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Summary. The basket trial refers to a new type of phase II cancer trial that evaluates the ther-
apeutic effect of a targeted agent simultaneously in patients with different types of cancer that
involve the same genetic or molecular aberration. Although patients who are enrolled in the bas-
ket trial have the same molecular aberration, it is common for the targeted agent to be effective
for patients with some types of cancer, but not others. We propose a Bayesian latent subgroup
trial (BLAST) design to accommodate such treatment heterogeneity across cancer types. We
assume that a cancer type may belong to the sensitive subgroup, which is responsive to the
treatment, or the insensitive subgroup, which is not responsive to the treatment. Conditionally
on the latent subgroup membership of the cancer type, we jointly model the binary treatment
response and the longitudinal biomarker measurement that represents the biological activity
of the targeted agent. The BLAST design makes the interim go–no-go treatment decision in a
group sequential fashion for each cancer type on the basis of accumulating data.The simulation
study shows that the BLAST design outperforms existing trial designs. It yields high power to
detect the treatment effect for sensitive cancer types that are responsive to the treatment and
maintains a reasonable type I error rate for insensitive cancer types that are not responsive to
the treatment.

Keywords: Basket trials; Bayesian adaptive design; Longitudinal biomarker; Precision
medicine; Subgroups; Targeted therapy

1. Introduction

With tremendous advances in biomarker development and genomic medicine, the forefront of
oncology therapeutic research has shifted from conventional chemotherapy to targeted therapy
that treats cancer by targeting a specific genetic or molecular aberration. The basket trial is a
novel type of clinical trial that accommodates this paradigm shift (Redig and Jänne, 2015). In
contrast with traditional phase II trials that focus on evaluating a treatment in patients with a
certain type of cancer, basket trials seek to evaluate simultaneously the effects of a particular
targeted therapy on patients with the same genetic or molecular aberration, regardless of their
cancer types. In other words, a basket trial enrols patients with different types of cancer into the
trial, as long as they bear the same genetic aberration. This provides great potential for patients
with rare cancers to be eligible to participate in clinical trials. It also enables the incorporation
of precision medicine in clinical trials, even for mutations that are difficult to study solely within
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a disease-specific context. In addition, unlike traditional clinical trials, for which a large number
of patients is needed to establish therapeutic efficacy, the basket trial often requires a smaller
number of patients and a shorter duration to identify a favourable response to the targeted
therapy (Redig and Jänne, 2015; Berry, 2015). This ensures that basket trials optimize the
translation of findings in a timely and safe way (Simon and Roychowdhury, 2013).

Despite increasing awareness and importance of basket trials in clinical research, designing
efficient basket trials remains challenging. A straightforward approach is the pooled analysis, in
which we treat patients with different types of cancer as a homogeneous population and simply
pool the data across cancer types for designing the trial and performing interim analysis. This
approach, however, leads to large biases if the treatment effect actually is heterogeneous across
different cancer types. Another straightforward approach is the independent analysis, where
we regard each cancer type as an independent treatment arm and conduct the analysis in each
cancer type arm independently. This approach acknowledges the potential heterogeneity across
cancer types but is less efficient and often lacks sufficient power to detect the treatment effect
due to the limited sample size in each cancer type. Thall et al. (2003) proposed and Berry et al.
(2013) advocated the use of a Bayesian hierarchical model (BHM) to borrow information across
different cancer types in basket trials, assuming that the treatment effects of the cancer types are
exchangeable and centre near a common mean. The exchangeability assumption underlying the
BHM approach, however, is often violated in practice. In basket trials, it is common that some
cancer types are sensitive to a targeted agent, whereas others are not sensitive, although they
carry the same genetic aberration. In this paper, we use ‘sensitive’ to refer to patients who are
responsive to and benefiting from the treatment and ‘insensitive’ to refer to patients who are unre-
sponsive to and not benefiting from the treatment. For example, BRAF mutant gene melanoma
and hairy cell leukaemia are sensitive to the BRAF inhibitor PLX4032 (vemurafenib), whereas
BRAF mutant gene colon cancer is not (Flaherty et al., 2010; Tiacci et al., 2011; Prahallad et al.,
2012). Trastuzumab is effective for treating human epidermal growth factor receptor 2 (HER2)
positive breast cancer but shows little clinical benefit for HER2 positive recurrent endometrial
cancer (Fleming et al., 2010) or HER2 positive non-small-cell lung cancer (Gatzemeier et al.,
2004). In other words, different cancer types in a basket trial may not be exchangeable regarding
the treatment effect; instead, they often consist of different subgroups that respond differently
to the treatment. Another issue is that, because the BHM assumes that the treatment effects for
different cancer types centre near a common mean, it tends to overshrink the treatment effect
of cancer types towards the common mean, resulting in substantially inflated type I error rates
for the cancer types that are insensitive to the treatment (Freidlin and Korn, 2013; Chu and
Yuan, 2017). Motivated by that, Chu and Yuan (2017) proposed a calibrated BHM for basket
trials to obtain better type I error control than the BHM. Cunanan et al. (2017) proposed a
strategy to allow a binary interim decision of either pooling data across all cancer types (i.e.
fully borrowing) or treating each of them independently (i.e. no borrowing).

