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Importance of Rare Variants
■Complex disorders

-extreme allelic heterogeneity 
-caused by multiple rare variants with moderate to 
high penetrance

■Evolution theory suggests that allelic heterogeneity might 
be extensive with multiple susceptible alleles of 
independent origin (Pritchard, J.K., and Cox, N.J. (2002). 
The allelic architecture of human disease genes: 
Common disease-common variant or not? Hum. Mol. 
Genet. 11, 2417–2423).

■Rare variants are more likely to be disease predisposing



Importance of Rare Variants-read 
examples
■Multiple rare variants identified to be associated with 

common complex diseases

Low plasma levels of HDL cholesterol (Cohen et al. 2004, 
Science, Cohen et al. 2006 PNAS, Romeo et al. 2007 
Nature Genetics)
Obesity (Ahituv et al. 2007 AJHG)
Colorectal adenomas (Azzopardi et al. 2008 Cancer 
Research)
Schizophrenia (Walsh 2008 Science)



Rare Variant Analysis
■ Rare Variants MAF<0.5%

■ Rare variants are cited as measure contributor to 
disease etiology

■ Several statistical methods are developed to 
analyze rare variants.



Rare Variant Analysis

■ Association Testing
Goal– Determining if 
rare variants at a 
particular locus are 
associated with the 
disease.



Some of the Existing Methods
■Morris and Zeggini have shown that tests based on single 

variants have limited power compared with tests based on 
summing or collapsing rare variants.

■Cohort Allelic Sum Test (CAST) based on the difference in 
the number of variant alleles in cases and controls. It 
collapses information on all rare variants within a region 
into a single binary variable for each individual-whether or 
not an individual has ANY rare variants within the region 
and then perform regression with this binary variable 
(Morgenthaler and Thilly).



Some of the Existing Methods
■Morris and Zeggini: collapse by counting the number of 

rare variants within a region per subject, then apply the 
standard regression approach.

■The Combined Multivariate and Collapsing (CMC) test 
extends CAST by collapsing all variants within a region 
into subgroups based on a minor allele frequency 
threshold then collapse all rare variants within a subgroup 
as in CAST, and then applies a  multiple regression model 
(significance is tested using Hotelling’s ܶଶ statistic.



Some of the Existing Methods
■ In both the CMC and CAST, all variants are assumed to 

have an equal effect on the phenotype.
■Therefore, Madsen and Browning proposed a Weighted 

Sum Statistic (WSS), which weighs the variants based on 
the inverse of the estimated standard deviation of the total 
number of rare variants in the sample. (assumes rarer 
variants have higher impact on the disease). For each 
variant i and individual j, a genetic score is calculated.  



Some of the Existing Methods
■Where ܫ௜௝ number of rare variants at location i for 

individual j. The weights w’s are the estimated standard 
deviation of the number rare variants in the sample.

■Next all individuals (cases and controls) are ranked 
according to γ௝ and then sum ranks for all cases is the 
test statistics.

■Price et al. proposed a variable allele-frequency threshold 
method (VT) for selecting rare variants based on the 
assumption that variants with minor allele frequency 
below an unknown allele frequency threshold are more 
likely to be functional.



Some of the Existing Methods
■Hoffmann et al. used the general regression framework 

and model the weights as the product of three variables. 
The multiplicative model allows for weighting, direction of 
effect, and variant selection to be incorporated into the 
framework. They also proposed selecting variants based 
on functional significance and a data-driven method of 
variable selection called ‘‘step-up,’’ which is based on the 
standard forward selection algorithm. 

■Wu et al. proposed a regression approach, sequence 
kernel association test (SKAT), based on the score-based 
variance components test.



Some of the Existing Methods
■SKAT

■To increase power, SKAT assumes βs follow a distribution 
with mean zero and variance ώτ and equivalently tests for 
τ=0 using variance component score statistic 



The Step-up method
■The step-up method is a data-driven method that tries to 

find the best possible set of rare variants by minimizing 
the p-value or maximizing a particular test statistic using 
the standard forward selection algorithm. 

■The forward selection algorithm starts with no variants in 
the model and, at each iteration, adds variants to the 
model to maximize the Wald test statistic. The process 
stops when adding a variant to the model no longer 
increases the value of the test statistic.



Some of the Existing Methods
■Summing/ Weighted Summing/selection

SSU Test [Han and Pan(2010)]
C-alpha Test [Neale et al.(2011)]
SKAT [Wu et al.(2011)]
Combined Multivariate and Collapsing [Li and Leal(2008)]
Weighted Sum statistic [Madsen and Browning(2009)]
Step-up Method [Hoffman et al.(2010)]



Linkage Disequilibrium Patterns
■Our approach is to consider information about 
linkage disequilibrium (LD) among rare variants.

