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A Bayesian Design for Phase II Clinical Trials
with Delayed Responses Based on Multiple
Imputation
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Interim monitoring is routinely conducted in phase II clinical trials to terminate the trial early if the experimental
treatment is futile. Interim monitoring requires that patients’ responses be ascertained shortly after the initiation
of treatment so that the outcomes are known by the time the interim decision must be made. However, in some
cases, response outcomes require a long time to be assessed, which causes difficulties for interim monitoring. To
address this issue, we propose a Bayesian trial design to allow for continuously monitoring phase II clinical trials
in the presence of delayed responses. We treat the delayed responses as missing data and handle them using a
multiple imputation approach. Extensive simulations show that the proposed design yields desirable operating
characteristics under various settings and dramatically reduces the trial duration.
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1. Introduction

The primary objective of phase II clinical trials is to test the preliminary efficacy of experimental agents and decide
whether the agents are sufficiently promising to be sent to phase III trials. To avoid assigning a large number of patients
to inferior treatments and to increase the design efficiency, interim monitoring is routinely conducted in phase II trials to
allow for the possibility of early termination if the experimental treatment is futile.

Numerous phase II trial designs have been proposed. Gehan [1] proposed a two-stage phase II design for cancer research
in which the trial is terminated if there are no favorable responses observed in the first stage. Fleming [2] developed a
multiple-stage testing procedure that allows for early termination and also preserves the simplicity of the single-stage
procedure. Simon [3] presented optimal two-stage designs that minimize the expected or maximum sample size. As
extensions of Simon’s design, Green and Dahlberg [4] proposed a two-stage design for multicenter trials when the attained
sample size is not the planned one, and Chen [5] proposed a three-stage design. Other extensions of Simon’s design
include those of Ensign et al. [6], Hanfelt et al. [7], Jung et al. [8], Shuster [9], and Lin and Shih [10]. Under the Bayesian
framework, Tan and Machin [11] proposed a Bayesian two-stage design in which the parameters are calibrated based on
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the posterior probability approach. That design was extended by Sambucini [12] to take into account the uncertainty of
future data.

In addition to these two and multiple stage designs, phase II designs with continuous monitoring have been proposed to
improve the efficiency of interim monitoring. Thall and Simon [13] developed practical Bayesian guidelines for the design
and analysis of phase II clinical trials with continuous monitoring. Thall et al. [14] proposed a Bayesian single-arm phase
II design with sequential monitoring for multiple outcomes using a Dirichlet-multinomial model. Heitjan [15] proposed
a flexible Bayesian phase II design using “persuasion probability”, which allows for termination at any interim analysis
as long as the persuasion probability exceeds its critical value. Lee and Liu [16] developed a flexible phase II design
with continuous monitoring based on Bayesian predictive probability. Johnson and Cook [17] derived a class of Bayesian
designs based on formal hypothesis tests using non-local alternative prior densities with continuous monitoring. Wathen et
al. [18] proposed a flexible Bayesian single-arm phase II design with subgroup-specific early-stopping rules, which allows
the decision of trial termination to differ within each subgroup. Zohar et al. [19] provided an excellent tutorial on how to
conduct Bayesian phase II single-arm clinical trials with binary outcomes.

A major practical impediment when implementing phase II clinical trial designs, particularly with continuous
monitoring, is that the responses must be observed early enough to apply the stopping rules. However, in practice, the
efficacy response may take a relatively long time to be observed, with respect to the accrual rate. As an example, a single-
arm phase II clinical trial recently initiated at MD Anderson Cancer Center investigated the efficacy of a combination of
everolimus with a novel kinase inhibitor in patients with glioblastoma. The assessment of the response to the treatment
(i.e., partial and complete response) requires 3 months. The lowest acceptable response rate for this trial was 40%; that is,
if the response rate of the experimental treatment is below that value, we should terminate the trial for futility. The accrual
rate was about 2 patients per month. The difficulty of conducting futility monitoring for that trial is that the response takes
a relatively long follow-up to assess; thus, at each monitoring time point, the response outcome may not be observable for
some patients.

One possible solution to this practical dilemma is to suspend the accrual and wait until the data in the trial mature
before enrolling the next new patient in order to always have complete data for the interim monitoring. However, this
complete-data method is typically infeasible in practice because repeatedly suspending patient accrual is not practical and
often leads to unacceptably long trials. Another approach is to conduct interim analyses based on the observed data from
patients who have responded to the treatment or/and completed the follow-up so that suspension of patient accrual is not
needed [14, 15, 18]. Unfortunately, this observed-data approach is biased because the response outcome (i.e., response
or no response) is more likely to be observed for patients who will respond to the treatment than for those who will not,
i.e., the observed data comprise a biased sample of the patients [20]. In order to obtain unbiased inference, we need to
take into account the partially followed patients (i.e., the patients who have not completed their follow-up assessments
and have not yet responded to the treatment). By treating the treatment response as a time-to-event outcome, Follman
and Albert [21] proposed an interim monitoring method based on a discrete-time survival model; and Zhao et al. [22]
developed a Bayesian decision theoretic two-stage phase II design. Cheung and Thall [23] kept the treatment response in
its conventional form as a binary outcome and weighted the binomial likelihood with patients’ follow-up times to account
for partially followed patients.

