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Abstract
Background: The basket trial evaluates the treatment effect of a targeted therapy in patients with the same genetic or
molecular aberration, regardless of their cancer types. Bayesian hierarchical modeling has been proposed to adaptively
borrow information across cancer types to improve the statistical power of basket trials. Although conceptually attrac-
tive, research has shown that Bayesian hierarchical models cannot appropriately determine the degree of information
borrowing and may lead to substantially inflated type I error rates.
Methods: We propose a novel calibrated Bayesian hierarchical model approach to evaluate the treatment effect in bas-
ket trials. In our approach, the shrinkage parameter that controls information borrowing is not regarded as an unknown
parameter. Instead, it is defined as a function of a similarity measure of the treatment effect across tumor subgroups.
The key is that the function is calibrated using simulation such that information is strongly borrowed across subgroups if
their treatment effects are similar and barely borrowed if the treatment effects are heterogeneous.
Results: The simulation study shows that our method has substantially better controlled type I error rates than the
Bayesian hierarchical model. In some scenarios, for example, when the true response rate is between the null and alter-
native, the type I error rate of the proposed method can be inflated from 10% up to 20%, but is still better than that of
the Bayesian hierarchical model.
Limitation: The proposed design assumes a binary endpoint. Extension of the proposed design to ordinal and time-to-
event endpoints is worthy of further investigation.
Conclusion: The calibrated Bayesian hierarchical model provides a practical approach to design basket trials with more
flexibility and better controlled type I error rates than the Bayesian hierarchical model. The software for implementing
the proposed design is available at http://odin.mdacc.tmc.edu/~yyuan/index_code.html
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Introduction

Traditional phase II oncology clinical trials have been
designed to evaluate a single treatment in patients of a
particular cancer type. With tremendous advances in
cancer biology and genomic medicine, the forefront of
cancer research has shifted from conventional che-
motherapy to targeted therapy that treats cancer by
targeting a specific genetic or molecular aberration.1

The basket trial is a trial design that accommodates
such a paradigm shift.2,3 As illustrated in Figure 1,
under the basket trial, patients with the same genetic or
molecular aberration, regardless of their cancer types,
are enrolled in the trial for evaluating the effect of a
targeted agent. The basket trial allows for the incor-
poration of precision medicine into clinical trials that
also evaluate molecular aberrations that are too rare to

study solely within a tumor-specific context.4 In addi-
tion, the basket trial often requires fewer patients and a
shorter duration to identify a favorable response to the
targeted therapy.2,5,6

Despite increasing recognition of trial designs based
on genetic or molecular aberrations as opposed to can-
cer types, evaluating targeted therapies in basket trials
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is challenging. Although the patients enrolled in a bas-
ket trial have the same genetic or molecular aberration,
that does not necessarily mean that they will respond
homogeneously to a targeted agent regardless of the
primary tumor site. Tumor type often has profound
effects on the treatment effect, and it is not uncommon
for a targeted agent to be effective for some tumor
types, but not others. As a result, when evaluating the
treatment effect in basket trials, an analysis that simply
pools the data across tumor types is often problematic.
It leads to large biases and inflated type I error rates if
the treatment effect actually is heterogeneous across dif-
ferent tumor types. The independent approach, which
evaluates the treatment effect in each tumor type inde-
pendently, avoids these issues, but is less efficient and
often lacks power to detect the treatment effect due to
the limited sample size in each tumor type or tumor
subgroup. For convenience, we use tumor type and
tumor subgroup to mean the same thing.

To overcome the drawbacks of pooled and indepen-
dent approaches, Thall et al.7 first proposed using a
Bayesian hierarchical model (BHM) to adaptively bor-
row information across different tumor subgroups, and
Berry et al.8 applied it to basket trials. In that approach,
the shrinkage parameter, which controls the strength of
information borrowing, is treated as an unknown para-
meter following a noninformative prior and let the data
determine how much information should be borrowed
across tumor subgroups. Although conceptually attrac-
tive, Freidlin and Korn9 showed that such a fully
Bayesian approach does not work appropriately and
leads to substantially inflated type I error rates for bas-
ket trials with 10 or fewer cancer subgroups, because
there is insufficient information in the observed data to
determine whether borrowing across subgroups is
appropriate (i.e. to accurately estimate the shrinkage
parameter). Our numerical study also confirms that
result.

We propose a Bayesian phase II basket trial design
based on a novel calibrated Bayesian hierarchical model
(CBHM). The treatment effect in cancer subgroups is
modeled using a hierarchical model. However, unlike
Berry et al.,8 in our approach, the shrinkage parameter
is not regarded as an unknown parameter. Instead, it is
defined as a function of a similarity measure of the
treatment effect across tumor subgroups. The key is

that the function is calibrated using simulations such
that information is strongly borrowed across subgroups
if their treatment effects are similar and barely bor-
rowed if the treatment effects are heterogeneous. The
simulation study shows that our method has substan-
tially better controlled type I error rates compared to
those of the BHM.