We propose a Bayesian latent subgroup trial (BLAST) design for basket trials. Taking a la-
tent class modelling approach, we aggregate different cancer types into subgroups. Within each
subgroup, the treatment effect is similar and approximately exchangeable such that information
borrowing can be carried out by using a BHM. Another innovation of the BLAST design is
that we leverage longitudinal biomarker measurements that are routinely taken in clinical trials
to improve the efficiency of the basket trial. In this paper, ‘biomarker’ refers to the type of
biomarkers that measure the biological activity of the targeted agent, i.e. measure how well the
targeted agent hits its molecular target and triggers the downstream biological activities (e.g.
expression of a certain gene, proliferation of certain cells or an increase in enzyme activity). For
example, in immunotherapy, the number of CD8+ T-cells, CD4+ T-cells or the concentration
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of cytokines (e.g. IFN-α, IL-6 or IL-8) are routinely measured to assess the biological activity
(i.e. immunogenicity) of immune checkpoint inhibitors. As the biological activity of the tar-
geted agent is closely related to its clinical efficacy (Galon et al., 2006; Zuiverloon et al., 2012;
Pardoll, 2012), the longitudinal biomarker measurements provide rich information to aggregate
disease types into subgroups. We use a semiparametric model to model jointly the longitudinal
biomarker measurements with the binary clinical outcome to facilitate adaptive decision making
in the trial. To the best of our knowledge, the BLAST design is the first basket trial design that
jointly utilizes longitudinal biomarker measurements and clinical outcome. In this paper, we do
not consider subgroups within a cancer type because of the small sample size that is available
for each cancer type and thus very limited power to identify the within-tumour-type subgroups
reliably. This assumption of homogeneity within each cancer type is often reasonable by using
appropriate patient eligibility criteria.

Our research is motivated by a phase II basket trial that is currently in design at the MD
Anderson Cancer Center for patients with CDKN2A deficient advanced solid tumours. The
trial studied a novel aurora kinase inhibitor that targets CDKN2A in the CDKN2A signalling
pathway, which plays a major role in cell cycle checkpoint regulation. CDKN2A aberration
has been found in several types of advanced cancer and contributes to tumorigenesis by driving
uncontrolled cell cycles (Okada and Mak, 2004). CDKN2A deletion appears in bladder cancer
(43.8%), brain tumours (29.1%), melanoma (27.6%), pancreatic cancer (24.1%), oesophageal
cancer (21.3%) and gastric cancer (13.80%). The goal of the trial is to evaluate the efficacy of the
aurora kinase inhibitor in patients with cancers that harbour CDKN2A deletion or mutation.
The trial includes patients with the six cancer types listed above and will enrol up to 20 patients
for each cancer type. The treatment efficacy will be scored by using the ‘Response evaluation
criteria in solid tumors’, version 1.1, and coded as ‘response’ if the patient achieves complete
remission or partial remission or otherwise ‘no response’. The targeted agent will be regarded as
unpromising if the response rate is lower than 20%, and promising if the response rate is higher
than 30%. The immunofluorescent intensity of phospho-aurora-A (Thr288) will be measured
repeatedly over time to evaluate the biological activity of the aurora kinase inhibitor, i.e. the
effectiveness of the inhibitor to hit the target and to inhibit the CDKN2A pathway.

The rest of this paper is organized as follows. In Section 2, we propose the probability model
and decision rule for the BLAST design. In Section 3, we present simulation studies to examine
the performance of the BLAST design. We conclude with a brief discussion in Section 4.

The software for implementing the BLAST design is available from http://odin.mdacc.
tmc.edu/∼yyuan/index code.html.

2. Methods

2.1. Probability model
Consider a phase II basket trial that is designed to evaluate the efficacy of a targeted agent in
I different cancer types that carry the same genetic or molecular aberration. Let pi denote the
treatment response rate for the ith cancer type, i= 1, : : : , I. The objective of the basket trial is
to test whether the targeted agent is effective in each of the cancer types:

H0 : pi �q0 versus Ha : pi �q1 for i=1, : : : , I,

where q0 is the response rate cut-off under which the agent is deemed futile, and q1 is the target
response rate under which the agent is regarded as promising.

Assume that, at an interim go–no-go treatment decision time, ni patients with the ith cancer
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type have been enrolled. Let Yij denote a binary variable for the treatment response of the jth
patient in the ith cancer type, with Yij = 1 denoting the favourable treatment response (e.g.
complete remission or partial remission). Let Zijl denote the biomarker measurement for the
jth patient in the ith cancer type at the time tl, for l=1, : : : , L. For notational brevity, we assume
that the biomarker is measured according to the same time schedule across patients, but our
method allows different patients to have different numbers of measurements taken on different
time schedules.

We assume that I cancer types can be classified into K subgroups, 1�K � I, such that, within
each subgroup, patients respond similarly to the treatment. A simple but practically important
case is K = 2, with a sensitive subgroup consisting of cancer types that are sensitive to the
targeted agent, and an insensitive subgroup consisting of cancer types that are not sensitive to
the targeted agent. Our methodology is not limited to two subgroups (sensitive or insensitive) but
allows for multiple subgroups with varying levels of sensitivity, e.g. K=3 subgroups representing
insensitive, somewhat sensitive and highly sensitive. We temporarily assume that the number of
subgroups K is known and discuss how to determine the value of K later. Let Ci denote the
latent subgroup membership indicator, with Ci =k denoting that the ith cancer type belongs to
the kth subgroup, k =1, : : : , K. We assume that Ci follows a multinomial distribution,

Ci ∼ multinomial.π1, : : : , πK/, .1/

where πk =Pr.Ci =k/, k =1, : : : , K, is the probability that the ith cancer type belongs to the kth
subgroup, with ΣK

k=1πk = 1. As Ci is latent, its value is never observed and is estimated jointly
with other model parameters by using the Markov chain Monte Carlo method as described
later.

