z, but new five-agent dose combinations

are very difficult to ethically and feasibly evaluate for safety in humans.

Delivery Optimization. Based on early safety and possibly efficacy, determine or optimize

dose or dose-schedule, for each τ ∈ T , possibly certain 2-agent or 3-agent combinations,

possibly combined with standard therapy, such as C +M in the NSCLC example.

Randomized Comparative Evaluation. Following delivery optimization of all ρ(Z) to be stud-

ied, use group sequential (GS) decision-making to comparatively evaluate the regimes using

weeding, selection, and confirmation. Weeding is a process of dropping agents, subgroups, or

agent-subgroup combinations due to either low efficacy or excessive toxicity. Adaptive “futil-

ity” rules are used to do this. Selection is a process of choosing a feasibly small set of ρ that

are promising within specific Z subgroups. Confirmation aims to obtain conclusions regard-

ing effects of single or multi-agent regimes within specific Z subgroups that will motivate final

decisions or actions, such as promulgating conclusions about what Z and ρ(Z) are a reliable

basis for clinical practice. One may think of weeding as dropping the lower end and selection

as moving forward the upper end of an ordered set of of treatment regimes, in subgroup Z,

based on a treatment effect parameter θ(ρ,Z), where the ordering may vary substantially

with Z. A Bayesian subgroup-specific futility rule stops assignment of ρ in subgroup Z if

θ(ρ,Z) is likely to be substantively smaller than θ(ρ′,Z) for at least one ρ′ 6= ρ, according to

some posterior criterion. Similarly, ρ may be selected in subgroup Z if, a posteriori, θ(ρ,Z)

is likely to be larger than most θ(ρ′,Z) for ρ′ 6= ρ.

5. Two Arm Trials with Biomarker Subgroups

5.1 A Two-Arm NSCLC Trial

Comparing C + M to C while accounting for one binary Z illustrates a simple 2 × 2 case.

Given an individualized dose function for M, such as dopt(Z,X1,2) in the previous illustration,

consider the question of whether C+M improves T = PFS time compared to C. Denote the

13



indicator of C +M by ρ. To simplify the discussion, we suppress the fact that ρ and M are

functions of (Z,X), and only consider effects of Z. Suppose the distribution of [T | ρ, Z, θ] has

been determined by goodness-of-fit analyses of historical data, and assume that the model’s

linear term takes the form

η(ρ, Z, θθθ) = θ0 + θ1ρ+ θ2Z + θ12ρZ. (6)

For example, denoting µτ,Z= E(T | τ, Z, θ), under an exponential distribution η(τ, Z, θθθ) =

log(µτ,Z), under a lognormal η(τ, Z, θθθ) = E{log(T ) | τ, Z, θ}, and so on. For Z = 0, the

effect of adding the optimized targeted agent M to C is θ1, while for Z = 1 this effect is

θ1 + θ12, and θ12 is the RAS-M interaction. Assume that the parameters are defined so that

larger θ1 or θ12 correspond to superiority (longer mean PFS time) with C +M compared to

M. The assumption that M will have no effect in KRAS- patients says θ1 = 0. Under this

assumption, one would conduct a randomized trial comparing C+M to C in KRAS+ patients

only. However, if in fact M is effective in KRAS- patients (θ1 > 0), excluding KRAS- patients

would guarantee a false negative in this subgroup. The further assumption that C +M will

provide a substantive improvement over C in KRAS+ patients (θ12 > δ for large δ > 0)

implies that only C + M should be given to KRAS+ patients, and a randomized clinical

trial should not be conducted since giving C alone would be unethical. Such assumptions

replace clinical evaluation of a targeted agent in humans by subjective inferences based on

pre-clinical data in rodents or cell lines. Many laboratory-based scientists have precisely this

sort of belief about a targeted agent that they have developed in laboratory experiments.