Our research is motivated by a phase II basket trial
at MD Anderson Cancer Center for patients with
Neurotrophic tropomyosin receptor kinase (NTRK)
aberration advanced solid tumors. The trial investi-
gated a novel tropomyosin receptor kinase (TRK) inhi-
bitor that targets the NTRK fusion, which has been
found in various types of advanced tumors and contri-
butes to tumorigenesis by driving activation of intracel-
lular signaling molecules.10 NTRK aberration appears
in non small cell lung cancer, thyroid cancer, sarcoma,
and colorectral cancer. The goal of the trial is to evalu-
ate the efficacy of the TRK inhibitor in patients with
cancers that harbor a NTRK gene fusion. The trial
includes patients with the four cancer types listed above
and will enroll up to 30 patients for each cancer type.
The treatment efficacy will be scored using the
Response Evaluation Criteria in Solid Tumors, version
1.1, and coded as ‘‘response’’ if the patient achieves
complete or partial remission (CR/PR), otherwise ‘‘no
response.’’ The targeted agent will be regarded as
unpromising if the response rate is lower than 20% and
promising if the response rate is higher than 35%.

The remainder of this article is organized as follows.
In section ‘‘Methods,’’ we propose the CBHM
approach for designing basket trials. In section
‘‘Simulation studies,’’ we present the simulation studies
to evaluate the operating characteristics of the pro-
posed design. We conclude with a brief discussion in
section ‘‘Discussion.’’

Methods

BHM

Consider a phase II basket trial that evaluates the effi-
cacy of a new targeted agent in J different tumor sub-
groups that share the same genetic or molecular
aberrations. Let pj and Nj respectively denote the
response rate and maximum sample size for the j tumor
subgroups. The objective of the trial is to test whether
the targeted agent is effective in each of the tumor
subgroups

H0 : pj� q0 versus Ha : pj � q1 for j= 1, . . . , J

where q0 is the response rate cutoff under which the
drug is deemed futile, and q1 is the target response rate
under which the drug is regarded as promising.

Suppose at an interim go/no-go decision time, nj

patients from tumor subgroup j have been enrolled,
among which yj patients responded favorably to the

Figure 1. An illustration of basket trials.
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treatment. We assume that yj follows a hierarchical
model

yjjpj ; Bin(pj)

uj =log
pj

1� pj

� �

ujju,s2 ; N (u,s2)

u ; N (a0,v2
0)

ð1Þ

where Bin(�) denotes a binomial distribution, a0 and v2
0

are hyperparameters. This hierarchical model shrinks
the subgroup-specific treatment effect uj toward the
common mean u, thereby borrowing information across
different tumor subgroups. The degree of shrinkage or
information borrowing is controlled by the shrinkage
parameter s2. A small value of s2 induces strong infor-
mation borrowing across tumor subgroups; whereas a
large value of s2 induces little information borrowing.
As the extreme cases, s2 = 0 is equivalent to the pooled
approach, which assumes that the drug is equivalently
effective across all different tumor subgroups, and
s2 =‘ is equivalent to the independent approach,
where the data in different tumor subgroups are ana-
lyzed independently, which is appropriate when the
drug is effective for some subgroups, but not for other
subgroups.

The fully Bayesian approach, such as that of Berry
et al.,8 assigns a prior distribution to s2 and estimates it
jointly with other parameters. Ideally, given the interim
data, we would like the model to automatically sense
the similarity or homogeneity in the treatment effect
across tumor subgroups, based on which we could
determine the appropriate degree of information bor-
rowing. That is, if the treatment effect is homogeneous
across tumor subgroups (i.e. the drug is effective for all
subgroups), the BHM strongly shrinks uj toward u to
borrow information and improve the statistical power
for detecting the treatment effect, and when the treat-
ment effect is heterogeneous (i.e. the drug is effective
for some tumor subgroups but not for other sub-
groups), the BHM does not induce shrinkage to main-
tain a proper type I error rate. Unfortunately, this is
not the case for typical basket trials that have a small
or moderate number (e.g. 3–10) of tumor subgroups.
Freidlin and Korn9 showed that when there are 10 or
fewer tumor subgroups, the BHM approach cannot
provide accurate estimation of the shrinkage parameter
s2 and thus fails to make appropriate information bor-
rowing. Our simulation study (described in section
‘‘Simulation studies’’) shows that the BHM approach
can inflate the type I error rate from the nominal value
of 10% to over 50%.