Conditionally on Ci, we model the joint distribution of .Y , Z/ by first specifying a model for
Y and then a model for Z conditional on Y . Specifically, we assume that treatment response Yij

follows a latent subgroup hierarchical model

Yij|pi ∼Ber.pi/,

θi = log
(

pi

1−pi

)
,

θi|Ci =k ∼N.θ.k/, τ2
.k//,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.2/

where Ber.·/ denotes a Bernoulli distribution, N.·/ denotes a normal distribution, θi is the logit
transformation of response rate pi and θ.k/ is the mean of θi in the kth subgroup. We assume that
θi is random and follows a normal distribution to accommodate that, although the response
rates of the cancer types in the kth subgroup are generally similar, they may deviate from the
subgroup mean θ.k/. A more parsimonious but slightly more restrictive model is to treat θi as a
fixed effect by setting θi = θ.k/, or equivalently τ2

.k/ = 0, which indicates that all cancer types in
the kth subgroup have the same response rate θ.k/. Here, we focus on the case in which Yij is a
binary response variable. Our approach can be easily extended to accommodate a continuous
outcome Yij as follows:

Yij ∼N.θi, σ2
y/,

θi|Ci =k ∼N.θ.k/, τ2
.k//:

Conditionally on Ci and Yij, we model the longitudinal biomarker measures Zijl by using a
semiparametric mixed model as follows:
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Zijl|.Yij, Ci =k/=μ.k/.tl/+vi +wij +βYij + εijl,

vi ∼N.0, σ2
v/,

wij ∼N.0, σ2
w/,

⎫⎪⎬
⎪⎭ .3/

which reflects the unique data structure of the basket trial; patients are nested in a cancer type,
and cancer types are nested in a subgroup. Specifically, μ.k/.tl/ is a non-parametric function of
time tl that specifies the mean trajectory of the biomarker for the kth subgroup, vi is the cancer-
type-specific random effect accounting for the fact that the mean biomarker trajectory for a
cancer type may deviate from the mean trajectory for its subgroup and wij is a subject-specific
random effect to allow the biomarker trajectory for an individual patient to deviate from the
mean trajectory for his or her cancer type. Regression parameter β captures the relationship
between the biomarker Z and treatment response Y . We assume residuals εijl ∼ N.0, σ2

ε /. A
semiparametric mixed model similar to model (3) has been used to model longitudinal data
(Fitzmaurice et al., 2008; Li et al., 2010). When appropriate, a more complicated model can
be entertained, for example, letting the cancer type level random variation vi and patient level
random variation wij be time dependent, i.e. vi.t/ and wij.t/.

We model the non-parametric function μ.k/.tl/ by using penalized splines (Eilers and Marx,
1996; Ruppert et al., 2003) because of its flexibility and close ties to the BHM. Other smoothing
methods, such as smoothing splines (Green and Silverman, 1993) and local polynomials (Fan
and Gijbels, 1996) can also be used. Let κ1 < κ2 <: : : < κS denote S prespecified knots that
partition the time interval [t1, tL] into S +1 subintervals, and define the truncated power function
as

.tl −κs/
d
+ =

{
.tl −κs/

d if tl >κs,
0 otherwise:

The penalized spline with the dth-degree truncated power basis function for μ.k/.tl/ can be
expressed as

μ.k/.tl/=γ0.k/ +γ1.k/tl +γ2.k/t
2
l +: : :+γd.k/t

d
l +

S∑
s=1

as.k/.tl −κs/
d
+, as.k/ ∼N.0, σ2

a.k//,

.4/

where γ0.k/, : : : , γq.k/ are unknown parameters, and a1.k/, : : : , aS.k/ are random effects that follow
a normal distribution with mean 0 and variance σ2

a.k/. The smoothness of μ.k/.tl/ is controlled
by the smoothing parameter σ2

a.k/. One advantage of the Bayesian approach is that, by treating
σ2

a.k/ as a variance parameter, it can be estimated simultaneously with other model parameters.
Ruppert et al. (2003) showed that a penalized spline is generally robust to the choice of knots
and basis functions. In practice, different basis functions with reasonably spaced knots often
provide similar results.

We now discuss how to choose the number of latent subgroups. We choose the value of K

such that the corresponding model has the best goodness of fit according to a certain model
selection statistic, such as the deviance information criterion DIC (Spiegelhalter et al., 2002).
In principle, the selection of K can be done by fitting the model with K = 1, : : : , I, and then
selecting the value of K that yields the smallest value of DIC as the number of latent subgroups.
However, because the number of cancer types that are included in a basket trial is typically
small (e.g. 4–15) and all enrolled patients carry the same genetic or molecular aberration, in
practice, it is often adequate to restrict the search space of K to {1, 2, 3}. This also facilitates
the interpretation of the results. For example, K = 1 means that all cancer types are sensitive
or insensitive to the treatment; K = 2 accommodates the most common case in which some
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cancer types are sensitive to the treatment (i.e. the sensitive subgroup) whereas the others are
insensitive to the treatment (i.e. the insensitive subgroup). During the trial, the value of K will
be updated in the light of accumulating data. As a result, the value of K may differ from one
interim evaluation to another, depending on the observed data. Instead of using DIC to choose
the value of K, an alternative approach is to treat K as an unknown parameter, and to estimate
it together with the other parameters. This can be done by using the reversible jump Markov
chain Monte Carlo algorithm (Green, 1995).