5.2 Designs that Deal with Biomarker-Subgroup Interactions

Maitournam and Simon (2005) compared a conventional randomized trial design, an un-

targeted design, to a targeted design restricted to patients who are biomarker positive (Z

=1), and showed that the relative power of the two approaches depends on the biomarker

prevalence, Pr(Z =1), the magnitudes of the treatment effects in the two subgroups, and

reliability of evaluation of Z, i.e. assay sensitivity and specificity. For multiple biomarkers,

Z, that all are putatively associated with sensitivity to a targeted agent, Freidlin and Simon
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(2005) proposed a two-stage design where a “biomarker positive” classifier is developed in

stage 1 and two tests for the effect of M are done in stage 2, one overall and the other in

the biomarker sensitive subgroup. In the survival time setting with one biomarker, Karuri

and Simon (2012) proposed a logically similar two-stage Bayesian design, with point mass

distributions on comparative treatment effects. Prior to stage 2 the design drops subgroups,

either both or only biomarker negative patients, if the stage 1 data show it is likely that there

is no treatment effect in the subgroup.

Much of the literature on frequentist designs is devoted to the technical problem of deter-

mining design parameters given pre-specified GS test size and power. Song and Chi (2007)

applied closed testing to obtain a two-stage procedure wherein a test of overall effect is car-

ried out and, if the global null is rejected, a test is then carried out in a subgroup of interest,

allowing treatment-subgroup interaction. For binary outcomes, Tang and Zhao (2013) ran-

domized patients between two treatment arms in two stages using unbalanced randomization

with probabilities chosen to minimize the expected overall number of failures, given specified

size and power, also accounting for classification error in Z.

5.3 Two-Arm Bayesian Designs with Biomarker-Subgroup Interactions

A Bayesian randomized trial to compare C + M to C in two subgroups defined by Z may

be conducted is as follows. All of the following rules may be applied group-sequentially.

The monitoring schedule and sample size are very important since they play central roles

in determining the design’s operating characteristics, along with the decision rules. Futility

rules are applied throughout the trial, but superiority rules are applied only in the latter

portion of the trial. Given a minimum desired improvement δ1 in mean DFS from adding M

to C, a futility rule stops accrual to subgroup Z if

Pr{µC+M,Z > µC,Z + δ1 | datan} < pL,Z , (7)

for small lower decision cut-off pL,Z . Since patient safety is never a secondary concern in an

ethical clinical trial, similar stopping rules for adverse events may be constructed, and should

be applied throughout the trial (cf. Thall, Simon, and Estey, 1995). E.g., if πρ,Z denotes the
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probability of toxicity with ρ = C + M or C in subgroup Z, and π̄ is a fixed upper limit

based on clinical experience or historical data, then accrual should be stopped in subgroup

Z if

Pr{πρ,Z > π̄ | datan} > pU,Z,tox. (8)

One may declare C +M promising compared to C in subgroup Z if

Pr(µC+M,Z > µC,Z + δ2 | datan) > pU,Z , (9)

for slightly larger δ2 > δ1, using upper decision cut-off pU,Z . The same sort of criterion may

be used confirm that C +M is superior to C in subgroup Z for substantially larger δ3 > δ2.

Given a monitoring schedule, the cut-offs of these one-sided decision rules and sample size

should be calibrated via computer simulation to obtain desired overall type I error and power,

and possibly also each within-subgroup false negative rate. If desired, a symmetric two-sided

version of this procedure could be defined by including similar rules with the roles of C and

C + M reversed. Rules of this sort may be replaced by analogous Bayesian rules based on

predictive probabilities (cf. Anderson, 1999) or Bayes factors (cf. Spiegelhalter, et al., 2004).

If no standard therapy exists and one wishes to evaluate two targeted agents, T = {τ1, τ2},

with corresponding biomarker indicators Z = = (Z1, Z2), then there are 4 biomarker sub-

groups, Z = (1,1), (1,0), (0,1), and (0,0). A modified version of the above design with

symmetric rules randomizes patients between τ1 and τ2, and uses futility rules to stop accrual

to τj in subgroup Z if

Pr{µτj ,Z > µ0 + δ1 | datan} < pL,Z, (10)

where µ0 is the historical mean DFS. There are 8 such futility rules, one for each combination

of agent τj and biomarker signature Z. Weeding out unpromising τj-Z combinations is im-

portant so that the remaining combinations may be enriched. If neither τ1 nor τ2 is stopped

due to futility in subgroup Z, then τ1 may be declared superior to τ2 in this subgroup if