The problem stems from the fact that the shrinkage
parameter s2 represents the variance between tumor
subgroups and the observation unit used to estimate s2

is the tumor subgroups, not patients. Therefore, even

when there are a large number of patients in each tumor
subgroup, but limited number of tumor subgroups, the
data cannot provide adequate information to estimate
s2 reliably. This is analogous to a random-effects
model-based meta-analysis, for which it is difficult to
obtain a reasonably precise estimate for the between-
trial variability if only a few trials are available.11

CBHM

To address the aforementioned issues, we propose a
CBHM approach to adaptively borrow information
across tumor subgroups for phase II basket trials.
Unlike the BHM approach, which assigns a prior to s2

and estimates it from the data, our approach defines s2

as a function of the measure of homogeneity among
the tumor subgroups. The key is that the function is
prespecified and calibrated in a way such that when the
treatment effects in the tumor subgroups are homoge-
neous, strong information borrowing occurs and thus
improves power, and when the treatment effects in the
tumor subgroups are heterogeneous, little or no bor-
rowing across groups occur, thereby controlling the
type I error rate. In what follows, we first describe a
homogeneity measure and then describe a procedure to
determine and calibrate the function that links the
homogeneity measure and shrinkage parameter s2.

A natural measure of homogeneity is the chi-squared
test statistic of homogeneity, given by

T =
XJ

j= 1

(O0j � E0j)
2

E0j

+
XJ

j= 1

(O1j � E1j)
2

E1j

where O0j and O1j denote the observed counts of fail-
ures and responses for subgroup j (i.e. nj � yj and yj),
and E0j and E1j are the expected counts of failures and
responses, given by

E0j = nj

P
j nj �

P
j yjP

j nj

and E1j = nj

P
j yjP
j nj

A smaller value of T indicates higher homogeneity in
the treatment effect across subgroups. Note that the chi-
squared test statistic T is used here for measuring the
strength of homogeneity, not conducting hypothesis test-
ing. Therefore, when some cell counts (i.e. O0j and O1j)
are small, it does not cause any issue because our proce-
dure does not rely on the large-sample distribution of T .

We link the shrinkage parameter s2 with T through

s2 = g(T ) ð2Þ

where g(�) is a monotonically increasing function.
Although different choices of g(�) are certainly possible,
our numerical studies show that the following two-
parameter exponential model yields good and robust
operating characteristics
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s2 = g(T )= expfa+ b 3 log(T )g ð3Þ

where a and b are tuning parameters that characterize
the relationship between s2 and T . We require b.0

such that greater homogeneity (i.e. a small value of T )
leads to stronger shrinkage (i.e. a small value of s2).

The key to our approach is that the values of a and
b are calibrated such that strong shrinkage occurs when
the treatment effect is homogeneous across the tumor
subgroups, and no or little shrinkage occurs when the
treatment effect is heterogeneous. This can be done
using the following three-step simulation-based
procedure:

1. Simulate the case in which the treatment is effec-
tive for all tumor subgroups; thus, we should bor-
row information across tumor subgroups.
Specifically, we generate R replicates of data by
simulating y=(y1, . . . , yJ ) from Bin(N, q1), where
N=(N1, . . . ,NJ ) and q1 =(q1, . . . , q1) and then
calculate T for each simulated dataset. Let HB

denote the median of T from R simulated datasets.
2. Simulate the cases in which the treatment effect is

heterogeneous across tumor subgroups; thus, we
should not borrow information across tumor sub-
groups. Let q(j)= (q1, . . . , q1, q0, . . . , q0) denote
the scenario in which the treatment is effective for
the first j subgroups with the response rate of q1,
but not effective for subgroups j+ 1 to J with the
response rate of q0. Given a value of j, we generate
R replicates of data by simulating y from
Bin(N, q(j)), calculate T for each simulated dataset
and then obtain its median H�Bj. We repeat this for
j= 1, . . . , J � 1 and define

H�B = min
j

(H�Bj) ð4Þ

3. Let s2
B denote a prespecified small value (e.g. 1) for

shrinkage parameter s2 under which strong shrink-
age or information borrowing occurs under the
hierarchical model (equation (1)), and let s2

�B
denote

a prespecified large value (e.g. 80) of shrinkage
parameter s2, under which little shrinkage or infor-
mation borrowing occurs. Solve a and b in equa-
tion (3) based on the following two equations

s2
B = g(HB; a, b) ð5Þ

s2
�B = g(H�B; a, b) ð6Þ

where the first equation enforces strong shrinkage (i.e.
information borrowing) when the treatment is effective
for all subgroups, and the second equation enforces lit-
tle shrinkage (i.e. weak information borrowing) when
the treatment effect is heterogeneous across all sub-
groups. The solution of the equations is given by

a=log(s2
B)�

log(s2
�B
)� log(s2

B)

log(H�B)� log(HB)
log(HB) ð7Þ

b=
log(s2

�B
)� log(s2

B)