2.2. Prior specification and posterior estimation
We fit the proposed model by using a Markov chain Monte Carlo algorithm. We assign inde-
pendent vague priors to the model parameters as follows:

γd.k/
IID∼ N.0, c/, d =0, : : : , 2, k =1, : : : , K,

θ.k/
IID∼ N.gk, c/, k =1, : : : , K,

σ2
a.k/

IID∼ IG.aa, ba/, k =1, : : : , K,

β ∼N.0, c/,

σ2
v ∼ IG.av, bv/,

σ2
w ∼ IG.aw, bw/,

σ2
ε ∼ IG.aε, bε/,

τ2
.k/

IID∼ IG.aτ , bτ /, k =1, : : : , K,

.π1, : : : , πK/∼Dir.λ1, : : : , λK/, k =1, : : : , K,

where IG.a, b/ denotes the inverse gamma distribution with a shape parameter a and a scale
parameter b, and Dir.λ1, : : : , λK/ represents a Dirichlet distribution with probability param-
eters .λ1, : : : , λK/. We set c = 104, aa = ba = av = bv = aw = bw = aε = bε = aτ = bτ = 10−3 and
λ1 =: : : = λK = 2 such that the priors are vague. We constrain θ.1/ <: : : < θ.k/ to avoid the
potential computational issue of label switching and set gk = log{q′

k=.1−q′
k/} with q′

k = q0 +
{.k −1/=.K −1/}.q1 −q0/, k =1, : : : , K. We use the Gibbs sampler (Geman and Geman, 1984)
to sample posteriors. The details of the posterior sampling can be found in Appendix A.

2.3. Trial design
The BLAST design has a total of M planned interim looks. Let Dm ={.Zij, Yijl/, i=1, : : : , I, j =
1, : : : , ni,m, l = 1, : : : , L} denote the interim data at the mth look, where ni,m is the sample size
for the ith cancer type at the mth interim look, m= 1, : : : , M. The BLAST design is described
as follows.

Step 1: enrol ni,1 patients with the ith cancer type for i=1, : : : , I.
Step 2: given the mth interim data Dm, m=1, : : : , M, fit the proposed model.

(a) (Futility stopping) if Pr[pi > {.q0 +q1/=2}|Dm] < Qf , suspend the accrual for the ith
cancer type, where .q0 +q1/=2 denotes the rate halfway between the null and target
response rate, and Qf is a probability cut-off for futility stopping.

(b) Otherwise, continue to enrol patients until the next interim analysis has been reached.

Step 3: once the maximum sample size has been reached or the accrual has been stopped for
all cancer types due to futility, evaluate the treatment efficacy on the basis of the final data
D as follows. If Pr.pi > q0|D/ > Q, declare that the treatment is effective for the ith cancer
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type; otherwise, declare that the treatment is not effective for the ith cancer type, where Q is
a probability cut-off.

In the design, the probability cut-offs Qf and Q should be calibrated through simulation to
achieve a desired type I error rate and power for each cancer type. This simulation-based cali-
bration procedure is widely used in Bayesian clinical trial designs (Thall et al., 1995; Yuan et al.,
2016).

3. Simulation study

3.1. Operating characteristics
We conducted extensive simulations to evaluate the operating characteristics of the BLAST
design. Taking the setting of the motivating CDKN2A deficient solid tumour trial, the null
response rate q0 = 0:2 and the alternative response rate q1 = 0:3. We considered six cancer
types and two subgroups (i.e. sensitive subgroup and insensitive subgroup). Depending on its
true response rate pi, each of the cancer types belongs to either the sensitive subgroup or the
insensitive subgroup. We constructed different scenarios by varying the subgroup membership
for the cancer type. For example, in Table 1, scenario 1 represents the null case in which all cancer
types belong to the insensitive subgroup (i.e. the drug is not effective for all patients). Scenario 2
represents the case in which cancer types 1–4 belong to the sensitive subgroup, whereas cancer
types 5 and 6 belong to the insensitive subgroup. We simulated Yij from Ber.pi/, and eight
repeated biomarker measures Zijl, equally spaced over the standardized timeframe [0, 1], based
on model (3) with two different trajectory shapes (see Fig. A1 in the on-line supplementary
materials): trajectory A,

μ.k/.t/=
{

18−12 exp{−6.t +0:05/} if cancer type i∈ sensitive subgroup,
9:11 if cancer type i∈ insensitive subgroup;

trajectory B,

μ.k/.t/=
{

8:86+ 8
1+ exp{−8.t −0:5/} if cancer type i∈ sensitive subgroup,

4+5 exp.−t0:5/ if cancer type i∈ insensitive subgroup:

These two settings are chosen to represent the trajectories that we may encounter in practice.
Specifically, in trajectory A, the biomarker measure increases and then plateaus in the sensitive
subgroup, whereas it remains constant in the insensitive group. In trajectory B, for the sensitive
subgroup, there is an incubation period during which the biomarker measure increases slowly
before it increases more rapidly, whereas for the insensitive group the biomarker measure slowly
decays over time to reflect the natural progression of the disease. We set β =1, σ2

ε =1:5 and σ2
v =

σ2
w =4 for trajectory A, and σ2

v =σ2
w =7 for trajectory B. Fig. A2 in the on-line supplementary

materials shows an example of simulated biomarker data. To fit the biomarker data, we used
four equally spaced knots in the penalized spline.

The maximum sample size for each cancer type is 25, with three interim analyses conducted
when the sample size in each cancer type reaches 10, 15 and 20. We compared the BLAST design
with the BHM approach (Berry et al., 2013) and the independent approach. The BHM approach
uses a conventional BHM similar to model (2) without the latent subgroup. The independent
approach models Y independently in each cancer type by using a beta–binomial model, i.e.
Yij ∼Ber.pi/ with a conjugate prior pi ∼beta.0:03, 0:07/. To make the comparison meaningful,
we used the same interim stopping rule in the three designs, set Qf =0:05 and calibrated Q for
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Table 1. Simulation results of the independent, BHM and BLAST designs under biomarker trajectory setting
A

Scenario Design Results for the following cancer types: Sample size

1 2 3 4 5 6

A1 Response rate 0.2 0.2 0.2 0.2 0.2 0.2
Independent % reject 9.9 10.1 10 10.1 10 9.9 132.9

