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ABSTRACT
For phase II clinical trials that determine the acceptability of an experimental treatment based on ordinal toxicity and ordinal
response, most monitoring methods require each ordinal outcome to be dichotomized using a selected cut-point. This allows two
early stopping rules to be constructed that compare marginal probabilities of toxicity and response to respective upper and lower
limits. Important problems with this approach are loss of information due to dichotomization, dependence of treatment accept-
ability decisions on precisely how each ordinal variable is dichotomized, and ignoring association between the two outcomes. To
address these problems, we propose a new Bayesian method, which we call U-Bayes, that exploits elicited numerical utilities of
the joint ordinal outcomes to construct one early stopping rule that compares the mean utility to a lower limit. U-Bayes avoids
the problems noted above by using the entire joint distribution of the ordinal outcomes, and not dichotomizing the outcomes. A
step-by-step algorithm is provided for constructing a U-Bayes rule based on elicited utilities and elicited limits on marginal out-
come probabilities. A simulation study shows that U-Bayes greatly improves the probability of determining treatment acceptability
compared to conventional designs that use two monitoring rules based on marginal probabilities.

1 | Introduction and Motivation

In a Phase II clinical trial of an experimental treatment, 𝐸, a futil-
ity monitoring rule stops accrual early if interim data show that
𝐸 is not sufficiently promising. Many Phase II designs have been
proposed, most based on the probability of a binary efficacy out-
come, “response.” Frequentist test-based Phase II designs include
a group sequential procedure proposed by Chang et al. [1], and
the two-stage optimal and minimax designs of Simon [2]. Thall
and Simon [3] proposed a Bayesian Phase II design for trials
with one binary response outcome that stops accrual if, based
on interim data, it is unlikely a posteriori that the probability of
response with 𝐸 provides a specified level of improvement over a
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standard treatment. This rule is applied after successive cohorts
of a specified size. Wathen et al. [4] refined this design to accom-
modate patient heterogeneity by defining subgroup-specific stop-
ping rules, assuming a Bayesian analysis of covariance model. For
biologically similar diseases in a basket trial [5], disease-specific
futility monitoring may be done by assuming a Bayesian hierar-
chical model to induce correlation among diseases [6–8], or by
performing frequentist tests [9].

Following introduction of Bayesian designs based on a
Dirichlet-multinomial model for Phase II trials with multi-
ple outcomes [10, 11], it has become common practice to include
two stopping rules, a futility rule for binary response and a
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safety rule for binary toxicity. Because the problem of monitoring
multiple outcomes in clinical trials is quite common, many other
Bayesian methods have been proposed, for a wide variety of
clinical settings. The BOP2 method of Zhou, Lee, and Yuan [12]
accommodates complex combinations of discrete and continu-
ous endpoints, assuming a Dirichlet-multinomial model, while
explicitly controlling overall Type I error rate. Sambucini [13]
proposed a method based on predictive probabilities. Jiang et al.
[14] studied the use of different types of stopping boundaries.
Similarly, Bayesian Phase I–II dose finding designs include pairs
of rules that stop accrual to a dose with an unacceptably high
toxicity rate or low response rate, while continuing accrual to
acceptable doses [14–18]. Extensions account for patient hetero-
geneity by using stopping rules that are specific to both dose and
subgroup [19, 20].

In contrast to designs that use conventional rules based on
marginal outcome probabilities, utility-based designs incorpo-
rate explicit trade-offs between outcomes through a utility func-
tion. As a simple illustration of how a utility function works
in a phase II trial, consider a trial where the outcome is a
bivariate binary variable consisting of indicators of toxicity and
response, (𝑌T, 𝑌R) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, where 𝑌T = 1 if
toxicity occurs and 𝑌R = 1 if response occurs. Numerical utilities
can be established for the four possible outcome pairs and used to
build a unified monitoring rule, as follows. For convenience, we
let the utility 𝑈(𝑦T, 𝑦R) of an outcome (𝑦T, 𝑦R) lie in the domain
[0, 100], and set 𝑈(1, 0) = 0 for the worst possible outcome of tox-
icity and no response, and 𝑈(0, 1) = 100 for the best possible out-
come of response and no toxicity. We next elicit values for the two
intermediate outcomes, (0,0) and (1,1). Suppose that the physi-
cian specifies 𝑈(0, 0) = 60 and 𝑈(1, 1) = 70. This implies that, if
a response is achieved, toxicity reduces the utility from 100 to 70,
but if no response is achieved, the absence of toxicity increases the
utility from 0 to 60. This quantifies a significant penalty for tox-
icity without response. For each possible outcome pair (𝑦T, 𝑦R),
denote the joint probability by 𝜋𝑦𝑇,𝑦𝑅

= P(𝑌T = 𝑦T, 𝑌R = 𝑦R), and
the vector𝝅 = (𝜋0,0, 𝜋0,1, 𝜋1,0, 𝜋1,1)with

∑1
𝑦𝑇=0

∑1
𝑦𝐸=0𝜋𝑦𝑇,𝑦𝑅

= 1, so
the mean utility is

𝑈(𝝅) =

1∑
𝑦𝑇=0

1∑
𝑦𝑅=0

𝜋𝑦𝑇,𝑦𝑅
𝑈(𝑦𝑇, 𝑦𝑅).

For example, if 𝝅1 = (0.6, 0.1, 0.0, 0.3), then 𝑈(𝝅1) = 67, while if
𝝅2 = (0.3, 0.4, 0.3, 0.0) then 𝑈(𝝅2) = 58. While 𝝅1 is more desir-
able than 𝝅2 in terms of mean utility, the two 𝝅 ’s have identi-
cal marginal probabilities for toxicity and response, P(𝑌T = 1) =
0.3 and P(𝑌R = 0) = 0.4. Consequently, on average, a monitoring
rule based on 𝑈 is likely to lead to different decisions under 𝝅1
and 𝝅2 but, in contrast, a conventional rule that evaluates each
outcome separately using its marginal probability gives the same
decisions for 𝝅1 and 𝝅2.

Bayesian utility-based designs have been proposed for vari-
ous clinical trial settings. Thall and Nguyen [21] presented a
dose-finding design based on the numerical utilities of all possible
values of a bivariate ordinal outcome. Thall et al. [22] proposed
a design that jointly optimizes dose and schedule based on two
time-to-event variables, with the utility characterized as a surface
obtained by smoothing utilities of pairs of event times elicited

on a grid of rectangles. Murray, Thall, and Yuan [23] presented
a randomized comparative trial design based on numerical util-
ities of post-operative morbidity severity levels. Lee, Thall, and
Rezvani [24] presented a design to optimize the dose of natural
killer cells to treat advanced hematologic malignancies, based on
elicited joint utilities of five co-primary outcomes. Lee, Thall, and
Msaouel [25] proposed a randomized design for treatment screen-
ing and selection based on subgroup-specific utilities of ordinal
categorical response and toxicity.

In this article, we propose a utility-based Bayesian monitoring
procedure, which we call U-Bayes, that uses one early stop-
ping criterion to accommodate ordinal toxicity and ordinal effi-
cacy. U-Bayes provides an alternative to first defining binary out-
comes and then using two rules based on the resulting marginal
probabilities of toxicity and response. Since, as described above,
there are many different settings, in order to focus on comparing
U-Bayes to the use of two marginal probability-based rules, we
consider single-arm Phase II trials where toxicity and response
both are ordinal, and we assume that patients are homogeneous.
To construct a U-Bayes rule, a utility function that numerically
quantifies the desirability of all possible combinations of toxic-
ity and response must be elicited from the physicians planning
the trial. Important advantages of this utility-based approach are
that (1) it accounts for association between the multiple out-
comes by using the joint distribution of the two ordinal outcomes,
rather than only using the marginal distributions of binary vari-
ables obtained by dichotomizing each outcome, and (2) it obvi-
ates the problem of deciding where to dichotomize each ordinal
variable. An additional advantage is that (3) the utility provides
an explicit representation of toxicity-efficacy trade-offs, quanti-
fied by the subjective numerical desirability of each possible (tox-
icity, efficacy) outcome pair. While all methods for constructing
monitoring rules require subjective decisions in their construc-
tions, U-Bayes makes the subjective trade-off explicit through the
elicited utility.

The remainder of the article is organized as follows. In Section 2,
we define the conventional two-rule stopping criteria and provide
motivating examples for the U-Bayes design. In Sections 3.1 and
3.2, we describe a utility function that varies with toxicity and
response levels and define U-Bayes based on the utility function
and the bivariate ordinal outcome distribution. In Section 3.3, we
provide a step-by-step algorithm for calibrating the lower limit on
mean utility required by U-Bayes. Section 3.4 presents a Bayesian
bivariate probit model for the outcomes, and Section 3.5 presents
the U-Bayes design. In Section 4, we evaluate operating charac-
teristics of U-Bayes and two conventional comparators by simu-
lation. We conclude with a brief discussion in Section 5.