log(H�B)� log(HB)
ð8Þ

Remarks. In step 2, we define H�B as the minimum value
of the fH�Bjg, that is, equation (4), and impose that little
shrinkage occurs when T =H�B, as dictated by equation
(6) in step 3. This is to reflect that when the treatment
is effective for some subgroups, but not effective for
the other subgroup(s), the treatment effect is regarded
as heterogeneous and no information should be bor-
rowed across subgroups. For example, in a basket trial
with four tumor subgroups, if the treatment is effective
for three subgroups, but not effective for one subgroup,
the treatment effect is regarded as heterogeneous and
no information should be borrowed across subgroups.
Such ‘‘strong’’ definition of heterogeneity and ‘‘strong’’
control of borrowing is necessary for controlling type I
error, and any information borrowing will inflate the
type I error of the ineffective subgroup due to the
shrinkage of that subgroup’s treatment effect toward
the effective subgroups, that is, overestimating the
treatment effect for the ineffective subgroup. Because
the shrinkage parameter s2 is a monotonically increas-
ing function of T , as long as we control that little
shrinkage occurs when T =H�B, we automatically
ensure that little shrinkage occurs for cases with larger
values of H�Bj (i.e. higher levels of heterogeneity), for
example, when the treatment is effective for two sub-
groups but not effective in the other two subgroups. In
some situations, for example, when the majority of sub-
groups are responsive and only one subgroup is not
responsive, it may be debatable whether controlling
type I error for each of subgroups is the best strategy.
We might be willing to tolerate a certain type I error
inflation in one subgroup in exchange for power gain
in the majority of subgroups. This can be conveniently
done by relaxing the ‘‘strong’’ definition of heterogene-
ity. For example, rather than defining H�B = minj (H�Bj),
we can define H�B as the minimal value of H�Bj when the
treatment is not effective in at least two subgroups.
That is, if the treatment is not effective for only one
subgroup, we do not treat the treatment effect as het-
erogeneous. Consequently, information can be bor-
rowed across subgroups, but at the expense of some
inflated type I error for the ineffective subgroup.
Actually, this is one of important advantages of the
proposed CBHM over the standard BHM. The CBHM
provides us abundant flexibility to control the degree
of borrowing in an intuitive and straightforward way.

Another advantage of the proposed CBHM is that
the proposed calibration procedure relies only on the
null response rate q0, alternative response rate q1, and
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sample size of tumor groups Nj, which are known
before the trial is conducted. This is an important and
very desirable property because it allows the investiga-
tor to determine the values of a and b and to include
them in the study protocol before the onset of the
study. This avoids the common concern about the
method for borrowing information; that is, the method
could be abused by choosing the degree of borrowing
to favor a certain result, for example, statistical signifi-
cance. When the true response rates of some subgroups
are between q0 and q1, the CBHM induces partial
information borrowing, depending on the actual value
of homogeneity measure T . In addition, the resulting
CBHM has the following desirable large-sample prop-
erty. The proof is provided in Appendix 1.

Theorem 1. When the sample size in each subgroup is
large, the CBHM achieves full information borrowing
when the treatment effect is homogeneous across sub-
groups, and no information borrowing when the treat-
ment effect is heterogeneous across subgroups.

In contrast, to achieve the above asymptotic prop-
erty, the standard BHM requires an additional assump-
tion that the number of subgroups is large because the
shrinkage parameter s2 represents the inter-subgroup
variance. To precisely estimate s2 and ensure appropri-
ate shrinkage behavior, we must increase the number
of subgroups. This extra requirement, unfortunately, is
restrictive and often unrealistic in practice because the
number of tumor subgroups with a certain genetic or
molecular aberration is often fixed and cannot be
manipulated within the trial design.

Trial design

The proposed phase II basket trial design has a total of
K interim looks, with the kth interim observation occur-
ring when the sample size of the jth subgroup reaches
njk . Let Dk = f(njk, yjk), j= 1, . . . , J , k = 1, . . . ,Kg
denote the data from the kth interim look, where yjk is
the number of responses from njk patients. The pro-
posed phase II basket trial design with K interim looks
is described as follows:

1. Enroll nj1 patients in the jth subgroup,
j= 1, . . . , J .

2. Given the data Dk from the kth interim look
(a) (Futility stopping) if Pr(pj.(q0 + q1)=2jDk)\Cf ,

suspend the accrual for the jth subgroup, where
(q0 + q1)=2 denotes the rate halfway between the
null and target response rate and Cf is a probabil-
ity cutoff for futility stopping.

(b) otherwise, continue to enroll patients until reach-
ing the next interim analysis.

3. Once the maximum sample size is reached or the
treatment of all subgroups is stopped early due to

futility, evaluate the efficacy for each subgroup
based on all the observed data. If Pr(pj.q0jD).C,
then the treatment for the jth group will be
declared effective; otherwise, the treatment for that
group will be declared ineffective, where C is a
probability cutoff.