% stop 27.2 27.5 25.9 26.6 26.5 24.7
BHM % reject 9.8 10.2 9.9 9.9 9.8 9.8 129.1

% stop 30.4 30.1 30.7 28.8 30.6 29.2
BLAST % reject 9.9 10.1 9.8 9.8 10.2 9.9 129.4

% stop 31.2 30.8 29.1 31 29 29.7
A2 Response rate 0.3 0.3 0.3 0.3 0.2 0.2

Independent % reject 46.5 45.4 45.9 41.4 9.2 11.6 141.5
% stop 5.6 7.3 6 5.4 27 26.2

BHM % reject 69.6 68.6 72.2 70.8 45.8 42.3 147.2
% stop 2.9 2.7 2.9 3.2 6.1 4.8

BLAST % reject 90.7 91.1 92.3 91.4 11.3 11.9 140.5
% stop 1 1 0.6 0.8 36.1 37

A3 Response rate 0.3 0.3 0.2 0.2 0.2 0.2
Independent % reject 45.4 43.4 10 9.4 10.6 10.2 137.3

% stop 5.7 6.4 26.2 25.3 27 27.2
BHM % reject 46.5 47.4 26.3 26.5 25.2 23.9 141.3

% stop 7.8 7.3 13.6 14.7 15.8 14.3
BLAST % reject 82.1 85.8 9.9 9.3 7.6 9 133.4

% stop 2.1 1.2 34.6 34.9 32.4 33.3
A4 Response rate 0.35 0.3 0.3 0.2 0.2 0.2

Independent % reject 69 44.5 46.6 9.7 9.9 10.5 139.8
% stop 2.2 6.4 6.8 25.6 27.1 25.2

BHM % reject 74.9 62.8 66.6 39 36.4 36.4 146.0
% stop 2.6 3.6 4 7.2 8.2 7.1

BLAST % reject 94.7 89.1 91.4 8.6 9 7.6 137.6
% stop 0.4 0.5 0.6 36.5 31.7 33.7

A5 Response. rate 0.3 0.2 0.2 0.2 0.2 0.2
Independent % reject 45 11.4 7.8 8.6 10.4 9.4 135.2

% stop 6.2 27 25.5 25.7 26.7 25.3
BHM % reject 35.8 15.9 18.7 17.8 15.7 16.2 135.9

% stop 12.6 21.3 22.4 20.8 23.7 21.2
BLAST % reject 71.7 11 10.2 10.3 10.1 11.2 130.0

% stop 5.5 35 33.9 34.8 31.5 32.2

each design to control the type I error rate to be 10% in each cancer type (see scenarios A1 and
B1 in Tables 1 and 2). We conducted a total of 1000 simulations under each scenario.

Table 1 shows the simulation results when the biomarker follows trajectory A. Under each
scenario, the first row reports the true response rate for the six cancer types, and the other rows
report the percentage for rejecting H0, the percentage for early stopping for each cancer type,
and the average total sample size. Scenario A1 represents the null case in which the treatment is
not effective for all cancer types and the percentage for rejecting H0 is the type I error rate. As
described above, the type I error rate of the three designs is controlled at 10% by calibrating the
stopping probability cut-off Q. Compared with the independent design, the BHM and BLAST
designs are more likely to stop the trial early, resulting in smaller total samples sizes. This is
because the BHM and BLAST designs borrow information across cancer types and are thus
more efficient than the independent design that performs interim analysis independently for each
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Table 2. Simulation results of the independent, BHM and BLAST designs under biomarker trajectory setting
B

Scenario Design Results for the following cancer types: Sample size

1 2 3 4 5 6

B1 Response rate 0.2 0.2 0.2 0.2 0.2 0.2
Independent % reject 9.9 10.1 10 10.1 10 9.9 132.9

% stop 27.2 27.5 25.9 26.6 26.5 24.7
BHM % reject 9.8 10.2 9.9 9.9 9.8 9.8 129.1

% stop 30.4 30.1 30.7 28.8 30.6 29.2
BLAST % reject 9.8 9.9 9.9 10.2 10.2 10 129.4

% stop 31.2 31 29.3 31 29.1 29.9
B2 Response rate 0.3 0.3 0.3 0.3 0.3 0.3

Independent % reject 45.6 46.8 46.1 45.4 46.3 49.5 145.7
% stop 5.9 6.5 7.3 6 5.8 5.8

BHM % reject 87 85.3 87.8 86.6 85.5 85.3 149.2
% stop 2.6 0.9 1 1.3 1 0.6

BLAST % reject 87.1 89.5 89.7 89.4 88.1 88.9 149.4
% stop 1.2 0.5 0.5 1 0.4 0.8

B3 Response rate 0.2 0.2 0.35 0.3 0.3 0.35
Independent % reject 10.8 9.4 64.1 44.8 47.1 67.1 142.0

% stop 27.4 26.7 3.5 5.6 7.4 2.4
BHM % reject 49.2 48.3 85.9 77.8 74.8 83.9 148.4

% stop 2.9 3.8 1.5 1.2 2.1 0.9
BLAST % reject 7.8 7.3 97.2 92.9 92.4 97 139.4

% stop 43.2 41.6 0.4 0.3 0.2 0.3
B4 Response rate 0.35 0.3 0.2 0.2 0.2 0.2

Independent % reject 65.9 45.3 10.2 9 10 9.5 137.5
% stop 2.6 7 26.9 25.6 28.5 24.8

BHM % reject 62.7 52.4 29.6 29.1 27.2 26.1 143.3
% stop 7.8 5 12 11.5 12.9 11.5

BLAST % reject 91.5 85.9 8.3 8.7 6.7 8.2 133.8
% stop 0.8 1.6 33.3 34.4 32 33.9

B5 Response rate 0.3 0.3 0.3 0.3 0.3 0.2
Independent % reject 46.8 46.9 44.5 46 45.7 9.9 143.7