2 | Constructing Monitoring Rules

We consider single-arm phase II trials where the goal is to decide
whether an experimental treatment 𝐸 has is sufficiently promis-
ing. If 𝐸 is deemed unacceptable based on interim monitoring,
then accrual to the trial is stopped early. Conventional Bayesian
monitoring methods require dichotomizing each outcome, and
computing two posterior probabilities, one that the probability of
toxicity is too high, and the other that the probability of response
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is too low, each compared to a selected threshold. To formal-
ize this, denote 𝒀 = (𝑌T, 𝑌R), where 𝑌T is ordinal toxicity and
𝑌R is ordinal response. Let {0, . . . , 𝐾𝑗 − 1} denote the domain
of 𝑌𝑗 for 𝑗 = 𝑇 and 𝑅, with 𝐾𝑗 ≥ 2. We will use lowercase 𝒚 =

(𝑦T, 𝑦R) to denote values taken on by𝒀. To construct conventional
Bayesian safety and futility stopping rules, for each 𝑗 = 𝑇 and 𝑅,
if 𝐾𝑗 > 2 then 𝑌𝑗 must be dichotomized to define a binary vari-
able. This is done by asking the physicians conducting the trial
to specify the lowest level ℎT ∈ {1, . . . , 𝐾T − 1} of 𝑌T that is con-
sidered unacceptable, and the lowest level ℎR ∈ {1, . . . , 𝐾R − 1}
of 𝑌R that is considered acceptable. Denoting the indicators
𝑍T,ℎ𝑇 = I(𝑌T ≥ ℎT) and 𝑍R,ℎR

= I(𝑌R ≥ ℎR) for specified cutoffs
(ℎT, ℎR), conventional Bayesian rules determine the acceptabil-
ity of 𝐸 by using two posterior criteria, defined in terms of the
marginal probabilities 𝜉T,ℎ𝑇 = P(𝑍T,ℎ𝑇 = 1) and 𝜉R,ℎ𝑅 = P(𝑍R,ℎ𝑅 =

1). The selected cut-offs are subjective and, as shown below,
different (ℎ𝑇, ℎ𝑅) pairs may lead to designs that behave very
differently.

To make things concrete, we will illustrate the conventional rules
and proposed U-Bayes rule using the following prototype of a
phase II trial. Toxicity is defined as Low (Grade 0 or 1), Moder-
ate (Grade 2), High (Grade 3) or Severe (Grade 4, or 5). Response
is defined by the disease status levels CR = complete response,
PR = partial response, SD = stable disease, and PD = progressive
disease. Thus, 𝐾T = 𝐾R = 4 and the levels of each 𝑌𝑗 are repre-
sented by the integers {0, 1, 2, 3}. In this example, each 𝑌𝑗 may be
dichotomized in three ways, depending on the chosen cut-point
ℎ𝑗 . For example, if ℎT = 2 and ℎR = 2, this defines 𝑍T,2 = 1 for
High or severe (Grade 3, 4, or 5) toxicity, and 𝑍T,2 = 0 for Low or
Moderate (Grade 0, 1, or 2), with 𝑍R,2 = 1 if CR or PR is achieved,
and 𝑍R,2 = 0 for PD or SD. Alternatively, one may set ℎT = 3 and
ℎR = 3 to define 𝑍T,3 = 1 for Severe toxicity and 𝑍R,3 = 1 for CR.
There are a total of 3 × 3 = 9 possible ways to define (𝑍T,ℎ𝑇 , 𝑍R,ℎ𝑅 ),
with each combination giving different meanings for “toxicity”
and “response.” This underscores the inherent subjectivity of the
conventional dichotomization-based approach, and the fact that
it greatly reduces the available information by replacing (𝑌T, 𝑌R)

with (𝑍T,ℎ𝑇 , 𝑍R,ℎ𝑅 ).

Let the vector 𝝅 = (𝜋0,0, . . . , 𝜋𝐾𝑇−1,𝐾𝑅−1) denote the joint distri-
bution of (𝑌T, 𝑌R) with 𝜋𝑦𝑇,𝑦𝑅

= P(𝑌T = 𝑦T, 𝑌R = 𝑦R). To specify
conventional safety and futility stopping rules, given selected cut-
points ℎT and ℎR, the marginal probabilities of the binary out-
comes are computed as follows:

Toxicity/safety: 𝜉T,ℎ𝑇 = P(𝑍T,ℎ𝑇 = 1) = P(𝑌T ≥ ℎT) =

𝐾𝑇−1∑
𝑦𝑇=ℎ𝑇

𝐾𝑅−1∑
𝑦𝑅=0

𝜋𝑦𝑇,𝑦𝑅,

Response/futility: 𝜉R,ℎ𝑅 = P(𝑍R,ℎ𝑅 = 1) = P(𝑌R ≥ ℎR) =

𝐾𝑇−1∑
𝑦𝑇=0

𝐾𝑅−1∑
𝑦𝑅=ℎ𝑅

𝜋𝑦𝑇,𝑦𝑅
.

These may be used to define two conventional monitoring rules,

Stop for safety if P(𝜉T,ℎ𝑇 > 𝜉T,ℎ𝑇 |𝑑𝑎𝑡𝑎) > 𝑐T(𝑡),

Stop for futility if P(𝜉R,ℎ𝑅 < 𝜉
R,ℎ𝑅

|𝑑𝑎𝑡𝑎) > 𝑐R(𝑡).
(1)

The probabilities 𝜉T,ℎ𝑇 and 𝜉
R,ℎ𝑅

are fixed limits corresponding
to ℎT and ℎR, which must be specified by the clinical investi-
gators, while 𝑐T(𝑡) and 𝑐R(𝑡) denote decision cut-offs. Following

Jiang et al. [14], to improve design performance, denoting the
maximum sample size by 𝑁max, and 𝑛(𝑡) the sample size at 𝑡, we
define 𝑐T(𝑡) = 1 − {𝑛(𝑡)∕𝑁max}(1 − 𝑐⋆T ), where 𝑐⋆T is fixed. Thus,
as 𝑛(𝑡) approaches 𝑁max, 𝑐T(𝑡) approaches 𝑐⋆T from above, and
equals 𝑐⋆T when 𝑛(𝑡) = 𝑁max. We specify 𝑐R(𝑡) similarly and let
𝑐R(𝑡) = 1 − {𝑛(𝑡)∕𝑁max}(1 − 𝑐⋆R ) with fixed 𝑐⋆R . The fixed values
𝑐⋆T and 𝑐⋆R usually may be chosen in the range 0.80 − 0.95, and
are calibrated by computer simulation to obtain a design with
desirable operating characteristics (OCs). These two rules are
applied after successive cohorts of patients have been treated and
their (𝑍T,ℎ𝑇 , 𝑍R,ℎ𝑅 ) values have been evaluated. The rules given by
(1) are slightly simplified versions of the rules originally intro-
duced by Thall, Simon, and Estey [10], where 𝜉T,ℎ𝑇 and 𝜉

R,ℎ𝑅
each

included random components chosen based on historical data on
standard therapy as a comparator.

Using the rules in (1), desirable OCs of a design should include (i)
a small early stopping probability and large expected sample size
if the true marginal probabilities (𝜉TR

T,ℎ𝑇
, 𝜉TR

R,ℎ𝑅
) satisfy the inequal-

ities 𝜉TR
T,ℎ𝑇

≤ 𝜉T,ℎ𝑇 and 𝜉TR
R,ℎ𝑅

≥ 𝜉
R,ℎ𝑅

, and (ii) a large early stopping

probability and small expected sample size if 𝜉TR
T,ℎ𝑇

> 𝜉T,ℎ𝑇 + 𝛿T

for nontrivial 𝛿T > 0, such as 0.10 or larger, or 𝜉TR
R,ℎ𝑅

< 𝜉
R,ℎ𝑅

− 𝛿R

for nontrivial 𝛿R > 0. That is, the rules should give a small early
stopping probability if 𝐸 is both safe and efficacious, and a large
stopping probability if 𝐸 is too toxic or inefficacious. To calibrate
a design’s parameters, the trial is simulated for several candidate
pairs of cutoffs (𝑐⋆T , 𝑐

⋆
R ) and each of a set of different combinations

of assumed true marginal probabilities (𝜉TR
T,ℎ𝑇

, 𝜉TR
R,ℎ𝑅

). For conve-
nience, to obtain OCs, it often is assumed that 𝑍T,ℎ𝑇 and 𝑍R,ℎ𝑅 are
independent to facilitate computing joint probabilities from each
pair of marginals.

While this commonly used paradigm for constructing two early
stopping rules based on marginal probabilities may appear effec-
tive in practice, it has potentially severe limitations. These limi-
tations can result in a design with undesirable properties in cases
where multiple outcomes 𝑌T and 𝑌R should be fully and jointly
accounted for in decision-making. First, the stopping rules given
in (1) only use the marginal probabilities of dichotomized out-
comes, 𝜉T,ℎ𝑇 = P(𝑍T,ℎ𝑇 = 1) and 𝜉R,ℎ𝑅 = P(𝑍R,ℎ𝑅 = 1). Because
replacing (𝑌T, 𝑌R) with (𝑍T,ℎ𝑇 , 𝑍R,ℎ𝑅 ) and considering only their
marginals reduces information, it may lead to undesirable deci-
sions when determining the acceptability of 𝐸. To illustrate this,
we consider two of the simulation scenarios that will be described
in Section 4. In Scenario 1 of Table 1a, for ℎT = ℎR = 2, the
true binary marginal outcome probabilities are 𝜉TR

T,2 = 0.25 and
𝜉TR

R,2 = 0.45, obtained from the joint distribution 𝝅 . Scenario 2,
given in Table 1b, has the exactly same marginals 𝜉TR

T,2 = 0.25
and 𝜉TR

R,2 = 0.45 as Scenario 1, consequently the conventional
marginal rules will behave identically under Scenarios 1 and 2.
For fixed limits 𝜉T,2 = 0.30 and 𝜉

R,2
= 0.40, the rules in (1) con-

clude that𝐸 is unacceptable if 𝜉T,2 > 0.30 is likely, or if 𝜉R,2 < 0.40
is likely. Comparing the marginal probabilities to the limits, 𝐸 is
likely to be found acceptable using the marginal rules in (1) in
both scenarios. The choice of cutoffs matters a great deal, how-
ever. While the true marginal severe toxicity probability with
ℎT = 3, 𝜉TR

T,3 = PTR(𝑍T,3 = 1), equals 0.05 in Scenario 1 and 0.20
in Scenario 2, the marginal probability of (high or severe toxi-
city) equals 𝜉TR

T,2 = 0.25 in both scenarios. This shows that the
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TABLE 1 | Numerical illustration.