In step 2a, to facilitate the simulation comparison of
the proposed design with the BHM design,8 we use
(q0 + q1)=2 as the boundary for assessing futility, as the
latter design. Another natural boundary is q0, that is, if
there is a high posterior probability that pj is less than
q0, we stop the accrual for the jth subgroup for futility.
To ensure good operating characteristics, the probabil-
ity cutoffs Cf and C should be calibrated through simu-
lations to achieve a desired type I error rate and early
stopping rate for each subgroup. This simulation-based
calibration procedure is widely used in Bayesian clinical
trial designs.12,13

Simulation studies

We investigated the operating characteristics of the
proposed CBHM design through simulation studies.
Following the setting of NTRK basket trial, we consid-
ered four subgroups with null q0 = 0:2 and alternative
q1 = 0:35. The maximum sample size for each sub-
group was 30, with two interim analyses conducted
when the sample size in each subgroup reached 10 and
20. We compared the proposed CBHM design to the
independent approach, where each subgroup is ana-
lyzed independently without information borrowing,
and to the BHM approach. In the proposed CBHM
approach, we calibrated the values of a and b in equa-
tion (3) using the procedure described in section
‘‘CBHM,’’ with s2

B = 1 and s2
�B
= 80, resulting in

a= � 5:98 and b= 6:83. We assigned u a vague nor-
mal prior N(� 1:39, 100), where the prior mean �1:39

is obtained as the average of uj, j= 1, . . . , 4, under the
null hypothesis. For the BHM approach, following
Berry et al.,8 we used a noninformative inverse gamma
prior IG(0:0005, 0:000005) for s2. We also considered
an alternative half-normal prior HN (0, 0:5) for s2, that
is, a normal distribution N (0, 0:5) left truncated at 0.
We denote the resulting design as BHM-HN. To ensure
fair comparison between the different approaches, we
set Cf = 0:05 for all the considered scenarios and cali-
brated C for each design such that when all tumor sub-
groups are not responsive to the drug (i.e. scenario 1 in
Table 1), the type I error rate is 10% in each subgroup.
We considered a total of 33 scenarios with various
response rates for the subgroups. Under each scenario,
we carried out 5000 simulated trials.

Table 1 shows the simulation results of 14 scenarios.
The results of the other scenarios can be founded in
Table A1 of the Supplementary Files. As described
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Table 1. Rejection rate of the null hypothesis under independent, BHM, BHM-HN, and CBHM approaches.

Scenario Method Response rate of subgroup Sample size

1 2 3 4

1 0.2 0.2 0.2 0.2
Independent 0.099 0.101 0.101 0.101 106.1
BHM 0.100 0.098 0.098 0.098 92.1
BHM-HN 0.098 0.098 0.099 0.098 96.4
CBHM 0.099 0.098 0.098 0.100 95.5

2 0.35 0.35 0.35 0.35
Independent 0.716 0.702 0.715 0.734 118.6
BHM 0.971 0.974 0.972 0.969 119.5
BHM-HN 0.949 0.951 0.946 0.945 119.6
CBHM 0.803 0.801 0.804 0.816 118.5

3 0.45 0.2 0.2 0.45
Independent 0.954 0.101 0.097 0.952 113.0
BHM 0.978 0.394 0.401 0.977 117.6
BHM-HN 0.978 0.333 0.333 0.977 117.8
CBHM 0.954 0.109 0.109 0.953 112.9

4 0.2 0.45 0.45 0.45
Independent 0.104 0.952 0.953 0.953 116.4
BHM 0.553 0.991 0.993 0.990 119.6
BHM-HN 0.491 0.992 0.993 0.989 119.7
CBHM 0.124 0.956 0.957 0.957 116.4

5 0.2 0.2 0.2 0.35
Independent 0.106 0.100 0.095 0.721 109.4
BHM 0.258 0.258 0.265 0.573 107.2
BHM-HN 0.206 0.199 0.200 0.653 108.5
CBHM 0.128 0.127 0.123 0.685 105.9

6 0.3 0.2 0.2 0.2
Independent 0.507 0.096 0.098 0.103 108.8
BHM 0.383 0.212 0.213 0.216 103.1
BHM-HN 0.460 0.170 0.169 0.162 105.4
CBHM 0.476 0.114 0.122 0.123 103.3

7 0.2 0.2 0.35 0.45
Independent 0.101 0.095 0.714 0.951 112.6
BHM 0.420 0.421 0.844 0.952 116.7
BHM-HN 0.325 0.322 0.838 0.965 116.7
CBHM 0.127 0.123 0.727 0.953 112.1

8 0.45 0.2 0.2 0.2
Independent 0.952 0.096 0.096 0.099 109.4
BHM 0.864 0.285 0.293 0.289 111.9
BHM-HN 0.922 0.225 0.227 0.221 112.2
CBHM 0.937 0.109 0.113 0.112 108.3

9 0.15 0.15 0.15 0.35
Independent 0.019 0.019 0.019 0.721 100.9
BHM 0.039 0.043 0.040 0.409 92.2
BHM-HN 0.030 0.035 0.020 0.532 94.4
CBHM 0.018 0.020 0.022 0.674 95.1

10 0.15 0.15 0.35 0.35
Independent 0.021 0.016 0.714 0.719 106.7
BHM 0.144 0.147 0.676 0.683 109.7
BHM-HN 0.087 0.082 0.712 0.719 109.9
CBHM 0.031 0.026 0.702 0.712 105.0

11 0.25 0.2 0.2 0.2
Independent 0.271 0.097 0.098 0.101 107.8
BHM 0.227 0.157 0.161 0.154 98.1
BHM-HN 0.258 0.135 0.136 0.128 101.3