Pr{µτ1,Z > µτ2,Z + δ3 | datan} > pU,Z, (11)

with the symmetric subgroup-specific rule used to declare τ2 superior to τ1. An elaboration of

this design might also include the combination τ1 + τ2 for a three-arm trial, and thus require
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a more complex model and three pairwise comparative rules of the form (11), or possibly

posterior probabilities of the form Pr{µτ1+τ2,Z > max{µτ1,Z , µτ2,Z} + δS | datan}. A very

different design is motivated by the assumption that τj can benefit only patients with Zj = 1

for each j = 1, 2. This design would not randomize, but rather would use τ1 + τ2 to treat all

patients with (Z1, Z2) = (1,1), τ1 to treat all patients with (Z1, Z2) = (1,0), and τ2 to treat

all patients with (Z1, Z2) = (0,1).

The decision cut-offs may be elaborated as parametric functions that vary with sample

size, to facilitate optimization with regard to expected sample size for given overall Type I

and Type II error rates. For a Bayesian two-arm trial to compare survival or PFS time with

adaptive model selection, Wathen and Thall (2008) use the boundary functions pU(datan)

= aU − bU(N+(datan)/N)cU and pL(datan) = aL + bL(N+(datan)/N)cL , where N+(datan) is

the number of events observed through n patients, and pL(datan) ≤ pU(datan). To adapt

their decision rules to accommodate biomarker subgroups, denote pτ1>τ2,Z,δ,n = Pr(µτ1,Z >

µτ2,Z + δ | datan) and pτ2>τ1,Z,δ,n similarly. Decision rules may be defined as follows, where δ1

is a minimal |µτ1,Z > µτ2,Z | effect and δ2 is a larger, clinically meaningful effect.

1: Futility. If max{pτ1>τ2,Z,δ1,n, pτ2>τ1,Z,δ1,n} < pL(datan) then stop accrual in subgroup Z and

conclude there is no meaningful τ1 − τ2 effect in this subgroup.

2: Superiority. If pτ1>τ2,Z,δ2,n > pU(datan) > pτ2>τ1,Z,δ2,n then stop accrual in subgroup Z and

conclude τ1 > τ2 in this subgroup.

Otherwise, continue accrual in subgroup Z. If accrual is stopped in one or more subgroups,

the overall sample size should not be reduced, so that the remaining subgroups are enriched.

In practice, the rules are applied group sequentially at successive points where N+(datan)

equals pre-specified values. As suggested earlier, with 4 or more subgroups, it may be useful

to only apply the futility rules initially, and apply superiority rules for larger n.

5.4 Potential Consequences of Ignoring Subgroups

Most conventional clinical trial designs implicitly assume homogeneity by ignoring subgroups.

Statistical models and methods that ignore subgroups produce decisions based on treatment
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effect estimates that actually are averages across subgroups. A simple example of the conse-

quences of ignoring patient heterogeneity in the single-arm, phase II setting of an experimental

treatment E versus historical control C was given by Wathen et al. (2008). Denote the prob-

ability of response with treatment τ = E or C in subgroup Z = 0 or 1 by πτ,Z . Under a

Bayesian model with logit{πτ,Z} = ητ,Z of the form (6), accrual is stopped in subgroup Z if

Pr(πE,Z > πC,Z + δZ | data) < pZ . A simulation study was conducted of a 100 patient trial

with Pr(Z = 0) = Pr(Z = 1) = 0.50, and prior means 0.25 for both πE,0 and πC,0, and 0.45 for

both πE,1 and πC,1. These correspond to historical response rates of 25% and 45% in the two

subgroups. The targeted improvements were δ0 = δ1 = 0.15, and the decision cut-offs p0, p1

were calibrated to ensure within-subgroup incorrect stopping probabilities 0.10 for Z = 1 if

πtrueE,1 = 0.45 + 0.15 = 0.60, and also 0.10 for Z = 0 if πtrueE,0 = 0.25 + 0.15 = 0.40. Compari-

son of this design to the analogous design that ignores Z and uses null mean πE = (0.25 +

0.45)/2 = 0.35 showed that, in the treatment-subgroup interaction case where πtrueE,1 = 0.60