(a) Scenario 1 (b) Scenario 2

Response (𝒚R) Response (𝒚R)

Toxicity PD SD PR CR PD SD PR CR
Severity (𝒚T) (0) (1) (2) (3) (0) (1) (2) (3)

Low (0) 0.04 0.35 0.03 0.28 0.70 0.04 0.00 0.01 0.00 0.05
Moderate (1) 0.00 0.02 0.01 0.02 0.05 0.40 0.04 0.24 0.02 0.70
High (2) 0.01 0.10 0.01 0.08 0.20 0.02 0.00 0.03 0.00 0.05
Severe (3) 0.00 0.03 0.00 0.02 0.05 0.04 0.01 0.12 0.03 0.20

0.05 0.50 0.05 0.40 1.00 0.50 0.05 0.40 0.05 1.00

Binary Binary response Binary response

Toxicity No Yes No Yes

No 0.41 0.34 0.75 0.48 0.27 0.75
Yes 0.14 0.11 0.25 0.07 0.18 0.25

0.55 0.45 1.00 0.55 0.45 1.00
Note: Two joint distributions of the bivariate ordinal outcomes 𝒀 = (𝑌T, 𝑌R) and binary variables 𝑍T = I[𝑌T ≥ 2] and 𝑍R = I[𝑌R ≥ 2]. In each of the two scenarios,
𝒁 = (𝑍T, 𝑍R) have the marginals 𝜉T,2 = 0.25 and 𝜉R,2 = 0.45.

choice of whether one uses the cutoff ℎT = 3 or 2 substantively
changes the meaning of “toxicity". Moreover, the joint probabil-
ities 𝝅 differ between the two scenarios. In Scenario 2, there is
a higher probability of better response outcomes occurring with
worse toxicity, compared to Scenario 1. Specifically, for the highly
desirable combination (low toxicity, CR) = (𝑌T = 0, 𝑌R = 3), in
Scenario 1 this has joint probability 𝜋0,3 = 0.28, compared to 0.00
in Scenario 2. In contrast,𝜋1,2 = Pr(Moderate Toxicity, PR) equals
0.01 in Scenario 1 and 0.24 in Scenario 2. These large differences
strongly suggest that quantifying the desirability of each possible
outcome combination (𝑦T, 𝑦R) may be very useful. In the simula-
tions presented in Section 4, under Scenario 1, the utility based
rule of U-Bayes declares 𝐸 promising with probability 1.00, com-
pared to 0.96 using either of the marginal probability based rules.
In contrast, under Scenario 2, U-Bayes declares 𝐸 promising with
probability 0.00, compared to 0.92 using the marginal probability
based rules. These large differences between the decision proba-
bilities of the two monitoring approaches are due to the facts that
(1) U-Bayes retains information on 𝒀 that is lost by dichotomiz-
ing and considering only marginal probabilities, and (2) U-Bayes
accounts for the desirability of each outcome pair (𝑦T, 𝑦R).

Another important problem is that dichotomizing each ordinal
𝑌𝑗 to define binary 𝑍𝑗,ℎ𝑗

and formulate a monitoring rule may
be done in more than one way. Different (ℎT, ℎR) pairs may lead
to very different decisions about the acceptability of 𝐸 for the
same data. For example, suppose that Severe toxicity is used to
define 𝑍T,3 = 𝐼[𝑌T = 3] and CR is used to define 𝑍R,3 = 𝐼[𝑌R =

3]. That is, ℎT = ℎR = 3, so 𝜉T,3 = P(𝑍T,3 = 1) = P(𝑌T = 3) and
𝜉R,3 = P(𝑍R,3 = 1) = P(𝑌R = 3). In this case, values of 𝜉T,3 and
𝜉

R,3
must be elicited to correspond to the marginal probabili-

ties determined by these cut-points. Under 𝝅TR in Scenario 2 of
Table 1b, 𝜉TR

T,3 = 0.20 and 𝜉TR
R,3 = 0.05. If the upper limit 𝜉T,3 = 0.10

and lower limit 𝜉
R,3

= 0.30 are elicited then, in this scenario, 𝐸 is

considered too toxic and inefficacious, so the two marginal prob-
ability based rules are likely to conclude that 𝐸 is not acceptable.
This is the opposite of the conclusion that is likely to be reached
if, instead, the definitions 𝑍𝑗,2 = I(𝑌𝑗 ≥ 2) for ℎ𝑗 = 2, 𝑗 = 𝑇 and 𝑅

are used. In contrast, under Scenario 1 in Table 1a, the two differ-
ent ways of dichotomizing 𝒀, with either 𝒉 = (2, 2) or 𝒉 = (3, 3),
are likely to lead to the same conclusion that 𝐸 is acceptable.

A key point is that, because the U-Bayes design is based on the
utility of the joint outcomes, while the conventional design relies
on two marginal dichotomized outcomes, they use qualitatively
different early stopping criteria. Consequently, as illustrated by
Scenario 2, the two approaches may disagree greatly with regard
to what is considered a desirable or undesirable scenario in terms
of𝝅 . Recall the example in the bivariate binary case, given earlier,
where 𝝅1 and 𝝅2 differed but they had identical marginal proba-
bilities. For a given 𝝅, what are considered desirable OCs under
the U-Bayes design may differ from what are considered desirable
OCs under the conventional design based on two marginal prob-
abilities. For example, consider 𝝅 having marginals for which
𝜉T,ℎ𝑇 = 𝜉T,ℎ𝑇 + 0.10 and 𝜉R,ℎ𝑅 = 𝜉

R,ℎ𝑅
+ 0.20. If the 0.10 increase

in the probability of toxicity is considered a desirable trade-off for
the 0.20 increase in the probability of response, then 𝐸 is accept-
able. In contrast, a design based on the two marginal probability
criteria in (1) would consider 𝐸 to be unacceptable due to its high
toxicity rate, regardless of the response rate, and thus it would
prefer a large early stopping probability in this case.

3 | Utility Based Rule and Trial Design

3.1 | Utility Function

The following unified monitoring rule avoids all of the prob-
lems described above. To construct the rule, one first must elicit
the numerical utility 𝑈(𝒚) of each potential outcome pair 𝒚,

4 of 13 Statistics in Medicine, 2024
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TABLE 2 | Values of the numerical joint utilities 𝑈(𝑦T, 𝑦R) for 𝐾T = 4 and 𝐾R = 4 in the illustrative example.

Response

PD SD PR CR

Toxicity severity (𝒚R = 0) (𝒚R = 1) (𝒚R = 2) (𝒚R = 3)

Low: Grade 0 or 1 (𝑦T = 0) 25 70 90 100
Moderate: Grade 2 (𝑦T = 1) 10 50 70 90
High: Grade 3 (𝑦T = 2) 5 30 40 60
Severe: Grade 4 or 5 (𝑦T = 3) 0 10 20 30

which quantifies its desirability. Numerical utilities of the 𝐾T ×

𝐾R pairs must be elicited from the clinical collaborators to reflect
patient preferences. To elicit 𝑈(𝒚) in the context of our illustra-
tion, generalizing the approach described earlier for the bivari-
ate binary outcome case, it is convenient to first fix 𝑈(3, 0) = 0
and 𝑈(0, 3) = 100, which are the respective utilities of the worst
and best possible outcome pairs. One then may elicit utilities
between 0 and 100 for the remaining outcomes, provided that
they satisfy the consistency conditions 𝑈(𝑦T, 𝑦R) < 𝑈(𝑦T, 𝑦R + 1)
and 𝑈(𝑦T, 𝑦R) > 𝑈(𝑦T + 1, 𝑦R), which formalize the requirement
that either higher toxicity or worse response must have lower
utility if the other outcome is fixed. Table 2 illustrates a util-
ity function for the illustrative trial. For example, the values
𝑈(0, 0) = 𝑈(Low toxicity, PD) = 25 and 𝑈(3, 3) = 𝑈(Severe tox-
icity, CR) = 30 quantify a slightly larger desirability of an out-
come with a high toxicity grade and CR compared to an outcome
with low toxicity and PD. However, setting 𝑈(1, 1) = 50 says that
(mild toxicity, SD) is much more desirable than either of these
outcomes, so for this utility both severe toxicity and PD are very
undesirable.

A utility function helps to quantify preferences for outcomes in a
structured way, enabling decisions to be made by comparing the
utilities associated with different options. As specific examples,
consider a new treatment developed for an advanced stage of a
life-threatening disease, such as acute leukemia or lymphoma.
In such cases, a patient may be willing to endure higher grade
toxicity events if it means achieving higher-level responses, since
achieving a complete response (CR) is crucial for long-term sur-
vival. For these patients, the utility does not significantly decrease
as the toxicity grade increases for CR (𝑦R = 3). On the other hand,
when assessing a new antihypertensive drug designed to reduce
high blood pressure, a patient might be far less willing to accept
Grade 2 or Grade 3 toxicity as a desirable trade-off for response,
defined as lowering systolic blood pressure by ≥ 10 mm Hg. In
this case, the numerical value of 𝑈(Grade 2 toxicity, response)
would be much lower than that of𝑈(no toxicity, response). These
trade-offs are quantified by utility functions, which facilitate
decision making by offering an explicit objective function for
decision makers to utilize in making the best choice. A rule
based on 𝑈(y), such as U-Bayes, provides a systematic procedure
for understanding and making choices across various contexts.
In simulation Scenarios 3 and 4, reflecting the trade-offs asso-
ciated with advanced-stage life-threatening diseases, it will be
demonstrated that U-Bayes tends to conclude that treatment 𝐸
is acceptable (i) when its probabilities of high or severe toxicity
slightly exceed specified limits but its probabilities of higher-level

response are substantial, or (ii) when it exhibits low probabilities
of high or severe toxicity alongside sufficiently large probabilities
of higher-level response.