(continued)
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above, scenario 1 is used to calibrate the three designs
such that they have the same type I error rate of 10%
when the treatment is not effective for all subgroups. In
scenario 2, the treatment is effective for all subgroups.
The proposed CBHM had higher power than the
independent approach. The power of the CBHM
was around 81% for the subgroups, and that of the
independent design was about 72%. The BHM and
BHM-HN yielded higher power than the CBHM and
independent designs; however, both failed to control
the type I error rate when the subgroups were heteroge-
neous. For example, in scenario 3, subgroups 1 and 4
are responsive and subgroups 2 and 3 are not respon-
sive. The type I error rate from the BHM for subgroups
2 and 3 was inflated to 39.4% and 40.1%, respectively.
This result is consistent with previous findings9 that the
BHM cannot accurately determine whether and how
much information borrowing is appropriate across sub-
groups. Figure 2 shows the posterior distribution of
shrinkage parameter s2 under scenarios 2 and 3. We
can see that these two posterior distributions are essen-
tially identical, suggesting that the BHM failed to dis-
tinguish the case when shrinkage is needed (i.e. scenario
2) from the case when shrinkage is not needed (i.e. sce-
nario 3). We found that the BHM and BHM-HN
tended to strongly shrink or borrow information across
subgroups no matter whether the subgroups were
homogeneous or heterogeneous. In contrast, the
CBHM correctly detected that in scenario 3, the sub-
groups were dissimilar and no information should be
borrowed. The type I error rate of the CBHM was close
to the nominal value of 10% for subgroups 2 and 3
(10.9%). In addition, the CBHM design had smaller

sample sizes than the BHM and BHM-HN design
(112.9 patients vs 117.6 and 117.8). This is because the
CBHM is more likely to recognize that subgroups 2
and 3 are not responsive and early terminate these two
arms. The power of the CBHM was comparable to

Table 1. Continued

Scenario Method Response rate of subgroup Sample size

1 2 3 4

CBHM 0.261 0.108 0.112 0.112 99.7

12 0.3 0.3 0.3 0.2
Independent 0.498 0.494 0.495 0.102 114
BHM 0.725 0.725 0.731 0.523 115.2
BHM-HN 0.687 0.692 0.685 0.362 115.7
CBHM 0.561 0.55 0.558 0.203 112.3

13 0.2 0.25 0.25 0.35
Independent 0.103 0.266 0.268 0.726 112.8
BHM 0.431 0.541 0.542 0.732 113.1
BHM-HN 0.301 0.47 0.463 0.759 114
CBHM 0.178 0.321 0.321 0.725 110.8

14 0.2 0.2 0.25 0.35
Independent 0.103 0.098 0.268 0.72 111
BHM 0.339 0.337 0.448 0.657 110.7
BHM-HN 0.251 0.25 0.406 0.713 111.5
CBHM 0.142 0.143 0.295 0.704 108.5

BHM: Bayesian hierarchical model; CBHM: calibrated Bayesian hierarchical model; BHM-HN: Bayesian hierarchical model with a half-normal prior for

the shrinkage parameter.

Figure 2. The posterior distributions of s2 under the BHM
approach in scenario 2, in which strong shrinkage or information
borrowing is appropriate, and scenario 3, in which little
shrinkage or information borrowing is appropriate.
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that of the independent design for the two responsive
subgroups 1 and 4. In scenario 4, only subgroup 1 is
non-responsive to the drug of interest. The CBHM
yielded a reasonable type I error rate (i.e. 12.4%);
whereas the type I error rate of the BHM and BHM-
HN were inflated to 55.3% and 49.1%, respectively.
Again, the sample size of the CBHM was smaller than
that of the BHM and BHM-HN. In scenario 5, sub-
groups 1, 2, and 3 are not responsive to the treatment.
The type I error rate for the CBHM design was inflated
slightly to 12%. In contrast, the type I error rate for the
BHM design was inflated to 26%. Moreover, compared
to the BHM design, the CBHM design had higher
power to detect the responsive subgroup (i.e. 68.5% vs
57.3% for subgroup 4). In scenario 6, subgroup 1 is
responsive to the treatment, and its true response rate
lies in between the null and alternative rates. Our
CBHM design was capable of recognizing the heteroge-
neous treatment effect across subgroups and main-
tained the type I error rate around 12%, whereas the
BHM and BHM-HN designs had the inflated type I
error rates of 22% and 17%, respectively. In addition,
the CBHM design yielded higher power than the BHM
design (i.e. 47.6% vs 38.3%). Similar results were
observed in scenarios 7 to 11. In scenario 12, subgroups
1, 2, and 3 have true response rate of 0.3, between the
null (i.e. 0.2) and the alternative (i.e. 0.35), while sub-
group 4 is not responsive to the treatment. The type I
error rate for subgroup 4 is 20.3% under the CBHM
and 52.3% under the BHM. The reason that the
CBHM led to an inflated type I error rate is that the
CBHM is calibrated based on the null and alternative
response rates to ensure that little information is bor-
rowed when the subgroups are heterogeneous with
some subgroups having the response rate of 0.35 and
some subgroups having the response rate of 0.2. In sce-
nario 12, however, the response rate of the responsive
subgroups (i.e. subgroups 1, 2, and 3) is 0.3 (i.e.
between null and alternative). The heterogeneity among
subgroups is not large enough to forbid information
borrowing, thereby leading to the inflated type I error.
Nevertheless, the type I error rate of the CBHM is less
than one half of that of the BHM. Similar results were
observed in scenarios 13 and 14, where different num-
bers of subgroups have the true response rate between
the null and the alternative. The type I error rate of
CBHM is 17.8% and 14.2% in scenarios 13 and 14,
respectively, substantially lower than that of the BHM
(i.e. 43.1% and 33.9%).