% stop 5.8 7.5 6.4 5.2 6.5 25
BHM % reject 79 77.6 80.4 80.4 77.7 56 148.5

% stop 12.6 1.6 1.8 1.8 2.3 2.6
BLAST % reject 91.9 92.6 93.1 92.6 92.1 11.8 143.9

% stop 0.8 0.6 0.5 0.8 0.5 41.1

cancer type. In scenario A2, cancer types 1–4 are sensitive to the treatment, whereas cancer types
5 and 6 are not sensitive to the treatment. The BLAST design outperforms the independent and
BHM designs. As expected, the independent design maintains the type I error rate at 10% for the
insensitive cancer types (i.e. cancer types 5 and 6) but has low power (i.e. 41.4–46.5%) to detect
the treatment effects for sensitive cancer types (i.e. cancer types 1–4). In contrast, the proposed
BLAST design yields substantially higher power (i.e. 90.7–92.3%) to detect the treatment effect
in (sensitive) cancer types 1–4, whereas controlling the type I error rate reasonably close to 10%
for (insensitive) cancer types 5–6. The BHM design fails to control the type I error rate, which
is inflated to over 42% for (insensitive) cancer types 5 and 6. This is consistent with findings
from previous research (Freidlin and Korn, 2013). In addition, compared with the independent
and BHM designs, the BLAST design is more likely to stop treating the insensitive cancer types
and less likely to stop treating the sensitive cancer types. The percentage of early stopping for
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Fig. 1. Sensitivity analysis—comparing the rejection percentage of the BHM ( ) with that of the proposed
BLAST design (�) when four cancer types are considered (on the x-axis, circled cancer types are respon-
sive to the treatment, and uncircled cancer types are not responsive to the treatment; for example, scenario
1 serves as the calibration scenario, with all four cancer arms being non-responsive and having rejection
percentage calibrated to 10%; scenario 2 has arms 1 and 2 as responsive, and others as non-responsive;
scenario 3 has arm 1 as responsive, and arms 2–4 as non-responsive; scenario 4 has arms 1–4 as respon-
sive): (a) scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4

(insensitive) cancer types 5 and 6 is about 37% for the BLAST design, compared with 27% for
the independent design and 6% for the BHM design. The percentage of incorrect early stopping
for (sensitive) cancer types 1–4 is less than 1% in the BLAST design, compared with about 6%
in the independent design and greater than 2:5% in the BHM design. As a result, the BLAST
design tends to result in total sample sizes that are smaller than those under the independent
and BHM designs. In scenario A3, there are two sensitive cancer types (i.e. cancer types 1 and 2)
and four insensitive cancer types (i.e. cancer types 3–6). The BLAST design yielded high power
(i.e. 82:1% and 85:8% for respective cancer types 1 and 2) and well-controlled type I error rates
(i.e. 9:9%, 9:3%, 7:6% and 9% for respective cancer types 3, 4, 5 and 6), whereas the BHM design
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Fig. 2. Sensitivity analysis—comparing the early stopping percentage of the BHM ( ) with that of the
proposed BLAST design (�) when four cancer types are considered (on the x-axis, circled cancer types are
responsive to the treatment, and uncircled cancer types are not responsive to the treatment): (a) scenario 1;
(b) scenario 2; (c) scenario 3; (d) scenario 4

had lower power (i.e. 46:5% and 47:4% for respective cancer types 1 and 2) and substantially
inflated type I error rates (i.e. 26:3%, 26:5%, 25:2% and 23:9% for respective cancer types 3–6).
The independent approach yielded well-maintained type I error rates for the insensitive cancer
types (10%, 9:4%, 10:6% and 10:2%), but low power for the sensitive cancer types (45:4% and
43:4%). Again, the BLAST design has smaller sample size, lower early stopping percentage
for sensitive cancer types and higher stopping percentage for the insensitive cancer types than
the other two designs. Similar results were observed in scenarios A4 and A5, which consider
different (i.e. three and five respectively) numbers of insensitive cancer types. Table 2 shows the
results under trajectory B. The results are generally similar to what is described above.

We also examined the estimates of response rates, including the absolute bias and mean-
squared error MSE, under various designs. As shown in Figs A3 and A4 in the on-line
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Fig. 3. Sensitivity analysis—comparing the rejection percentage of the BHM ( ) with that of the proposed
BLAST design (�) when 10 cancer types are considered (on the x-axis, circled cancer types are responsive to
the treatment, and uncircled cancer types are not responsive to the treatment; for example, scenario 1 serves
as the calibration scenario, with all 10 cancer arms being non-responsive and having rejection percentage
calibrated to 10%; scenario 2 has arms 1 and 10 as responsive and others as non-responsive; scenario 3
has arms 1–5 as non-responsive and arms 6–10 as responsive; scenario 4 has arms 1–6 as responsive and
arms 4–10 as non-responsive): (a) scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4

supplementary materials, the BLAST design generally has the best overall performance. The
independent design has a larger MSE than the BHM and BLAST designs because it does not
borrow information across cancer types. The BHM design tends to have larger absolute biases
when the treatment effect is heterogeneous (i.e. scenarios A2–A5 and B3–B5) because it regards
all the disease types as exchangeable and tends to shrink the estimate of treatment effect across
them overly.

3.2. Sensitivity analysis
We evaluated the performance of the BLAST design when the basket trial contains four or
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Fig. 4. Sensitivity analysis—comparing the early stopping percentage of the BHM ( ) with that of the
proposed BLAST design (�) when 10 cancer types are considered (on the x-axis, circled cancer types are
responsive to the treatment, and uncircled cancer types are not responsive to the treatment): (a) scenario 1;
(b) scenario 2; (c) scenario 3; (d) scenario 4

10 cancer types. Figs 1–4 show the simulation results. We can see that, compared with the
BHM design, the BLAST design yields substantially higher power to detect the treatment
effect for sensitive cancer types and controls the type I error rate for the insensitive can-
cer types. Detailed results are provided in Tables A1 and A2 in the on-line supplementary
materials.