In practice, eliciting 𝑈(𝒚) is straightforward, since physicians
understand what the utility means and readily provide their
numerical values. During the elicitation process, discussing the
implications of particular specified numerical values, as above,
provides a simple way for investigators to adjust their numerical
values, if desired. See, for example, Thall and Nguyen [21], Mur-
ray et al. [26], or Lee, Thall, and Rezvani [24].

3.2 | U-Bayes: A Utility-Based Bayesian
Monitoring Rule

As an alternative to using two conventional monitoring rules of
the forms in (1), U-Bayes uses a single monitoring rule, defined in
terms of the utility function described in Section 3.1. This is con-
structed as follows. Recall that 𝝅 denotes the vector of 𝐾T × 𝐾R
joint probabilities for all possible outcome pairs (𝑦T, 𝑦R). Given 𝝅

and 𝑈(𝒚), the mean utility is

𝑈(𝝅) =

𝐾𝑇−1∑
𝑦𝑇=0

𝐾𝑅−1∑
𝑦𝑅=0

𝑈(𝑦T, 𝑦R) 𝜋𝑦𝑇,𝑦𝑅
. (2)

U-Bayes uses 𝑈(𝝅) to define a single early stopping criterion. We
employ a Bayesian model that utilizes outcome data from patients
previously treated in the trial to generate a posterior distribution
of 𝝅 . It is used to derive the posterior distribution of 𝑈(𝝅) and
define the stopping rule based on it. Details of the probability
model will be provided in Section 3.4. Given a fixed lower limit
𝑈, if𝐸 satisfies the following inequality it is considered unaccept-
able because, a posteriori, its mean utility is likely to be too low,
and patient accrual is stopped:

Utility-based stopping criterion: Pr (𝑈(𝝅) < 𝑈|𝑑𝑎𝑡𝑎) > 𝑐𝑈(𝑡). (3)

Otherwise, 𝐸 is considered acceptable and accrual is continued.
Similarly to 𝑐T(𝑡) and 𝑐R(𝑡) in (1), the cutoff parameter 𝑐𝑈(𝑡) varies
with trial time 𝑡. We define 𝑐𝑈(𝑡) = 1 − 𝑛(𝑡)∕𝑁max(1 − 𝑐⋆

𝑈
), where

𝑐⋆
𝑈

is fixed. A value between 0.80 and 0.95 can be used for 𝑐⋆
𝑈

, cal-
ibrated by simulation to control the rates of incorrect decisions.
The lower limit 𝑈 is a key design parameter that is determined
based on the elicited upper and lower marginal probability limits,
𝜉T,ℎ𝑇 and 𝜉

R,ℎ𝑅
, and the elicited joint utilities, using the following

calibration algorithm.

5 of 13
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3.3 | Algorithm for Calibrating the Lower
Utility Bound

In this subsection, we explain how to use elicited upper lim-
its 𝜉T,ℎ𝑇 for each ℎT = 1, . . . , 𝐾T − 1 and lower limits 𝜉

R,ℎ𝑅
for

ℎR = 1, . . . , 𝐾R − 1, and the elicited utilities𝑈(𝒚), to compute the
lower limit 𝑈 needed to define the U-Bayes stopping rule in (3).
During the trial planning process, this calibration is carried out
through computer simulation in the following steps.

Steps for Calibrating 𝑈

Step 1: For each ℎT = 1, . . . , 𝐾T − 1, elicit an upper limit 𝜉T,ℎ𝑇 for
P(𝑌T ≥ ℎT).

Step 2: For each ℎR = 1, . . . , 𝐾R − 1, elicit a lower limit 𝜉
R,ℎ𝑅

for
P(𝑌R ≥ ℎR).

Step 3: Simulate a large sample {𝝅(1), . . . , 𝝅(𝐵)} of joint probability
vectors such that each 𝝅(𝑏) has marginal distributions for 𝑌T and
𝑌R that satisfy the following 𝐾T + 𝐾R − 2 constraints:

Pr(𝑌T ≥ ℎT) = 𝜉T,ℎ𝑇 , ℎT = 1, . . . , 𝐾T − 1, and

Pr(𝑌R ≥ ℎR) = 𝜉
R,ℎ𝑅

, ℎR = 1, . . . , 𝐾R − 1.

Step 4: Set the lower utility limit equal to the sample mean of the
mean utilities evaluated at the 𝐵 simulated joint probabilities,

𝑈 =
1
𝐵

𝐵∑
𝑏=1

𝑈(𝝅(𝑏)) =
1
𝐵

𝐵∑
𝑏=1

𝐾𝑇−1∑
𝑦𝑇=0

𝐾𝑅−1∑
𝑦𝑅=0

𝑈(𝑦T, 𝑦R) 𝜋
(𝑏)
𝑦𝑇,𝑦𝑅

. (4)

In Step 3, it is important that the simulated joint probabil-
ity vectors 𝝅(1), . . . 𝝅(𝐵) represent varying degrees of association
between 𝑌T and 𝑌R, since 𝑈(𝝅) is based on the joint distribution
rather than only the two marginals. This allows the simulated
mean utilities 𝑈(𝝅(1)), . . . , 𝑈(𝝅(𝐵)) to reflect varying degrees of
association, while all the 𝝅(𝑏)’s have the same marginals. Step
3 thus requires a tractable method for generating 𝝅 ’s that have
varying degrees of negative and positive association between 𝑌T
and 𝑌R, and we provide additional details for carrying out Step 3
below.

The rationale for deriving 𝑈 in this way is that, due to the con-
straints on the marginal probabilities imposed in Step 3, each sim-
ulated joint probability 𝝅(𝑏) has marginal toxicity and response
probabilities that are exactly at their respective elicited limits in
Steps 1 and 2. Defining 𝑈 by taking the mean over the 𝐵 sim-
ulated probability vectors in (4) thus gives the corresponding
one-dimensional lower limit on𝑈(𝝅) for computing the stopping
rule (3), while also accounting for association between𝑌T and𝑌R.

While calibrating the lower utility limit 𝑈 is not tied to a specific
model for simulating 𝝅 values, the assumed model must be both
flexible and numerically tractable. To construct such a model, we
follow Chib and Greenberg [27], and many others, by employing a
multivariate probit model. This uses the computational device of
defining𝒀 in terms of latent real-valued variables �̃� = (𝑌T, 𝑌R) ∈

ℝ2 that follow a bivariate normal distribution, given by

�̃�|𝝁, Σ ∼ N2(𝝁, Σ), (5)

where

𝝁 =

[
𝜇T

𝜇R

]
and Σ =

[
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2

]
. (6)

For each outcome 𝑗 = 𝑇 or 𝑅, the value of observed 𝑌𝑗 is defined
by using the cutoffs 𝑒𝑗,0 < 𝑒𝑗,1 < · · · < 𝑒𝑗,𝐾𝑗

with 𝑒𝑗,0 = −∞ and
𝑒𝑗,𝐾𝑗

= ∞, so that

𝑌𝑗 = 𝑦𝑗 if and only if 𝑒𝑗,𝑦𝑗 < 𝑌𝑗 ≤ 𝑒𝑗,𝑦𝑗+1, for 𝑦𝑗 = 0, . . . , 𝐾𝑗 − 1.

(7)

Under this construction, the bivariate normal distribution of the
latent variables �̃� and the cutoffs determine the distribution 𝝅
of 𝒀, with the correlation 𝜌 between 𝑌T and 𝑌R inducing asso-
ciation between 𝑌T and 𝑌R. For each possible observed outcome
pair (𝑦T, 𝑦R), we denote the rectangle

𝐴𝑦𝑇,𝑦𝑅
= {(𝑦T, 𝑦R) ∶ 𝑒T,𝑦𝑇 ≤ 𝑦T < 𝑒T,(𝑦𝑇+1) and

𝑒R,𝑦𝑅 ≤ 𝑦R < 𝑒R,(𝑦𝑅+1)} ⊂ ℝ2. (8)

Using (5), (7), and (8), we define the joint probabilities as bivariate
normal probabilities of the rectangles,

𝜋𝑦𝑇,𝑦𝑅
= ∬𝐴𝑦𝑇 ,𝑦𝑅

𝑓N(�̃�|𝝁, Σ) 𝑑�̃�T 𝑑�̃�R (9)

where 𝑓N(⋅|𝝁, Σ) denotes the bivariate normal pdf given above.

Below, we provide computational sub-steps that exploit this
structure to carry out Step 3 of the𝑈 calibration given above. This
is done by generating the 𝝅(𝑏)’s from the assumed bivariate nor-
mal distribution of the latent variables using (9). To represent a
range of associations between 𝑌T and 𝑌R, we vary the numerical
value of 𝜌 in (6) across the domain (−1, 1) to generate the 𝝅(𝑏)’s.
This is done in the following substeps of calibration Step 3:

Steps for Simulating 𝝅(1), · · · 𝝅(𝐵) in 𝑈 Calibration Step 3

Step 3.1: Fix values of 𝝁 = [𝜇T, 𝜇R]
′ and 𝜎. Specify a grid of 𝐵

equally spaced correlations 𝜌(1) < 𝜌(2) < · · · < 𝜌(𝐵) in the domain
(−1, 1). For each 𝜌(𝑏) in the grid, denote

Σ(𝑏) =

[
𝜎2 𝜌(𝑏)𝜎2

𝜌(𝑏)𝜎2 𝜎2

]
.