One may note that although the CBHM design has
better type I error control than the BHM approach, its
performance seems comparable to that of the indepen-
dent approach in most scenarios (i.e. scenarios 3–14).
This is simply because the treatment effect is heteroge-
neous in most scenarios, under which no information
should be borrowed across subgroups. In other words,
we prefer the design performing as the independent

design in scenarios 3–14. In the case that the treatment
effect is homogeneous (e.g. scenario 2) and borrowing
is preferable, we can see that the CBHM provides sub-
stantial gain in power over the independent design.
That is, the CBHM design is able to adaptively borrow
information according to the homogeneity of the treat-
ment effect in subgroups.

To gain insight on the different operating character-
istics of CBHM and BHM designs and how much
pooling is done during the trial, Table 2 shows the pos-
terior estimate of shrinkage parameter s2 at the inter-
ims under different designs. Ideally, the estimate of s2

should be small in scenarios 1 and 2, where the treat-
ment effect is homogeneous, to pool information across
subgroups, and be large in scenarios 3 and 4, where the
treatment effect is heterogeneous, so that no or little
pooling occurs. The BHM and BHM-HN designs
failed to differentiate the scenarios: the estimates of s2

are always small (i.e. ŝ2\1) in all four scenarios, indu-
cing strong shrinkage (or pooling) throughout the trial
no matter whether the treatment effect is homogeneous
or heterogeneous. That is the reason why the BHM
and BHM-HN yielded substantially inflated type I
errors. In contrast, the CBHM design is responsive to
the scenarios. When the treatment effect is homoge-
neous (i.e. scenarios 1 and 2), it generated relatively
small values of s2 (\3:75) to facilitate information
borrowing across subgroups, and when the treatment is
heterogeneous (i.e. scenarios 3 and 4), it generated large
values of s2 to depress pooling and maintain appropri-
ate type I errors. For example, the value of s2 is about
23,150 and 4335 at the end of the trial in scenarios 3
and 4, respectively.

Table 2. The posterior estimate of s2 at interim analyses
under the BHM, BHM-HN, and CBHM designs.

Design Interim

1 2 3

Scenario 1
BHM 0.36 0.16 0.09
BHM-HN 0.22 0.17 0.14
CBHM 1.37 3.2 3.75
Scenario 2
BHM 0.22 0.11 0.07
BHM-HN 0.18 0.13 0.10
CBHM 1.32 1.35 1.49
Scenario 3
BHM 0.67 0.77 1.01
BHM-HN 0.30 0.38 0.45
CBHM 130.8 3520.9 23,150.5
Scenario 4
BHM 0.44 0.40 0.49
BHM-HN 0.26 0.28 0.31
CBHM 43.2 835.6 4335.0

BHM: Bayesian hierarchical model; CBHM: calibrated Bayesian

hierarchical model; BHM-HN: Bayesian hierarchical model with half-

normal prior.
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We also examined the estimates of response rates at
the end of the trial under different designs. To focus on
the relative performance of the designs and untangle
the effect of early stopping on the estimate, we used the
estimates of independent approach as the benchmark
for comparison. In addition, because the independent
approach treated subgroups and estimated their treat-
ment effects independently as conventional phase II
trials, such comparison also provides a natural compar-
ison of the novel designs with the conventional design.
As shown in Figures A1 and A2 in Supplementary
Files, when the treatment effect is homogeneous (e.g.
scenarios 1 and 2), the posterior mean estimates were
similar under different designs. The estimate of the
CBHM was more efficient than the independent
approach with a smaller variance (e.g. scenario 2). The
BHM had the smallest variance in three designs, as it
induced the strongest shrinkage. However, when the
treatment effect is heterogeneous, as shown in scenarios
3–6, the BHM yielded biased estimates. For example,
in scenario 3, the posterior mean estimates under the
BHM for non-responsive subgroup 2 and 3 were over-
estimated by about 5%, and those for responsive sub-
groups 1 and 4 were underestimated by 5%. These
biases stem from the fact that the BHM tends to
strongly shrink across subgroups even when subgroups
are heterogeneous. In contrast, as described previously,

the CBHM sensed the heterogeneity in these scenarios
and induced little shrinkages, and thus yielded unbiased
estimates similar to the independent approach.