We also studied the sensitivity of the BLAST design with respect to the priors. Table 3 shows
the simulation results when setting hyperparameters c =102, aa =ba =av =bv =aw =bw =aε =
bε = 10−2, while keeping the other parameters unchanged. The results are generally similar to
those reported in Table 1, suggesting that the choice of hyperparameters has little effect on the
performance of the design.
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Table 3. Sensitivity analysis of the BLAST design with different priors

Scenario Results for the following cancer types: Sample size

1 2 3 4 5 6

Trajectory A
A1 Response rate 0.2 0.2 0.2 0.2 0.2 0.2

% reject 10.2 9.8 10.1 10.1 10 9.8 129.5
% stop 31.7 30.3 29 31.5 28.6 29.2

A2 Response rate 0.3 0.3 0.3 0.3 0.2 0.2
% reject 90.8 91.5 92.1 90.9 12.7 12.4 140.3
% stop 1.3 0.9 0.9 0.9 36.7 38

A3 Response rate 0.3 0.3 0.2 0.2 0.2 0.2
% reject 82.5 84.9 10.1 10 8.2 8.9 133.7
% stop 2.1 1.2 32.9 35.7 32.3 32.4

A4 Response rate 0.35 0.3 0.3 0.2 0.2 0.2
% reject 94.3 89.8 91 9.9 10.4 8.6 137.6
% stop 0.4 0.6 0.7 36.2 32.1 34.5

A5 Response rate 0.3 0.2 0.2 0.2 0.2 0.2
% reject 73.8 9.7 10.2 10.1 10 10.6 129.6
% stop 5.4 35.1 33.1 36.1 32 33.1

Trajectory B
B1 Response rate 0.2 0.2 0.2 0.2 0.2 0.2

% reject 10 9.8 9.8 10 9.9 9.8 129.6
% stop 31.7 30.3 29 31.5 28.6 29.2

B2 Response rate 0.3 0.3 0.3 0.3 0.3 0.3
% reject 87.5 88.9 89.5 89.1 87.9 88.5 149.5
% stop 1.1 0.5 0.6 1 0.5 0.7

B3 Response rate 0.2 0.2 0.35 0.3 0.3 0.35
% reject 7.6 7.3 97 93.4 93.2 97.2 139.5
% stop 42.8 41 0.4 0.2 0.1 0.2

B4 Response rate 0.35 0.3 0.2 0.2 0.2 0.2
% reject 91.8 85.4 8.2 8.2 6.8 7.7 133.6
% stop 0.8 1.6 34 35.1 32.4 33.3

B5 Response rate 0.3 0.3 0.3 0.3 0.3 0.2
% reject 92.2 92.9 93.2 92.4 92.7 11.6 143.9
% stop 0.7 0.6 0.5 0.6 0.3 41.2

4. Conclusion

We proposed the BLAST design to evaluate the treatment effect of targeted agents in basket
clinical trials. The BLAST design assumes that different cancer types belong to different la-
tent subgroups. The cancer types within a subgroup have similar treatment effects. By jointly
modelling the longitudinal biomarker measurements and treatment responses, the BLAST de-
sign simultaneously groups cancer types into different subgroups and makes Bayesian inference
and go–no-go interim treatment decisions for each cancer type. The simulation shows that the
BLAST design outperforms the BHM approach, with higher power and better controlled type
I error rates.

One innovation of the BLAST design is that it leverages longitudinal biomarker measurements
that are routinely taken in clinical trials to improve the efficiency of the basket trial. In some sense,
this is necessary for achieving adaptive information borrowing, i.e. identifying cancer types (or
baskets) with similar response and pooling information across them. We tried clustering the
baskets on the basis of only tumour response Yij by using parametric methods (e.g. latent class
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model) or non-parametric methods (e.g. K-means clustering). We found that it worked poorly
because of small sample size and limited data information (i.e. a binary end point contains
much less information than longitudinal measures). The resulting clusters are very unreliable,
and there is a high probability that baskets are incorrectly clustered, leading to substantially
inflated type I errors (the results are not shown).

The BLAST design aims to evaluate the treatment effect and makes the go–no-go decision for
each of the cancer types, while allowing adaptive information borrowing across the cancer types
with similar treatment effects by identifying and forming subgroups. The BLAST design can be
easily adopted to make the go–no-go decision at the subgroup level if it is clinically desirable. In
addition, we have focused on a single multitumour ‘basket’ that assesses a single targeted agent
across multiple types of tumour sharing a specific genetic or molecular aberration. The BLAST
design is also applicable to ‘nested’ basket trials, where multiple targeted therapies are evaluated
simultaneously in a ‘parent’ basket trial, under which each agent forms a ‘child’ basket trial.
In that case, our methodology can be implemented independently for each child basket trial,
allowing different conclusions for different child basket trials.
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Appendix A

We employ the Gibbs sampler (Geman and Geman, 1984) as the posterior sampling strategy. We denote
Yi = .Yi1, : : : , YiJ /, Zij = .Zij.1/, : : : , Zij.T// and Zi = .Zi1, : : : , ZiJ /. At each iteration, we conduct the
following steps.