Step 3.2: Use the probability limit 𝜉T,ℎ𝑇 to define the cutoff 𝑒T,𝑘 =

Φ−1(1 − 𝜉T,𝑘|𝜇T, 𝜎
2) for each 𝑘 = 1, . . . , 𝐾T − 1 in the definition

of 𝑌T in terms of �̃�T, and the cutoffs in (7). Similarly, use 𝜉
R,ℎ𝑅

to define 𝑒R,𝑘 = Φ−1(1 − 𝜉
R,𝑘

|𝜇R, 𝜎
2) for 𝑘 = 1, . . . , 𝐾R − 1. Set

𝑢𝑗,0 = −∞ and 𝑢𝑗,𝐾𝑗
= ∞ for 𝑗 = 𝑇, 𝑅. That is, given 𝝁 and 𝜎2, the

cutoffs {𝑒R,𝑘} are determined such that the marginals 𝜋T,ℎ𝑇 = 𝜉T,ℎ𝑇
and 𝜋R,ℎ𝑅 = 𝜉

R,ℎ𝑅
.

Step 3.3: For each 𝜌(𝑏) in the grid, 𝑏 = 1, . . . , 𝐵, compute

𝜋(𝑏)
𝑦𝑇,𝑦𝑅

= P(�̃� ∈ 𝐴𝑦𝑇,𝑦𝑅
) = ∬

𝐴𝑦𝑇 ,𝑦𝑅

𝑓N(�̃�|𝝁, Σ(𝑏)) 𝑑𝑦T 𝑑𝑦R,

6 of 13 Statistics in Medicine, 2024
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FIGURE 1 | Distribution of 𝑈
(𝑏)

= 𝑈(𝝅(𝑏)) based on the numerical
utilities in Table 2, for 𝐵 = 10,000. The red vertical dashed line represents
the calibrated value 𝑈 = 44.62.

for all combinations of 𝑦T = 0, . . . , 𝐾T − 1 and 𝑦R = 0,
. . . , 𝐾R − 1.

We use the numerical utilities given in Table 2, with the upper
probability limits 𝜉T,1 = 0.50, 𝜉T,2 = 0.30, 𝜉T,3 = 0.10 for the
three toxicity severities and the lower probability limits 𝜉

R,1
=

0.50, 𝜉
R,2

= 0.40, 𝜉
R,3

= 0.30 for the three levels of response.
Figure 1 gives a histogram of a sample of 𝐵 = 10, 000 values of
𝑈

(𝑏)
= 𝑈(𝝅(𝑏)), obtained from the equi-spaced grid of {𝜌(𝑏)} val-

ues on the interval [-0.999, 0.999]. In our illustration, we fix 𝝁 =

[𝜇T, 𝜇R]
′ = [0, 0]′ and 𝜎 = 4. The figure illustrates how a large

sample of 𝝅(𝑏) vectors with the same marginals produces a sam-
ple of 𝑈

(𝑏)
values ranging from 39.54 to 48.96, due to the dif-

ferent degrees of association between the outcomes induced by
the different 𝜌(𝑏) values. The distribution of 𝑈

(𝑏)
is asymmet-

ric because the toxicity and response outcomes are penalized
differently by the numerical utility values in Table 2. The cal-
ibrated value 𝑈 = 1∕𝐵

∑𝐵
𝑏=1𝑈

(𝑏)
= 44.62 is represented by the

red vertical line in Figure 1. If desired, an alternative statis-
tic, such as the median or some other quantile, can be used to
determine 𝑈. For example, if the upper quartile is used for 𝑈,
the design would make more conservative decisions by ensuring
that the expected utility of 𝐸 is smaller than the upper quar-
tile with a probability of no more than 𝑐𝑈(𝑡). Moreover, rather
than assuming equiprobable 𝜌(𝑏) values, a probability distribu-
tion that reflects clinicians’ beliefs about the outcomes’ associ-
ation can be employed. Finally, other probability models, such
as a cumulative logit model, may be used to generate the sample
𝝅(1), . . . , 𝝅(𝐵).

It is useful to consider how this construction works in the spe-
cial case, discussed above, where both outcomes are binary. In
this case, 𝑍𝑗,1 =𝑌𝑗 and 𝜉𝑗,1 = Pr(𝑌𝑗 = 1) for each 𝑗 = 𝑇, 𝑅, giving
𝝅 = (𝜋0,0, 𝜋0,1, 𝜋1,0, 𝜋1,1) and 𝑈(𝒚) for 𝑦T, 𝑦R ∈ {0, 1}. In this sim-
ple case, U-Bayes still provides a very useful alternative to using
the two marginal rules (1) with ℎT = ℎR = 1. Recall the example
in Section 1 with two joint distributions 𝝅1 = (0.6, 0.1, 0.0, 0.3)

and 𝝅2 = (0.3, 0.4, 0.3, 0.0) that have the same marginal prob-
abilities, P(𝑌T = 1) = 0.3 and P(𝑌R = 1) = 0.4 but very differ-
ent association between the outcomes. The elicited utilities,
𝑈(𝒚) = 60, 100, 0, and 70 for 𝒚 = (0, 0), (0, 1), (1, 0), and (1,
1), respectively, give mean utilities 𝑈(𝝅1) = 67 and 𝑈(𝝅2) = 58,
which differ substantially despite the identical marginals. As
a result, because the U-Bayes stopping criterion uses 𝑈(𝝅) to
incorporate between-outcome association through 𝝅 and pref-
erences of the outcomes through 𝑈(𝒚), it is more likely to con-
clude that 𝐸 is acceptable for 𝝅1 than for 𝝅2. In contrast, the
two marginal probability-based rules in (1), which ignore the
association between 𝑌T and 𝑌R, yield the same conclusion for
𝝅1 and 𝝅2.

3.4 | Inference Model

A probability model for 𝒀 and a prior for 𝝅 must be specified in
order to compute the posterior stopping criteria (1) or (3) used
by the two methods during trial conduct. Any flexible models
that yield a posterior distribution of 𝝅 can be employed. We will
assume an ordinal probit model to define a joint probability distri-
bution of 𝒀, similar to the model used for calibrating 𝑈 as part of
the trial planning process given above. However, in contrast with
its use to calibrate 𝑈, this model is employed to make inferences
about 𝝅 using the observed data from a phase II trial.

Let 𝑛(𝑡) denote the number of patients accrued up to trial
time 𝑡, and index patients by 𝑖 = 1, . . . , 𝑛(𝑡). For the 𝑖𝑡ℎ patient,
denote the outcomes by 𝒀𝑖 = (𝑌𝑖,T, 𝑌𝑖,R). Let �̃�𝑖 = (𝑌𝑖,T, 𝑌𝑖,R) ∈

ℝ2 denote a pair of latent real valued probit scores for the 𝑖th
patient that follow a bivariate normal distribution,

�̃�𝑖|𝝁, Σ 𝑖𝑖𝑑
∼ N2(𝝁, Σ), 𝑖 = 1, . . . , 𝑛(𝑡), (10)

where 𝝁 and Σ are specified in (6). From (7)-(9), we assume

P(𝒀𝑖 = 𝒚𝑖|𝝅) = 𝜋𝑦𝑖,𝑇 ,𝑦𝑖,𝑅

= P(�̃�𝑖 ∈ 𝐴𝑦𝑖,𝑇 ,𝑦𝑖,𝑅
|𝝁, Σ, 𝑒𝑗,𝑘)

where 𝐴𝑦𝑖,𝑇 ,𝑦𝑖,𝑅
is defined as in (8) for (𝑦𝑖,T, 𝑦𝑖,R). We assume

that 𝝁 ∈ ℝ2 and 𝜌 ∈ (−1, 1) are random. For the cutoffs 𝑒𝑗,0 <

𝑒𝑗,1 < · · · < 𝑒𝑗,𝐾𝑗
, we set 𝑒𝑗,0 = −∞ and 𝑒𝑗,𝐾𝑗

= ∞ and allow
𝑒𝑗,2, . . . , 𝑒𝑗,𝐾𝑗−1 to be random for flexibility. For identifiability, we
fixed 𝑒𝑗,1 = 0 and 𝜎2 = 25 for our simulation studies.

To specify priors for the parameters 𝝁 and 𝜌 and random cut-offs
𝑒𝑗,2, . . . , 𝑒𝑗,𝐾𝑗−1, we first assume 𝜇𝑗

𝑖𝑛𝑑𝑒𝑝
∼ N(𝜇𝑗, 𝜔

2
𝑗
), with 𝜇𝑗 and

𝜔2
𝑗

fixed for each 𝑗. For 𝜌 ∈ (−1, 1), we assume (𝜌 + 1)∕2 ∼

Be(𝑎𝜌, 𝑏𝜌) with 𝑎𝜌 and 𝑏𝜌 fixed. For the cutoff distribution,
denoting 𝜆𝑗,𝑘 = 𝑒𝑗,𝑘+1 − 𝑒𝑗,𝑘 , 𝑘 = 1, . . . , 𝐾𝑗 − 2, we assume that

𝜆𝑗,𝑘
𝑖𝑛𝑑𝑒𝑝
∼ 𝐸𝑥𝑝(1∕𝜂𝑗) with E(𝜆𝑗,𝑘) = 𝜂𝑗 , with 𝜂𝑗 fixed. The infer-

ential model includes random 𝝁 and 𝜌, along with random cut-
offs 𝑒𝑗,𝑘 , and can flexibly approximate any 𝝅 . The model facili-
tates incorporation of useful information into inferences through
the prior distribution and generally is efficient, provided that the
prior distribution is reasonable. Specifically, it obtains desirable
frequentist properties such as posterior consistency, if the prior
distribution assigns a nonzero probability to the true parameter
values [28].
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Collecting terms, denote the vector of all random model parame-
ters by 𝜽 = ({𝜇𝑗}, 𝜌, {𝜆𝑗,𝑘}), and the vector of fixed hyperparam-
eter by �̃� = ({𝜇𝑗}, {𝜔