(E gives improvement 0.15 over C if Z = 1) and πtrueE,1 = 0.25 (E gives no improvement over

C if Z = 0) the design ignoring subgroups stopped the trial and rejected E with probability

0.42. This implies a false negative probability of 0.42 if Z = 1 and a false positive probability

of 1 - 0.42 = 0.58 if Z = 0 in this case. In practical terms, with this treatment-subgroup

interaction, one could do about as well as a design that ignores subgroups by not bothering

to conduct a clinical trial and simply flipping a coin. Similar results hold for randomized

trials, and also were found by Thall, Nguyen and Estey (2008) in the phase I-II dose-finding

setting for dose-covariate interactions. The general point is extremely important. If there

is in fact a treatment-subgroup interaction, then ignoring subgroups can produce extremely

unreliable conclusions. This is particularly problematic for trials of multiple targeted agents

since a vector of J binary biomarkers implies up to 2J subgroups, although they are far from

being disjoint.

6. Randomized Discontinuation Designs

The randomized discontinuation design (RDD, Kopec et al., 1993; Rosner, et al., 2002) for

targeted agents that aim to achieve stable disease (SD) or better categorizes patient outcome
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Ys at each of s = 1 or 2 stages of therapy as R (response), SD, or PD (progressive disease). All

patients are given the targeted agent, τ , in stage 1. If Y1 = R then τ is given in stage 2; if Y1

= PD then the patient is taken off study; if Y1 = SD then the patient is randomized between

τ and placebo (discontinuation). In practice, PD also includes toxicity that precludes further

treatment with τ. This is an example of an “enrichment” design in the sense that patients

more likely to benefit from τ are more likely to be kept on the agent for stage 2. Rosner, et al.

(2002) presented the RDD in the context of cytostatic agents, where stable disease or better,

SD+ = (SD or R), is considered success. Freidlin and Simon (2005) found that, compared to

a conventional randomized design, the RDD design has substantial power loss for comparing

τ to placebo in terms of Pr(Y2 = PD). The RDD is an elaboration of a simple single-arm

phase IIA activity trial for τ based on stage 1 of therapy alone (cf. Gehan, 1961; Thall and

Sung, 1998) that includes an additional second stage of therapy where treatment is chosen

adaptively using Y1. In this sense, the RDD is a randomized comparison of the two-stage

dynamic treatment regimes ρ1 = (τ (1), τ (2)) and ρ2 = (τ (1), DNT (2)), where τ (1) means “Give

τ in stage 1,” τ (2) means “Give τ in stage 2 if Y1 was SD+” and DNT (2) means “Do not treat

or give placebo in stage 2 if Y1 was SD+.” The RDD randomizes patients between ρ1 and ρ2.

An elaboration might also specify salvage treatments for PD, and treatments for toxicity.

Some Bayesian extensions of the RDD are as follows. If the clinical payoff for comparing

the two regimes is Y2 then, denoting π2,τ = Pr(Y2 = SD+ | Y1 = SD, τ in stage 2) and

π2,DNT = Pr(Y2 = SD+ | Y1 = SD, DNT in stage 2), a large value of Pr(ρ1 > ρ2 | data)

= Pr(π2,τ > π2,DNT | data}, say above .95 or .99, would lead to the conclusion that giving

τ is better than not treating the patient in stage 2 if SD is seen with τ in stage 1. Values

of Pr(ρ1 > ρ2 | data) near 0.50 correspond to no difference, and values near 0 to ρ2 being

superior. It may be useful to add a Bayesian futility rule that stops the trial early if

Pr{π1,τ > π∗1 | datan} < p1,L (12)

where π1,τ = Pr(Y1 = SD+ | τ in stage1) and π∗1 is a fixed minimum stage 1 activity level in

terms of SD+, say 0.20.