In this article, we propose a new missing-data approach to handle the issue of delayed response. We naturally treat
unobserved delayed response outcomes as missing data, while keeping the observed (binary) response outcomes intact.
We impute the unobserved responses using the multiple imputation approach based on a flexible piece-wise exponential
model. Unlike the methods of Follman and Albert [21] and Zhao et al. [22], our approach treats the response as a binary
outcome, which is more consistent with conventional phase II trials. In addition, as our method keeps the observed
response data intact, it is more robust to model misspecification (e.g., the piece-wise exponential model). That is, the model
misspecification only affects the imputed data, and more importantly, such effect attenuates along the trial and eventually
disappears because when the trial moves on, more and more patients and eventually all patients’ outcomes are observed.
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Compared to the method of Cheung and Thall [23], for which the weighted likelihood may not always correspond to the
actual data likelihood, our method is a fully likelihood-based approach and thus more efficient. Simulation studies show
that the proposed method possesses desirable operating characteristics under various practical scenarios, and allows for
continuous monitoring without prolonging the duration of the trial.

The remainder of this article is organized as follows. In Section 2, we introduce the Bayesian continuous monitoring
rule and the multiple imputation approach to handle the delayed response. In Section 3, we examine the operating
characteristics of the proposed design through extensive simulation studies and sensitivity analyses. We conclude with
a brief discussion in Section 4.

2. Methods

2.1. Bayesian continuous monitoring

Consider a single-arm phase II trial in which patients enter the trial sequentially and are followed for a fixed period of time
T after the treatment to assess their responses to an experimental treatment, e.g., partial or complete response. We assume
that the treatment response y is binary, with y = 1 if the response is observed within the assessment window [0, T ], and
y = 0 otherwise. That is, y follows a Bernoulli distribution,

y ∼ Bernoulli(π),

where π is the treatment response rate. Depending on the nature of the disease and the response, the pre-specified
assessment window T varies from weeks to months.

Suppose that at an interim monitoring time, n patients have been enrolled into the trial and their responses y = {yi, i =
1, · · · , n} have been fully observed, then the likelihood function of y is given by

L(y|π) =
n∏
i=1

πyi{1− π}1−yi .

If we assign a conjugate beta prior to π with shape parameters ζ and ξ, i.e., π ∼ Beta(ζ, ξ), the posterior distribution of π
is

f(π|y) = Beta(ζ +

n∑
i=1

yi, ξ + n−
n∑
i=1

yi).

Let φ denote a lower bound of the acceptable response rate prespecified by physicians, and ψ denote a prespecified cutoff.
Our Bayesian futility monitoring can be described as follows:

At any time during the trial, if Pr(π < φ|y) > ψ, we terminate the trial for futility; otherwise, we continue the
accrual until we reach the maximum sample size.

In practice, to improve the reliability of the design, we typically apply the above continuous monitoring rule only after a
certain number of patients, say n0, have been treated and have completed their response assessments. The value of ψ can
be chosen and calibrated by simulation studies to obtain desirable operating characteristics.

This continuous monitoring requires that treatment responses are quickly evaluable such that at each of the interim
monitoring times, the responses of the enrolled patients are fully observable and available to inform the decision of
stopping for futility. This requirement, however, is not satisfied when the response are delayed because, in this case, at the
moment of interim monitoring, some patients might not have finished their evaluations and thus their responses are not
yet observable.
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2.2. Accommodating delayed response using multiple imputation

We propose to handle the delayed response using multiple imputation, which provides a systematic way to impute the
unobserved responses and meanwhile account for the sampling uncertainty due to the missing values [24]. In the following
subsection, we first define the missing data caused by delayed responses at the interim monitoring time and then describe
the procedures to impute the missing data.

2.2.1. Missing data Let ti denote the time to response for patient i. At the moment of interim monitoring, let ri
(0 ≤ ri ≤ T ) denote the actual follow-up time for patient i, and mi(ri) denote the missing data indicator for yi, with
mi(ri) = 1 indicating the missingness of yi. It follows that

mi(ri) =

{
1 if ti > ri and ri < T,

0 if ti ≤ ri or ri = T.
(1)

That is, the response outcome yi is missing (i.e., mi(ri) = 1) if the patient has not yet responded to the treatment
(ti > ri) and has not been fully followed up to T (ri < T ). The response outcome yi is observed (i.e., mi(ri) = 0) if
the patient has either responded to the treatment (ti ≤ ri) or completed the entire follow-up (ri = T ) without experiencing
the response. For notational simplicity, we suppress the augmentation of ri in mi(ri) and let m = (m1, . . . ,mn). We
partition y = (yobs,ymis), where yobs and ymis denote the observed and unobserved response values, respectively.