2
𝑗
}, 𝑎𝜌, 𝑏𝜌, {𝜂𝑗}). The joint posterior distribu-

tion of the latent variables and parameters under the augmented
model is

𝑝(�̃�, 𝜽|𝑛(𝑡), �̃�) ∝

𝑛(𝑡)∏
𝑖=1

{
𝑓N(�̃�𝑖|𝜇, Σ)𝟏(�̃�𝑖 ∈ 𝐴𝑦𝑖,𝑇 ,𝑦𝑖,𝑅

)
}

×
∏

𝑗∈{𝑇,𝑅}

𝑝(𝜇𝑗|𝜇𝑗, 𝜔2
𝑗 )

∏
𝑗∈{𝑇,𝑅}

𝐾𝑗−2∏
𝑘=1

𝑝(𝜆𝑗,𝑘|𝜂𝑗) 𝑝(𝜌|𝑎𝜌, 𝑏𝜌),

denoting the data at trial time 𝑡 by 𝑛(𝑡) = {𝒚𝑖, 𝑖 = 1, . . . , 𝑛(𝑡)}.
We use Markov chain Monte Carlo (MCMC) simulation to gen-
erate posterior samples of 𝜽 by iteratively drawing (𝜇𝑗, 𝜌, 𝜆𝑗,𝑘),
with each conditional on the values of the others at each itera-
tion. Given the posterior distribution of 𝜽, the posterior of 𝝅 can
be obtained easily using (9). Section 1 of the Supporting Informa-
tion includes details of the posterior simulation, and provides an
explanation on how to evaluate (3) using a posterior sample of 𝜽.
We specify the hyperparameters, �̃�, so that the resulting priors are
weakly informative. Specifically, for the simulation studies pre-
sented in Section 4 below, we set (𝑎𝜌, 𝑏𝜌) = (0.5, 0.5), 𝜇𝑗 = −2.5,
𝜔2
𝑗
= 100, and 𝜂𝑗 = 5 for both 𝑗 = 𝑇 and 𝑅. We performed prior

sensitivity analyses by varying the hyperparameter values �̃�, and
observed only minimal changes in each design’s performance for
any change in �̃� within a reasonable range of values.

3.5 | Trial Conduct

Assume that the phase II design includes 𝐿 interim analyses after
successive cohorts of size ⌊ 1

𝐿+1
𝑁max⌋, with an accumulated sam-

ple size of 𝑛𝓁 = ⌊ 𝓁
𝐿+1

𝑁max⌋ at the 𝓁𝑡ℎ analysis for 𝓁 = 1, . . . , 𝐿,
and 𝑛𝐿+1 = 𝑁max. The trial may be conducted as follows:

Trial Conduct

1. Treat the first cohort and observe their outcomes, 𝒀𝑖 , 𝑖 =
1, . . . , ⌊ 1

𝐿+1
𝑁max⌋.

2. At each interim analysis 𝓁 = 1, . . . , 𝐿, compute the poste-
rior distribution of 𝝅 based on the current data 𝑛(𝑡). Com-
pute the posterior criterion (3) to decide whether𝐸 is accept-
able. If 𝐸 is determined to be acceptable, treat the next
cohort and observe their outcomes. Otherwise, the trial is
stopped early and 𝐸 is declared unacceptable.

3. When 𝑛(𝑡) = 𝑁max is reached, the final decision on the
acceptability of 𝐸 is made by computing (3) using the final
data 𝑁max

.

In practice, as with any phase II trial, 𝑁max is limited primarily
by resource availability. However, 𝑁max must be large enough to
ensure that, across a range of scenarios determined by values of
𝝅TR, the early stopping probability (i) is large for 𝑈(𝝅TR) ≤ 𝑈,
and (ii) is small for 𝑈(𝝅TR) ≥ 𝑈 + 10. The maximum number of
applications of the stopping rule, 𝐿, should be logistically fea-
sible, while ensuring that the trial is monitored with sufficient
frequency to ensure the above design properties. Given 𝑁max and

𝐿, preliminary simulations should be done to calibrate the cutoff
𝑐𝑈 in (3). In our simulation study, we used 𝑁max = 60 and 𝐿 = 3.
We also have conducted additional simulation studies in which
both 𝑁max and 𝐿 are varied, studying 𝑁max = 60, 90, or 120 with
various values of 𝐿.

A computer program “U-Bayes” for implementing the proposed
U-Bayes design is available from https://sites.google.com/ucsc
.edu/juheelee/software. The program also includes a function
that implements the method for calibrating 𝑈 when planning
a trial.

4 | Simulation Study

4.1 | Simulation Design

To evaluate the U-Bayes design’s performance and compare it
to designs that use two marginal probability based rules, we
simulated the trial under 10 scenarios. For each scenario, we
assumed four-level ordinal outcomes for toxicity and efficacy, so
𝐾T = 𝐾R = 4. Each simulated trial had 𝑁max = 60 with cohort
size 15, resulting in up to 3 interim looks at 𝑛(𝑡) = 15, 30, and 45
(i.e., 𝐿 = 3). For each scenario, we specified the true covariance
matrix ΣTR of the probit scores and true marginal probabilities
𝑝TR
𝑗,𝑘𝑗

= PTR(𝑌𝑗 = 𝑘𝑗), 𝑗 = 𝑇 and 𝑅 and 𝑘𝑗 = 0, 1, 2, 3. We fixed
𝑒TR
𝑗,0 = −∞, 𝑒TR

𝑗,1 = 0 and 𝑒TR
𝑗,4 = ∞. Using the marginal probabil-

ity 𝑝TR
𝑗,0 , we determined 𝜇TR

𝑗
and 𝑒TR

𝑗,𝑘
, for 𝑘 = 2, 3 and 𝑗 = 𝑇, 𝑅 by

solving the equations

𝜇TR
𝑗 = −Φ−1(𝑝TR

𝑗,0 |0, 𝜎2,TR
𝑗

) and 𝑒TR
𝑗,𝑘

= Φ−1

(
𝑘∑

𝑘′=0
𝑝TR
𝑗,𝑘′

|𝜇TR
𝑗
, 𝜎2,TR

𝑗

)
.

We set 𝜎2,TR
T = 𝜎2,TR

R = 16 for all scenarios. We then computed
𝜋TR
𝑦𝑇,𝑦𝑅

for all (𝑦T, 𝑦R) pairs using (9). True values of the marginal
probabilities 𝑝TR

𝑗,𝑘
, joint probabilities 𝝅TR, correlation 𝜌TR, and

mean utility 𝑈
TR

are given in Table 3. In the table, 𝑝TR
T,ℎ𝑇

is given

in red italics if 𝜉TR
T,ℎ𝑇

> 𝜉T,ℎ𝑇 , that is, if 𝐸 is truly unacceptable due
to excessive toxicity. Similarly, 𝑝TR

R,ℎ𝑅
< 𝜉

R,ℎ𝑅
is given in red ital-

ics, that is, if 𝐸 is truly unacceptable due to a low response rate.
Finally, true mean utility values 𝑈

TR
< 𝑈 = 44.62 are marked in

red italics since they are unacceptably low. Values of the true
marginal probabilities pTR were specified arbitrarily to examine
the robustness of the U-Bayes design.

As comparators, we used two conventional designs, each based
on a pair of safety and efficacy monitoring rules given by (1), but
defining binary toxicity and binary response using different cut-
offs:

• Prob-based I: This design monitors occurrences of [Severe
Toxicity] and CR, that is,𝒉 = (ℎT, ℎR) = (3, 3). The fixed lim-
its 𝜉T,3 = 0.10 and 𝜉

R,3
= 0.30 are used for the probability

cutoffs with 𝜉T,3 and 𝜉R,3 compared to these limits in (1).

• Prob-based II: This design monitors occurrences of (High
or Severe Toxicity) and (PR or CR), that is, 𝒉 = (2, 2). The
fixed limits 𝜉T,2 = 0.30 and 𝜉

R,2
= 0.40 are used for the

probability cutoffs with 𝜉T,2 and 𝜉R,2 compared to these
limits in (1).
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TABLE 3 | Simulation results.

Scenario 1 (𝝆TR = 0.0) Scenario 2 (𝝆TR = 0.5)

Toxicity Response Response

Severity PD SD PR CR PD SD PR CR

Low 0.04 0.35 0.03 0.28 0.70 0.04 0.00 0.01 0.00 0.05
Moderate 0.00 0.02 0.01 0.02 0.05 0.40 0.04 0.24 0.02 0.70
High 0.01 0.10 0.01 0.08 0.20 0.02 0.00 0.03 0.00 0.05
Severe 0.00 0.03 0.00 0.02 0.05 0.04 0.01 0.12 0.03 0.20

0.05 0.50 0.05 0.40 1.00 0.50 0.05 0.40 0.05 1.00

𝑼
TR

= 68.93 𝑼
TR

=31.26

𝒑acc 𝒏trt 𝒑acc 𝒏trt

U-Bayes 1.00 4.00 0.00 2.10
Prob-based I 0.98 3.94 0.00 1.10
Prob-based II 0.96 3.87 0.92 3.76

Scenario 3 (𝝆TR = −0.5) Scenario 4 (𝝆TR = −0.5)

Toxicity Response Response

Severity PD SD PR CR PD SD PR CR

Low 0.08 0.09 0.08 0.25 0.50 0.11 0.21 0.11 0.17 0.60
Moderate 0.05 0.03 0.02 0.04 0.15 0.08 0.08 0.03 0.02 0.20
High 0.08 0.05 0.03 0.04 0.20 0.10 0.06 0.01 0.01 0.18
Severe 0.09 0.03 0.01 0.01 0.15 0.02 0.00 0.00 0.00 0.02