Finally, we studied the sensitivity of the CBHM
method with respect to the values of s2

B and s2
�B
used in

the calibration procedure. We considered three alterna-
tive values: (s2

B,s
2
�B
)= (0:5, 80), (1.5, 80) and (1, 50).

The results (see Table 3) are generally similar to those
reported in Table 1, suggesting that as long as s2

B is ade-
quately small such that little shrinkage occurs and s2

�B
is

adequately large such that strong shrinkage occurs, the
choice of s2

B and s2
�B
has little impact on the perfor-

mance of the proposed design.

Discussion

We have proposed a CBHM approach to evaluate the
treatment effect for basket trials. By linking the shrink-
age parameter with a measure of homogeneity among
subgroups through an appropriately calibrated link
function, the CBHM allows information borrowing
when the treatment effect is homogeneous across sub-
groups and yields a much better controlled type I error
rate than the BHM when the treatment effect is hetero-
geneous across subgroups.

Similar to the BHM, one limitation of the proposed
CBHM is that it assumes that subgroups are

Table 3. Sensitivity analysis of the CBHM design based on different values of s2
B and s2

�B
.

Scenario s2
B s2

�B
Response rate of subgroup Sample size

1 2 3 4

1 0.2 0.2 0.2 0.2
0.5 80 0.102 0.098 0.098 0.1 93.1
1.5 80 0.1 0.101 0.101 0.101 96.0
1.0 50 0.099 0.101 0.1 0.099 95.5

2 0.35 0.35 0.35 0.35
0.5 80 0.812 0.8 0.818 0.828 118.4
1.5 80 0.799 0.799 0.802 0.815 118.5
1.0 50 0.806 0.808 0.808 0.817 118.5

3 0.45 0.2 0.2 0.45
0.5 80 0.960 0.106 0.109 0.955 112.8
1.5 80 0.958 0.116 0.115 0.955 112.9
1.0 50 0.962 0.124 0.124 0.956 112.9

4 0.2 0.45 0.45 0.45
0.5 80 0.137 0.952 0.955 0.963 116.4
1.5 80 0.125 0.958 0.96 0.961 116.4
1.0 50 0.133 0.963 0.965 0.962 116.4

5 0.2 0.2 0.2 0.35
0.5 80 0.139 0.130 0.130 0.688 104.6
1.5 80 0.131 0.128 0.131 0.692 106.1
1.0 50 0.135 0.135 0.132 0.688 105.9

6 0.3 0.2 0.2 0.2
0.5 80 0.487 0.120 0.126 0.132 101.6
1.5 80 0.480 0.117 0.121 0.123 103.6
1.0 50 0.492 0.125 0.126 0.120 103.4
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exchangeable. As a result, in order to control type I
error for each of subgroups, the heterogeneity (in treat-
ment effect) has to be defined in a ‘‘strong’’ sense that if
the treatment is effective in some subgroups, but not
effective in the other subgroup(s), the treatment effect
is regarded as heterogeneous and no information
should be borrowed across the subgroups. This is the
reason why the CBHM performs similarly to the inde-
pendent approach in most simulation scenarios (e.g.
scenarios 3–11) where the treatment effect is heteroge-
neous. For the same reason, the CBHM does not fully
achieve ‘‘adaptive information borrowing,’’ which
implies that the methodology can use the observed data
to accurately distinguish which baskets have similar
response rates and pool information accordingly.
Recently, Chu and Yuan14 proposed a Bayesian latent
subgroup trial (BLAST) design that allows such adap-
tive information borrowing for basket trials. The
BLAST design employs a latent subgroup/class model
to group together the baskets that have similar
response rates and then pool information accordingly
within each homogeneous latent class. As a result, the
BLAST design yields high power to detect the treat-
ment effect for sensitive cancer types that are respon-
sive to the treatment, while maintaining a reasonable
type I error rate for insensitive cancer types that are
not responsive to the treatment.

We described our method using cancer basket trials.
The proposed methodology and design can be used for
other diseases as well. Although we focused on a binary
outcome, the CBHM can be easily extended to continu-
ous, ordinal, and survival outcomes. The key is that
given a hierarchical model for these outcomes, we do
not directly estimate the shrinkage parameter from the
data, but prespecify it as a function of a homogeneity
measure. The same link function and similar calibration
procedure described previously can be used to deter-
mine the form of the function.
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Appendix 1

Proof of Theorem 1

When the treatment effect is homogeneous across sub-
groups, T ! 0 when Nj ! ‘ because the chi-squared
test statistic of homogeneity is consistent. As b.0, it
follows that b 3 log(T )! �‘, and thus
s2 =expfa+ b 3 log(T )g ! 0. In other words, the
CBHM achieves full information borrowing, as with
the pooled analysis. Similarly, when the treatment
effect is heterogeneous across subgroups, T ! ‘ when
Nj ! ‘. Thus, s2 =expfa+ b 3 log(T )g ! ‘, which
means that no information will be borrowed across
subgroups, as with the independent analysis.
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