To accommodate competing targeted agents, say τ1 and τ2, a generalization of the RDD
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might randomize patients between τ1 and τ2 for stage 1. If τ1 is given in stage 1, then the

stage 2 adaptive rule might be to give τ2 if Y1 = PD; randomize between τ1 and τ2 if Y1 = SD;

and repeat τ1 in stage 2 if Y1 = R. The two regimes being compared are ρ1 = (τ1, τ2) and ρ2

= (τ2, τ1), where ρ1 says to start with τ1 in stage 1, repeat τ1 in stage 2 if Y1 = SD+, and

switch to τ2 in stage 2 if Y1 = PD. The regime ρ2 is obtained by switching the roles of τ1 and

τ2. Schematically, ρ1 may be expressed as (τ1, Y1 = PD → τ2, Y1 = SD+ → τ1). Bayesian

comparison of ρ1 and ρ2 may be done as for the 2 regimes in the RDD, above. For J > 2

agents, however, there would be J(J − 1)/2 such two-stage regimes, so even for J = 3 there

are 6 regimes. For J ≥ 3, stage 1 futility rules of the form (12) become very important. For

example, dropping τ1 due to stage 1 futility would eliminate both (τ1, τ2) and (τ1, τ3), and

thus allow more patients to be randomized to the remaining 4 regimes. This may be thought

as “between patient enrichment” of multi-stage targeted regimes.

7. Multiple Agents and Multiple Targets

None of the above extensions of the RDD account for Z, and elaborations that do so un-

avoidably are much more complicated. For example, subgroup-specific stage 1 futility rules

might be used, based on π1,τj(Z) = Pr(Y1 = SD+ | τj, Z) for each τj and biomarker subgroup

Z. More generally, when either Z = (Z1, · · · , Zp) has p > 1 entries or T = {τ1, · · · , τJ}

has J > 1 targeted agents, practical issues of discovery, delivery optimization, and ob-

taining reliable comparative evaluations are much more difficult. Ignore known prognostic

covariates X for simplicity. Even with p = 2 targets and J = 2 targeted agents, where

putatively τj targets Zj for each j = 1, 2 the NSCLC trial has four biomarker-defined

subgroups {(0, 0), (1, 0), (0, 1), (1, 1)} for (Z1, Z2), and four possible treatment combinations,

{C,C + τ1, C + τ2, C + τ1 + τ2}. It is tempting to simply randomize patients with (Z1, Z2) =

(1,1) between C and C+τ1+τ2, patients with (Z1, Z2) = (1,0) between C and C+τ1, patients

with (Z1, Z2) = (0,1) between C and C + τ2, and use C to treat all patients with (Z1, Z2) =

(0,0), controlling the sample sizes in the four treatment combination in some fashion. This

strategy is motivated by the assumption that each τj has potential anti-disease activity only

in patients with Zj = 1, which often is incorrect. A simpler strategy is to only include two

20



arms, C and C+τ1 +τ2. While this may seem very appealing, it cannot discover whether, for

example, an observed improvement of C+τ1 +τ2 over C in mean PFS could be achieved with

C + τ1, that is, τ2 provides no additional clinical benefit. Moreover, the issues of toxicity and

determining acceptable doses for combinations must be addressed. Even for p = 2, optimiz-

ing dose pairs is well known to be an extremely complex and difficult problem in single-arm

phase I trials, and very little work has been done for p ≥ 3. Recall the example in the 2×2

case of huge false positive and false negative error rates if homogeneity of treatment effect

across Z is assumed but in fact there are substantial τ -Z interactions.

Inevitably, some strategy for dimension reduction must be devised. Michiels et al. (2011)

propose permutation tests for a confirmatory two-arm trial based on survival time under a

Weibull distribution with multiple biomarkers, where treatment-biomarker interactions are

of interest, controlling the overall type I error for multiple tests. Tests are obtained by and

computing an overall biomarker score wZ = w1Z1+· · ·+wJZJ for each patient and permuting

Z among the patients within each treatment group. This sort of approach works if Z1, · · · , ZJ

all go in the same direction, i.e. larger Zj corresponds to the hypothesis that τj has greater

anti-disease effect. With K targeted agents, τ1, · · · , τK , after applying weeding rules to drop

unpromising τj-Z combinations, one may focus attention on the most promising combinations

in terms of the posteriors of µτj ,Z and select a small subset for further evaluation. For example,

one may rank order these based on E(µτj ,Z | datan) or Pr(µτj ,Z > µ∗ | datan) for fixed µ∗ and

select the largest m, where m is a small, feasible number to evaluate. A comparative rule

might select τj for further evaluation in subgroup Z if

Pr(µτj ,Z > minr,Z{µτr,Z} | datan) > pU,Z . (13)