0.30 0.20 0.15 0.35 1.00 0.30 0.35 0.15 0.20 1.00

𝑼
TR

= 54.96 𝑼
TR

= 56.08

𝒑acc 𝒏trt 𝒑acc 𝒏trt

U-Bayes 1.00 3.99 1.00 3.99
Prob-based I 0.31 3.36 0.07 2.50
Prob-based II 0.02 2.68 0.83 3.59

Scenario 5 (𝝆TR = −0.3) Scenario 6 (𝝆TR = −0.3)

Toxicity Response Response

Severity PD SD PR CR PD SD PR CR

Low 0.11 0.09 0.16 0.13 0.50 0.11 0.09 0.05 0.25 0.50
Moderate 0.08 0.05 0.07 0.04 0.25 0.03 0.02 0.01 0.04 0.10
High 0.08 0.04 0.05 0.02 0.20 0.15 0.08 0.04 0.11 0.38
Severe 0.03 0.01 0.01 0.00 0.05 0.01 0.00 0.00 0.00 0.02

0.30 0.20 0.30 0.20 1.00 0.30 0.20 0.10 0.40 1.00

𝑼
TR

= 55.28 𝑼
TR

= 55.63

𝒑acc 𝒏trt 𝒑acc 𝒏trt

U-Bayes 0.92 3.84 1.00 4.00
Prob-based I 0.02 2.03 0.97 3.94
Prob-based II 0.64 3.27 0.03 3.52

(Continues)
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TABLE 3 | (Continued)

Scenario 7 (𝝆TR = 0.8) Scenario 8 (𝝆TR = 0.8)

Toxicity Response Response

Severity PD SD PR CR PD SD PR CR

Low 0.05 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.05
Moderate 0.43 0.04 0.14 0.08 0.70 0.44 0.03 0.03 0.09 0.60
High 0.01 0.00 0.03 0.05 0.10 0.06 0.02 0.02 0.24 0.33
Severe 0.00 0.00 0.02 0.12 0.15 0.00 0.00 0.00 0.02 0.02

0.50 0.05 0.20 0.25 1.00 0.55 0.05 0.05 0.35 1.00

𝑼
TR

= 33.66 𝑼
TR

= 34.24

𝒑acc 𝒏trt 𝒑acc 𝒏trt

U-Bayes 0.00 2.04 0.00 2.32
Prob-based I 0.00 2.14 0.95 3.86
Prob-based II 0.94 3.82 0.71 3.23

Scenario 9 (𝝆TR = 0.0) Scenario 10 (𝝆TR = 0.0)

Toxicity Response Response

Severity PD SD PR CR PD SD PR CR

Low 0.14 0.06 0.06 0.14 0.40 0.24 0.02 0.06 0.08 0.40
Moderate 0.14 0.06 0.06 0.14 0.40 0.15 0.01 0.04 0.05 0.25
High 0.05 0.02 0.02 0.05 0.15 0.09 0.01 0.02 0.03 0.15
Severe 0.02 0.01 0.01 0.02 0.05 0.12 0.01 0.03 0.04 0.20

0.35 0.15 0.15 0.35 1.00 0.60 0.05 0.15 0.20 1.00

𝑼
TR

= 54.04 𝑼
TR

= 35.33

𝒑acc 𝒏trt 𝒑acc 𝒏trt

U-Bayes 0.98 3.95 0.00 2.29
Prob-based I 0.95 3.87 0.00 1.63
Prob-based II 0.97 3.94 0.00 2.36

Note: 𝑝acc=P(declare 𝐸 acceptable), and 𝑛trt = mean number of cohorts treated. U-Bayes uses the utility function in Table 2 with 𝑈 = 44.62. Prob-based I uses 𝒉 = (3, 3)
with 𝜋T,3 = 0.1 and 𝜋R,3 = 0.3. Prob-based II uses 𝒉 = (2, 2) with 𝜋T,2 = 0.3 and 𝜋R,2 = 0.4. Values for truly unacceptable 𝐸 are given in red italics.

The same inferential model given in Section 3.4 for ordinal out-
comes is used for all three designs.

We evaluated and compared the three designs using the following
two criteria:

𝑝acc = probability of declaring treatment 𝐸 acceptable

𝑛trt = mean number of cohorts treated

In particular, 𝑝acc = 1− Pr(stop the trial early). Index the simu-
lated trials under each design by 𝑟 = 1, . . . , 𝑅. For the 𝑟th trial,
let 𝑤(𝑟) = 1 if a treatment is identified as acceptable and 0 if not,
and let 𝑁(𝑟) be the total number of cohorts treated. For each sce-
nario and design, we summarized the simulation results using
the following sample proportions:

𝑝acc =
1
𝑅

𝑅∑
𝑟=1

𝑤(𝑟) and 𝑛trt =
1
𝑅

𝑅∑
𝑟=1

𝑁(𝑟).

4.2 | Simulation Results

A total of 𝑅 = 1000 trials with 𝑁max = 60 and 𝐿 = 3 interim deci-
sions after cohorts of size 10 were simulated using each design
under each scenario. The value 0.85 was used for all three cutoffs
𝑐⋆T , 𝑐⋆R , and 𝑐⋆

𝑈
. The simulation results are summarized in Table 3.

Compared to the two designs using a pair of marginal
probability-based monitoring rules, across the 10 scenarios, on
average U-Bayes is more likely to make much more reasonable
decisions. When 𝐸 is truly unacceptable, U-Bayes reliably deter-
mines this and stops the trial early with high probability, resulting

10 of 13 Statistics in Medicine, 2024
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in fewer patients being treated. In general, U-Bayes often dis-
agrees with the two-rule marginal probability based designs, and
these often disagree with each other due to their use of different
cutoffs to define binary outcomes.

Scenarios 1 and 2, which were discussed above in Section 2 as
illustrative examples, have the same marginal distributions for
the dichotomized outcomes 𝑍T,2 and 𝑍R,2, but the joint distribu-
tions 𝝅 are very different and give the respective mean utilities,
𝑈

TR
= 68.98 and 31.26. For example,𝜋TR

0,3 = 0.28 (low toxicity and
CR) and 𝜋TR

0,1 = 0.35 (low toxicity and SD) under Scenario 1, but
𝜋TR

1,0 = 0.40 (moderate toxicity and PD) and 𝜋TR
1,2 = 0.24 (moder-

ate toxicity and PR) under Scenario 2. While 𝐸 is truly accept-
able for both scenarios under Prob-based II, which is based on
the marginal probabilities 𝜉T,2 and 𝜉R,2, under U-Bayes 𝐸 is truly
acceptable for Scenario 1 but not for Scenario 2. Prob-based II
had 𝑝acc = 0.96 for Scenario 1 and 𝑝acc = 0.92 for Scenario 2, with
averages of 3.81 and 3.76 cohorts treated, respectively. In sharp
contrast, since U-Bayes accounts for the entire joint probability
𝝅, it identified 𝐸 as acceptable for all 1000 simulated trials in Sce-
nario 1, giving 𝑝acc = 1.00, but had 𝑝acc = 0.00 in Scenario 2. In
Scenario 1, U-Bayes always treated 4 cohorts, while in Scenario
2, an average of 2.10 cohorts were treated. Under Prob-based I,
𝐸 is truly acceptable for Scenario 1, but not acceptable for Sce-
nario 2. This design performs reasonably well for both scenar-
ios. However, Prob-based I and Prob-based II have very differ-
ent decision probabilities under Scenario 2, with 𝑝acc = 0.00 for
Prob-based I and 𝑝acc = 0.92 for Prob-based II, due to their dif-
ferent dichotomization values 𝒉 = (2,2) and (3,3). This sort of
disagreement between Prob-based I and II is seen in many of the
scenarios, which underscores the importance of how each ordinal
variable is dichotomized.

In Scenarios 3 and 4, 𝐸 is truly acceptable under U-Bayes, with
nearly identical respective true mean utilities 54.96 and 54.08, but
𝐸 is not acceptable under either of the marginal probability-based
rules. Scenario 3 has 𝑝TR

T,3 = 0.15 and 𝑝TR
T,2 = 0.20 giving 𝜉TR

T,3 =

0.15 and 𝜉TR
T,2 = 0.35. Comparing these probabilities to the lim-

its, 𝜉T,3 = 0.10 and 𝜉T,2 = 0.30, shows that 𝐸 is truly unaccept-
able under both probability-based designs. Although the true
toxicity probabilities slightly exceed their upper limits, 𝐸 has a
large mean utility due to a substantial increase in the response
probability, and it is truly acceptable under U-Bayes. The desir-
able outcome (low or moderate toxicity, CR or PR) occurs with
probability of 0.39, and the more desirable subevent (low tox-
icity, CR or PR) has probability 0.29. The U-Bayes design has
𝑝acc = 1.00, and on average treats 3.99 cohorts. In contrast,
Prob-based I has 𝑝acc = 0.31 and Prob-based II has 𝑝acc = 0.02,
treating respective averages of 3.36 and 2.68 cohorts. Again,
U-Bayes is much more likely to find 𝐸 acceptable in scenar-
ios where, because it accounts for the desirabilities of joint
events, 𝑈(𝝅) is large while, when considering only the marginals
under Prob-based I or II, either 𝜋T,ℎ is too large or 𝜋R,ℎ is too
small.