■Several measures of LD: ଶ and D’ are most 
commonly used.

■We propose an approach, based on the LD 
among rare variants, for selecting a subset of 
variants to include in the analysis.



Linkage Disequilibrium
■ linkage disequilibrium is the nonrandom association of 

alleles at two loci.

■D’ is ܦ஺஻ divided by maximum possible value of ܦ஺஻.



Variable Selection- Improving Power

■Subset selection plays an important role.

■ܻ	 ൌ 	݂ ଵܺ, ܺଶ, … , ܺ௡
Goal– Select the best subset of predictors that will lead to 

an increase in power for association.

■ Existing Method 
Step Up (Hoffman et al. (2010))



Association Test
■ Case Control Data for multiple rare variants.

	݃ ௜ܻ ൌ ଴ߚ	 ൅	ߚଵ ෍ݓ௞ܺ௞

௡

௞ୀଵ

	

 ௞ݓ can be modeled as ݓ௞ ൌ ܽ௞ݏ௞ݒ௞
 ܽ௞ is used for up weighing variants based on their minor allele frequencies.
 ௞ݏ is -1 or 1 based on whether the rare variant is protective or deleterious.
 ௞ݒ is used to determines whether the rare variant is to be included in the model.

■ Here we are only concerned with the variant selection hence we only use ݒ௞ in 
the formulation, ܽ௞ and 	ݏ௞ can be modeled using the best possible way.

■ This model can include common variants as 

݃ ௜ܻ ൌ ଴ߚ	 ൅	ߚଵ ෍ݒ௞ܺ௞
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 ௝ܼ are the common variants.



Preliminary Observations
■We performed preliminary simulations to identify rare variants 

using these step-based approaches and found that 
-(a) when rare variants were in LD, the step-based variable 
selection procedures resulted in a loss of power compared with 
the model that simply collapses all rare variants (named 
hereafter the full model) and 

-(b) when rare variants were independent of each other (i.e., no 
LD among rare variants), step-based variable selection had 
higher power than the full model.

■ Can we do better than selecting all variants in presence of LD?



Subset selection based on LD
■Motivation: Subset selection methods lose power because 

of the correlation among rare variants.

■ We need to include all correlated variants in the model.

■ New proposed subset selection algorithm: Remove a 
subset of noisy variants that don't contribute.



Algorithm for Subset Selection
The proposed algorithm that accounts for LD, called 
LDSEL, is as follows:
■1. Use the step-down-up (backward-forward) selection 

method to select associated variants in the model.

Starts with all rare k variants in the model. Calculate the 
model p-value and ܴଶ (or equivalently likelihood ratio test 
statistic)
Calculate model p-value for all models in which only k-1 

rare variants are included. Then pick the (k-1) variant 
model which has the smallest p-value and non-significant 
reduction in the ܴଶ value.



Algorithm for Subset Selection
■Forward component of the algorithm

When s variables are selected: calculate likelihood . 
Calculate the model p-value and ܴଶ value
Calculate model p-value for all models in which only s+1 

rare variants are included. Then pick the (s+1) variant 
model which has the smallest p-value and non-significant 
reduction in the ܴଶ value.



Algorithm for Subset Selection
The proposed algorithm that accounts for LD, called LDSEL, is 
as follows:
■1. Use the step-down-up (backward-forward) selection method 

to select associated variants in the model.

■2. For each selected variant in step 1, identify all other variants 
that are in LD with the selected variants in the cases.

■3. The union of variants identified in step 1 and step 2 forms 
the final selected subset of rare variants.

■The measure used for LD was ݎଶ.



LD among rare variants
■Our algorithm collapses to the regular step-based 

methods when the rare variants are not in LD. 

■ It also collapses to the full model on the other extreme 
when all the rare variants are in LD with each other.

■Real data will have a block structure in which some 
variants are in LD and some are independent. 



Comparing Methods
■ Existing methods
Step-Up → Forward selection
VT→ Variable threshold
SKAT → Sequence Kernel Association Test

■We also considered variations of Step-Up method.
 Step-Down →	Backward selection
 Step-Up-Down →	Forward-backward selection.
 Step-Down-Up →	Backward-forward selection.

■We compared the results of these methods to the full 
model in which all the variants were included.



Simulation for observed LD in HapMap
Data
■ In this scenario, we simulated rare variants using the LD 

structure of the DRD2 gene from the HapMap3 data 
(HapMap3 Genome Browser, release #2 [Phase 3 -
genotypes, frequencies, & LD]). 