If ranking is the objective, then an advantage of the Bayesian approach is that the poste-

riors of the ranks themselves may be computed (cf. Laird and Louis, 1989). In terms of the

means, for j = 1, · · · , K, the rank of τj in subgroup Z is

R(τj,Z) =
K∑
l=1

I(µτj ,Z ≥ µτl,Z)

One may base decisions, similar to those given above in terms of parameters, on the joint

posterior of R(τ1,Z), · · · , R(τK ,Z).
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For targeted regimes τ1, · · · , τK with J biomarker subgroups, assume a model with lin-

ear terms ηηη = {ητr,j, r = 1, 2, j = 1, ..., J}, where each real-valued ητr,j = link(µτr,j) for

mean outcome µτr,j of treatment τr in subgroup j. If it is realistic to assume that these

effects are exchangeable across subgroups within each treatment, one may assume the Level

1 priors ητr,1, · · · , ητr,J ∼ iid N(µ̃τr , σ̃
2
τr) for each r = 1, · · · , K. For treatment τr, the devi-

ation of treatment effect from the overall mean due to subgroup j is ∆j(r) = µτr,j − µ̃τr , so

∆1(r), · · · ,∆K(r) ∼ iid N(0, σ̃2
τr) for each r. This model is saturated, with KJ parameters ηηη

and 2K fixed hyperparameters, θ̃θθ = (µ̃τ1 , · · · , µ̃τK , σ̃2
τ1
, · · · , σ̃2

τK
). If one further assumes a hier-

archical model with Level 2 priors (hyperpriors) µ̃τ1 , · · · , µ̃τK ,∼ iid N(a, b) and σ̃2
τ1
, · · · , σ̃2

τK
,∼

uniform [0, Uσ2 ], then there are three fixed level 2 hyperparameters, φφφ = (a, b, Uσ2), regardless

of K and J. This model shrinks the estimated posterior mean treatment effects toward each

other, and shrinks the subgroup effects toward each other within treatments.

A futility rule to stop accrual in subgroup j may take the form

Pr{maxr 6=r′|ητr,j − ητr′ ,j| < δ1 | datan} < pL. (14)

Identifying a substantive treatment-subgroup effect might be done relative to a historical

value ηH based on Pr(ητr,j > ηH + δ2 | data) > pU . A similar rule using only the trial data

would be Pr(ητr,j > max{ητm,l : (m, l) 6= (r, j)} + δ2 | data). The overall effect of τr is η̄r =∑
j wjηr,j where wj is the probability of subgroup j. A comparison of overall treatment effects

between τr and τr′ could be based on Pr(|η̄r − η̄r′ | > δ2 | data) > pU . The fact that there

are K(K − 1)/2 such pairwise comparisons would create the usual multiplicity issues. With

all of these rules, however, shrinkage of posteriors among biomarker subgroups or treatment

arms may help to control the overall false positive rates.

A final point pertains to uncertainty about Z, which can take at least two forms. The

first pertains to whether a particular Zj should have been included in a given gene or protein

signature Z, or was included erroneously. It is very undesirable to treat a patient with an

agent targeting an element of Z that was included erroneously or, alternatively, to fail to use

an agent targeting a protein that should have been included but was either not discovered

or excluded erroneously. All of the methods discussed here could be elaborated by including
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a vector pZ where each entry p(Zj) is the probability that Zj is correct, e.g. using a beta

prior if Zj is binary. Such indexes of uncertainty might be obtained from previous genomic

discovery studies. The second source of uncertainty assumes that Z is qualitatively correct,

but pertains to whether each entry of a particular patient’s Zi was measured with error,

specifically whether each binary Zi,j was incorrectly scored as a false positive or false negative,

or continuous Zi,j is actually Ztrue
i,j +εi,j where εi,j is, say, Gaussian measurement error. Given

that some Z is assumed to be qualitatively correct, each patient’s Zi could have an associated

probability distribution q(Zi)to account for possible misclassification or measurement error,

and here a Bayesian hierarchical model assuming that patients are exchangeable would be

appropriate.
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