Step 1: update Ci. First, we reorganize model (3) as

Zi|Xiα, Xib, Yi, Ci =k ∼N.Xiαα.k/ +Xibbi +Yiβ, σ2
ε /,

where α.k/ = .γ0.k/, γ1.k/, γ2.k/, a1.k/, : : : , as.k//
T, bi = .vi, wi1, : : : , wiJ /T and Xiα and Xib are design matrices

of the ith arm associated with α.k/ and the random-effect vector bi respectively.
For i = 1, : : : , I, draw Ci independently from the multinomial distribution with probability τik, k =

1, : : : , K, given by

τik = πkNQi
.ωi.k/, σ2

ε IQi
/Bin.ni, pi.k//

K∑
k=1

πkNQi
.ωi.k/, σ2

ε IQi
/Bin.ni, pi.k//

where ωi.k/ =Xiαα.k/ +Xibbi +Yiβ and NQi
.ω, σ2IQi

/ is a Qi-variate normal density function of Zi with
the mean vector ω and covariance matrix σ2IQi

, with Qi =Tni indexing the total number of biomarker
measurements in arm i. Bin.ni, pi.k// denotes the binomial density function of Yi with sample size ni

and probability pi.k/, where pi.k/ = exp.θ.k/ +ui/={1+ exp.θ.k/ +ui/}, with ui ∼N.0, τ 2
.k//.

Step 2: update πk. Draw πk, k =1, : : : , K, from the Dirichlet distribution,

πk|·∼Dir
{

I∑
i=1

I.Ci =1/+λ1, : : : ,
I∑

i=1
I.Ci =K/+λK

}
:

Step 3: update θ.k/. There is no closed form for the posterior distribution of θ.k/, k = 1, : : : , K, so we
use the adaptive rejection Metropolis sampling algorithm to draw θ.k/ based on

θ.k/|·∝
I∏

i=1

{
ni∏

j=1

exp.θ.k/ +ui/
I.Yij=1/

1+ exp.θ.k/ +ui/

}
exp

{
− .θ.k/ −gk/

2

2c

}
:
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We place an ordered constraint on θ.k/ such that θ.1/ <: : : < θ.k/ to avoid the label switching issue. We
note that this constraint is consistent with the practical situation in which the non-responsive arms
usually have lower efficacy measures than the responsive arms.
Step 4: update ui. Sample ui, i = 1, : : : , I, via the adaptive rejection Metropolis sampling algorithm
based on the full conditional

ui|·∝
ni∏

j=1

exp.θ.k/ +ui/
I.Yij=1/

1+ exp.θ.k/ +ui/
exp

(
− u2

i

2τ 2
.k/

)
:

Step 5: update τ 2
.k/. Draw τ 2

.k/, k =1, : : : , K, from the inverse gamma distribution

τ 2
.k/|·∼ IG

[
aτ + 1

2

I∑
i=1

I.Ci =k/, bτ + 1
2

I∑
i=1

{u2
i I.Ci =k/}

]
:

Step 6: update α.k/. We jointly update the penalized spline parameter vector α.k/. Let Nk =ΣI
i=1{niI.Ci =

k/} and Qk =TNk denote the number of patients and the total number of biomarker measurements in
the latent subgroup k respectively. Draw α.k/ from its full conditional f.α.k/|·/=N.ηα.k/, Vα.k//, where

Vα.k/ = .Σ−1
α.k/ +XT

α.k/Xα.k/σ
−2
ε /−1,

ηα.k/ =σ−2
ε Vα.k/XT

α.k/.Z.k/ −Xb.k/b −Y.k/β/:

Here,

Σα.k/ =
(

cI3 0
0 σ2

a.k/IS

)

represents the covariance matrix of α.k/ for latent subgroup k, Xα.k/ is the Qk × .3 + S/ design matrix
for subgroup k, Z.k/ denotes the Qk × 1 biomarker measurement vector for subgroup k, Xb.k/ is the
Qk × .I + N/ design matrix for subgroup k and Y.k/ denotes the Qk × 1 response outcome vector for
subgroup k.
Step 7: update vi and wij . We again jointly update the random-effects vector .vi, wij/, i= 1, : : : , I, j =
1, : : : , J , together. Let N =ΣI

i=1ni and Q=TN denote the total number of patients and the total number
of biomarker measurements in the study respectively. Sample b= .v, w/T from its full conditional f.b|·/=
N.ηb, Vb/, where

Vb = .Σ−1
b +XT

b Xbσ
−2
ε /−1,

ηb =σ−2
ε VbXT

b .Z−Xαα.k/ −Yβ/:

Here,

Σb =
(

σ2
vII 0
0 σ2

wIN

)

represents the covariance matrix of b, Xb denotes the Q× .I +N/ design matrix associated with b; Xα

represents the Q× .3+S/ design matrix and Y is the Q×1 response outcome vector.
Step 8: update β. Sample β from its full conditional f.β|·/=N.ηβ , Vβ/, where

Vβ = .c−1 +σ−2
ε

∑
i

∑
j

Yij/
−1,

ηβ =σ−2
ε VβYT.Z−Xαα.k/ −Xbb/:

Step 9: update σ2
a.k/, σ

2
v , σ2

w and σ2
ε . Draw the variance parameters sequentially from their full condition-

als:



Bayesian Latent Subgroup Design for Basket Trials 739

σ2
a.k/|·∼ IG

(
aa + S

2
, ba + 1

2

S∑
s=1

a2
s.k/

)
,

σ2
v |·∼ IG

(
av + I

2
, bv + 1

2

I∑
i=1

v2
i

)
,

σ2
w|·∼ IG

(
aw + N

2
, bw + 1

2

I∑
i=1

ni∑
j=1

w2
ij

)
,

σ2
ε |·∼ IG

{
aε + Q

2
, bε + 1

2
.Z−Xαα.k/ −Xbb −Yβ/T.Z−Xαα.k/ −Xbb −Yβ/

}
:
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