■The DRD2 gene spans 112,785,528 bp to 112,851,091 bp
on chromosome 11.

■We also considered CHRNA3/A5/B4, a gene cluster 
encompassing multiple genes. 

■The CHRNA3/A5/B4 cluster spans 76,490,686 bp to 
76,899,993 bp on chromosome 15.



Simulation for realistic LD
■DRD2 gene
■50 rare variants were simulated with 0.25% < MAF < 

0.5%
■ The linkage disequilibrium between variants was 

simulated from Hap-map data of DRD2 gene.
■ Out of 50 rare variants 5 variants were randomly 

designated to be causal variants.
■The disease model was a logistic regression model with 

OR =(2,2,2,2,2) for the 5 causal variants.

■CHRNA3/A5/B4: Of the 154 rare variants, 7 variants were 
randomly designated to be causal variants.



DRD2 Linkage Disequilibrium

■ Courtesy@  Hapmap data , Haploview



CHRNA3/A5/B4 Linkage Disequilibrium



Simulation for Block LD
■Block LD-all SNPs are in 

LD within a block

■Three LD blocks of 10 rare 
variants each were 
simulated.

■Two variants randomly 
designated as causal from 
each LD block.



Simulation for Block LD
■ In addition to the associated variants within the three 

blocks, we simulated 20, 70, or 170 independent variants 
(i.e., not in LD with any other variants) outside the three 
LD blocks. 

■These three different numbers (20, 70 and 170) of non-
causal and non-associated variants were simulated to 
assess the performances of the different methods over a 
range of signal-to-noise ratios.



Simulation for variants in linkage 
equilibrium
■All 50 variants were independently simulated for the 

linkage equilibrium scenario with 0.25% < MAF < 0.5%

■5 variants were randomly designated as causal.

■ 1000 cases and 1000 controls and results are based on 
1000 replicates.



Type 1 error Comparison
■Type 1 error rate for 1000 replicates generated from a null 

model

■Use permutations to control Type 1 Error.



Power Comparison in presence of block 
LD
■ The power of the full model was 

higher than that of the step-based 
methods.

■ For low number of non associated 
variants the proposed LDSEL method 
had higher power than all the step-
based methods, VT, SKAT and also 
slightly better power than the full 
model

■ For higher number of non associated 
variants, the power of our proposed 
LDSEL method was higher than the 
full model, SKAT, and VT.



Power Comparison with LD as in DRD2 
and CHRNA3/A5/B4
■ For the DRD2 gene, the power of 

LDSEL approach was higher than 
SKAT, VT, and the step-based 
methods.

■ For the CHRNA3/A5/B4 cluster, 
the LDSEL approach had higher 
power than the step-based 
methods and VT, but had similar 
power as the full model and 
SKAT. 

■ The VT method had slightly lower 
power than the step-based 
methods in the first panel 
whereas in the second panel it 
had higher power than the step-
based methods.



Power Comparison without LD
■The step-based methods 

and outperformed all other 
methods when the variants 
were in linkage equilibrium.

■The step down up method 
performed marginally better 
compared to the other step 
based methods

■The LDSEL method had 
power which was significantly 
higher than the full model but 
marginally lower than the 
step-based methods and 
SKAT.



Discussion
■LDSEL is a flexible method and, depending on the 

structure of LD between the variants, it converts to a full 
model when all of the rare variants are in LD or to a step-
based approach when all the variants are in linkage 
equilibrium.

■As the number of non-associated variants being pooled 
increased, substantial power was gained by the LDSEL 
method compared with the full model or the step-based 
selection methods.



Total 51 Genes Sequenced
Gene_Symbol Chr Gene_start Gene_end Gene_size Gene_Symbol Chr Gene_start Gene_end Gene_size

1CHRNB2 1 154,540,257 154,552,502 12,245 27ADRB1 10 115,803,806 115,806,667 2,861
2ADCY3 2 25,042,038 25,142,708 100,670 28CHAT 10 50,817,141 50,901,925 84,784
3ADRA2B 2 96,778,623 96,781,984 3,361 29CYP2E1 10 135,333,910 135,374,724 40,814
4CHRNA1 2 175,612,320 175,629,200 16,880 30DRD2 11 113,280,317 113,346,413 66,096
5CHRND 2 233,390,703 233,401,377 10,674 31DRD4 11 637,293 640,706 3,413
6CHRNG 2 233,404,437 233,412,546 8,109 32HTR3A 11 113,845,603 113,861,035 15,432
7CREB1 2 208,394,461 208,470,284 75,823 33HTR3B 11 113,775,399 113,817,287 41,888
8ADCY5 3 123,001,143 123,168,605 167,462 34ADCY6 12 49,159,975 49,182,820 22,845
9DRD3 3 113,847,499 113,918,254 70,755 35ADCY4 14 24,787,555 24,804,299 16,744