In Scenario 4, there is a significant reduction in toxicity proba-
bility at the cost of response probabilities being slightly smaller
than the limits. Specifically, 𝜉TR

R,3 = 0.20 and 𝜉TR
R,2 = 0.35 with

lower limits 𝜉
R,3

= 0.30, and 𝜉
R,2

= 0.40. The probability of Low

toxicity occurring is very large, 𝑝TR
T,0 = 0.60, and Low toxic-

ity occurs with a response above or equal to SD with prob-
ability of 0.49. Consequently, 𝐸 is unacceptable under both
marginal probability-based rules but is acceptable under U-Bayes
since 𝑈

TR
= 54.96, which is much larger than 𝑈 = 44.62, so

U-Bayes has 𝑝acc = 1.00 and treats on average 3.99 cohorts.
The two probability-based methods have 𝑝acc = 0.07 and
0.83, respectively, again disagreeing with each other and with
U-Bayes.

In Scenarios 5 and 6, 𝐸 has nearly identical high true mean utili-
ties 55.28 and 55.63, respectively, but𝐸 is unacceptable in terms of
marginal probabilities. In Scenario 5, Prob-based I with𝒉 = (3, 3)
always identifies 𝐸 as unacceptable, with 𝑝acc = 0.02, because
𝜉TR

R,3 = 0.20 < 0.30 = 𝜉
R,3

. However, Scenario 5 also has 𝜉TR
R,2 >

𝜉
R,2

and 𝜉TR
T,2 < 𝜉T,2, so Prob-based II has𝑝acc = 0.64. Since the true

mean utility 𝑈
TR

= 55.28 > 44.62 = 𝑈, U-Bayes has 𝑝acc = 0.92.
In Scenario 6, 𝐸 is truly acceptable under Prob-based I but not
acceptable under Prob-based II because 𝜉TR

T,2 = 0.40 > 0.30 = 𝜉T,2.
For this scenario, U-Bayes has 𝑝acc = 1.00, while Prob-based I has
𝑝acc = 0.97 and Prob-based II has 𝑝acc = 0.03. Thus, Prob-based I
happens to agree with U-Bayes, but disagrees with Prob-based II.

In Scenarios 7 and 8, 𝐸 has small mean utilities due to the large
values of the probability of (moderate toxicity, PD), specifically
𝜋TR

1,0 = 0.43 and 0.44 for the two scenarios, respectively. In Sce-
nario 7, the marginal probability of (CR or PR) is 0.45, while
the probability of the joint event (high or severe toxicity, CR or
PR) is 0.22. This results in an unacceptably small mean util-
ity 𝑈

TR
= 33.66, and U-Bayes has 𝑝acc = 0.00. In Scenario 7,

under Prob-based I 𝐸 is truly unacceptable and this design had
𝑝acc = 0.00 after treating 2.14 cohorts on average. In contrast,
Prob-based II has 𝑝acc = 0.94, with an average of 3.82 cohorts
treated.

Scenario 8 has marginal probability 0.40 for (CR or PR). Given
(CR or PR), (High or Severe toxicity) occurs with conditional
probability of 0.725 = 0.29/0.40. Consequently, the true mean
utility 𝑈

TR
= 34.24 is unacceptably small and U-Bayes has

𝑝acc = 0.00. However, 𝐸 is truly acceptable under Prob-based I,
which has 𝑝acc = 0.95, with an average of 3.86 cohorts treated
while 𝐸 is truly unacceptable under Prob-based II, which has
𝑝acc = 0.71.

In Scenario 9, the three designs all have high 𝑝acc values, with
U-Bayes having the highest value 0.98, and 3.95 out of 4 cohorts
treated. In Scenario 10, 𝐸 was not identified as acceptable in any
of the simulated trials by any design, with 𝑝acc = 0.00, and the
trials were stopped early after 1.63 to 2.36 cohorts were treated.

Additionally, we varied the number 𝐿 of interim looks and the
maximum sample size 𝑁max to examine how the performances of
the three designs may change with different combinations of 𝐿
and 𝑁max. We let 𝐿 = 1 or 2 with 𝑁max = 60, 𝐿 = 1, 2, or 5 with
𝑁max = 90 and 𝐿 = 1, 3 or 5 with 𝑁max = 120. The results are
summarized in Table 1 in the Supporting Information. Overall,
the performance improves with smaller 𝐿 and larger 𝑁max for all
three designs.
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TABLE 4 | Simulation results of U-Bayes with different statistical models.

Scenario 11 (𝝆TR = −0.9) Scenario 15 (𝝆TR = 0.9)

Toxicity Response Response

Severity PD SD PR CR PD SD PR CR

Low 0.01 0.04 0.02 0.33 0.40 0.33 0.05 0.01 0.01 0.40
Moderate 0.06 0.06 0.02 0.06 0.20 0.06 0.06 0.02 0.06 0.20
High 0.10 0.04 0.01 0.01 0.15 0.01 0.03 0.02 0.10 0.15
Severe 0.23 0.01 0.00 0.00 0.25 0.00 0.01 0.01 0.23 0.25

0.40 0.15 0.05 0.40 1.00 0.40 0.15 0.05 0.40 1.00

𝑼
TR

= 50.91 𝑼
TR

= 38.56

𝒑acc 𝒏trt 𝒑acc 𝒏trt

U-Bayes with Dep 0.92 3.85 0.02 3.03
U-Bayes with Ind 0.32 2.65 1.00 4.00

Note: 𝑝acc = P(declare 𝐸 acceptable), and 𝑛trt = mean number of cohorts treated. U-Bayes with two different statistical models are compared; (1) U-Bayes with Dep, U-Bayes
with a model that assumes dependence between the outcomes and (2) U-Bayes with Ind: U-Bayes with a model that assumes independence between the outcomes. The
utility function in Table 2 with 𝑈 = 44.62 is used for both. Values for truly unacceptable 𝐸 are given in red italics.

We considered five additional simulation scenarios, Scenarios
11–15, to examine how the performance of U-Bayes may change
if the assumed inferential model does not account for poten-
tial dependence between the outcomes. These scenarios all have
the same marginal probabilities, but the joint probability distri-
butions differ in terms of their degrees of association. Specif-
ically, we considered 𝜌TR = −0.9, −0.6, 0.0, 0.6, or 0.9, respec-
tively, for the five scenarios. Under the assumed simulation
design in Section 4.1, a large negative value of 𝜌TR leads to larger
𝑈

TR
, and 𝜌TR = 0.0 represents the case of independence between

the outcomes. The scenarios have respective 𝑈
TR
= 50.91, 48.54,

44.70, 40.88, and 38.56. Recall that 𝑈 = 44.62, which implies
that 𝐸 is acceptable when 𝜌TR = −0.9 or −0.6 but unaccept-
able when 𝜌TR = 0.6 or 0.9, while 𝑈

TR
is very close to 𝑈 when

𝜌TR = 0.0. We call the model that assumes independence by fix-
ing 𝜌 = 0.0 ‘U-Bayes with Ind,’ and call U-Bayes with a model
that assumes dependence by treating 𝜌 as an unknown parame-
ter ‘U-Bayes with Dep.’ The simulation results under Scenarios
11–15 are summarized in Table 2 in the Supporting Informa-
tion. We illustrate the results for Scenarios 11 and 15 in Table 4.
Although 𝐸 is truly acceptable in Scenario 11 but truly unaccept-
able in Scenario 15, U-Bayes with Indep identifies 𝐸 as accept-
able with probabilities 𝑝acc = 0.32 and 1.00, respectively, with
𝑛trt = 2.68 and 4.00 cohorts treated on average for the two sce-
narios. In contrast, U-Bayes with Dep identifies 𝐸 as acceptable
with probabilities 𝑝acc = 0.92 and 0.02, respectively. This shows
that, by allowing the inferential model to learn potential depen-
dencies between outcomes, U-Bayes achieves greater accuracy in
decision-making. Table 3 in Supporting Information illustrates
the results for different combinations of (𝐿,𝑁max) in Scenar-
ios 11–15. Consistent with earlier findings, U-Bayes with Dep
performs better for smaller 𝐿 and/or larger 𝑁max. In contrast,
the performance of U-Bayes with Indep does not improve with
larger 𝑁max.

5 | Discussion

We have proposed a new Bayesian single-arm phase II trial
design, U-Bayes, that monitors a treatment’s acceptability using
one stopping rule based on a utility function for ordinal tox-
icity and response. Our simulations showed that U-Bayes is
highly effective in evaluating a treatment acceptability, because
it accounts for the joint distribution of Toxicity and Response
through their mean utility. The simulations showed that the two
marginal probability-based methods each may have very unde-
sirable OCs because they reduce information by dichotomiz-
ing the two ordinal outcomes for decision making. Moreover,
Prob-based I and Prob-based II may strongly disagree with each
other because they use different cut-offs to define “toxicty” and
“response.” That is, whether 𝐸 is found to be promising or not
greatly depends on the choice of the cut-points used to determine
the marginal events. U-Bayes does away with these problems by
using the full bivariate distribution over the observed ordinal out-
comes, and consequently it is likely to lead to more clinically
justified decisions in practice.

Utility functions are inherently subjective because they reflect
the desirability of each pair of outcomes from the clinical investi-
gator’s viewpoint, which reflects overall patient benefit numeri-
cally. Therefore, elicitation of 𝑈(y) and calibration of the thresh-
old 𝑈 require close communication between the clinicians and
statisticians planning a trial. This subjectivity is an advantage
of U-Bayes, rather than a disadvantage, since efficacy-toxicity
trade-offs are intrinsic to clinical decision making, and specifying
the 𝑈(𝒚) values makes the desirabilities of all 𝒚 values explicit.

In principle, the U-Bayes approach can be applied to more com-
plex clinical settings. For example, U-Bayes is suitable for a bas-
ket trial where a targeted therapy is evaluated in multiple dis-
eases with a common biomarker for a target that 𝐸 is designed
to attack. In such settings, if desired, a different utility function
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can be elicited for each disease, providing a more tailored basis
for disease-specific decision-making.
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