10ADRA2C 4 3,768,075 3,770,253 2,178 36AGPHD1 15 78,799,906 78,829,715 29,809
11CHRNA9 4 40,337,346 40,357,234 19,888 37CHRFAM7A 15 30,653,443 30,686,052 32,609
12ADCY2 5 7,396,321 7,830,194 433,873 38CHRNA3 15 78,885,394 78,913,637 28,243
13ADRA1B 5 159,343,740 159,400,017 56,277 39CHRNA5 15 78,857,862 78,887,611 29,749
14ADRB2 5 148,206,156 148,208,197 2,041 40CHRNA7 15 32,322,691 32,464,722 142,031
15DRD1 5 174,867,675 174,871,163 3,488 41CHRNB4 15 78,916,461 79,012,628 96,167
16SLC6A3 5 1,392,905 1,445,545 52,640 42IREB2 15 78,729,773 78,793,798 64,025
17SLC22A2 6 160,592,093 160,698,670 106,577 43PSMA4 15 78,832,747 78,841,604 8,857
18ADCY1 7 45,613,739 45,762,715 148,976 44ADCY7 16 50,280,048 50,352,046 71,998
19ADCY8 8 131,792,547 132,054,672 262,125 45SLC6A2 16 55,689,516 55,740,104 50,588
20ADRA1A 8 26,605,667 26,724,790 119,123 46ARRB2 17 4,613,784 4,624,795 11,011
21CHRNA2 8 27,317,278 27,337,400 20,122 47CDK5R1 17 30,813,637 30,818,274 4,637
22CHRNA6 8 42,607,763 42,651,535 43,772 48CYP2A6 19 41,349,443 41,356,352 6,909
23CHRNB3 8 42,552,519 42,592,550 40,031 49CYP2B6 19 41,497,204 41,524,301 27,097
24DBH 9 136,501,482 136,524,466 22,984 50ADRA1D 20 4,201,278 4,229,721 28,443
25SH2D3C 9 130,500,596 130,541,048 40,452 51CHRNA4 20 61,974,665 62,009,753 35,088
26ADRA2A 10 112,836,790 112,840,665 3,875



Number of Variant Calls from 431 
VCF Files

~Total 2.3 millions

chr count
1 202,337
2 211,542
3 167,048
4 168,914
5 152,950
6 150,173
7 142,040
8 140,727
9 106,717
10 129,697
11 138,567
12 117,206
13
14 79,310
15 124,057
16 93,881
17 74,315
18
19 87,633
20 63,240
21
22
23
24
26
sum 2,350,354



Number of Variant Calls from 
431 INDEL VCF Files and SNP VCF Files

chr INDEL vcf
count

SNP vcf
count

INDEL vcf
count

SNP vcf
count

1 163,971 202,337 163,971 202,337
2 171,894 211,542 171,894 211,542
3 129,142 167,048 129,142 167,048
4 125,906 168,914 125,906 168,914
5 122,901 152,950 122,901 152,950
6 116,341 150,173 116,341 150,173
7 116,807 142,040 116,807 142,040
8 107,231 140,727 107,231 140,727
9 84,871 106,717 84,871 106,717
10 103,556 129,697 103,556 129,697
11 107,183 138,567 107,183 138,567
12 97,450 117,206 97,450 117,206
13 62,956 80,973
14 62,909 79,310 62,909 79,310
15 111,175 124,057 111,175 124,057
16 74,194 93,881 74,194 93,881
17 65,217 74,315 65,217 74,315
18 51,188 65,836
19 83,432 87,633 83,432 87,633
20 50,979 63,240 50,979 63,240
21 29,673 38,265
22 30,336 34,203
23 70,603 67,337
24 6,612 7,523
26 44 289
sum 2,146,571 2,644,780 1,895,159 2,350,354





Thoughts
■Our initial goal was to reduce the number of SNV’s (rare) 

to be short listed (for biological follow-up) using the LD 
approach.

■We also tried to reduce the number of variants by 
comparing LD pattern of selected variants in cases and 
controls.

■Will the case control study design better to identify rare 
variants or will the family study design be better?

■Answer depends upon many factors: 
■Single variant segregating in multiple families
■Different variant segregating in different families
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