A key point is that the missing yi’s are nonignorable in the sense that at any follow-up time, a patient who will not
respond to the treatment by the end of follow-up (i.e., for whom it will turn out that yi = 0) is more likely to have yi
missing than a patient who will respond to the treatment (i.e., for whom yi = 1) [20]. Formally, Pr(mi = 1|yi = 0) >

Pr(mi = 1|yi = 1), which by Bayes’ rule implies that

πj
1− πj

>
Pr(yi = 1|mi = 1)

Pr(yi = 0|mi = 1)
.

That is, the odds of response are smaller if yi is missing, so the missingness indicator mi contains information about
the future value of yi. Therefore, the simple approach of evaluating the stopping rule Pr(π < φ|yobs) > ψ based on the
observed response values yobs leads to biased estimates and poor operating characteristics, as we show in our simulation
study.

2.2.2. Imputation model Because the missing data are nonignorable, in order to impute the missing yi’s without bias,
we need to model the missing data mechanism, which involves the time to response ti as defined in (1). We specify a
flexible correlated piecewise exponential model for the time to response. Specifically, we partition the follow-up period
[0, T ] into a finite number of J disjoint intervals [0, d1), [d1, d2), · · · , [dJ−1, dJ = T ] and assume a constant hazard λj in
the jth interval with λ = (λ1, · · · , λJ). Based on numerical studies and the fact that the sample size of phase II trials is
typically small or moderate, we recommend to set 4 ≤ J ≤ 8 to keep the model parsimonious. In practice, we can start
with J = 4 and use simulation studies to determine whether an increase of the value of J is needed to further improve
the performance of the design. Our experience is that J = 6 is adequate for most practical applications. We define the
observed time xi = min(ri, ti) and δij as the indicator of the ith subject experiencing the response in the jth interval. The
likelihood function of x = (x1, . . . , xn) for n subjects is given by

L(x|λ) =
n∏
i=1

J∏
j=1

(λj)
δijexp(−λjeij),

where eij = dj − dj−1 if xi > dj ; eij = xi − dj−1 if xi ∈ [dj−1, dj); and otherwise eij = 0.
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To borrow information across the partition interval, we assume that λi follows a discrete-time martingale process
[25, 26],

λj |λ1, · · · , λj−1 ∼ Gamma(cj ,
cj
λj−1

), j = 1, · · · , J

where Gamma(ξ, η) represents a gamma distribution with a shape parameter ξ and a scale parameter η, and λ0 and
cj are prespecified hyperparameters. This prior centers the hazard of an interval at that of the previous interval, i.e.,
E(λj |λ1, · · · , λj−1) = λj−1, thereby introducing correlations between the λi’s in adjacent intervals and improving the
smoothness of the estimates. The value of cj controls the correlation and the smoothness of λj . If cj = 0, λj is independent
of λj−1, while if cj →∞, λj = λj−1. Therefore, the posterior distribution of λ is given by

f(λ|x) ∝ L(x|λ)
J∏
j=1

f(λj |λ1, · · · , λj−1), (2)

which can be sampled using the Gibbs sampler.

2.2.3. Imputation procedure To carry out the multiple imputation, we draw the missing value of yi ∈ ymis from
its posterior predictive distribution f(yi|D), where D = (yobs,m,x). Because f(yi|D) =

∫
f(yi|D,λ)f(λ|D) dλ, the

multiple imputation of the missing value of yi can be done in two steps:

1. Sample λ from its posterior distribution given by (2).
2. Conditional on λ sampled in step 1, draw the missing value of yi ∈ ymis from f(yi|D,λ), which is given by

f(yi|D,λ) = Bernoulli(ω),

with

ω = Pr(yi = 1|mi = 1,λ)

= Pr(ti < T |ti > xi,λ)

=
F (T )− F (xi)
1− F (xi)

,

where F (·) is a cumulative distribution function given by F (s) = 1−
∑J

j=1 exp(−λjej), and ej = dj − dj−1 if
s > dj ; ej = s− dj−1 if s ∈ [dj−1, dj); and otherwise ej = 0.

We repeat steps 1 and 2 K times to obtain K sets of imputed values for ymis, denoted as y(1)
mis, . . . ,y

(K)
mis . Based on the

K imputed datasets, our Bayesian continuous monitoring for delayed responses is given as follows: at any time during
the trial, if Pr(π < φ|D) > ψ, we terminate the trial for futility; otherwise, we continue the accrual until we reach the
maximum sample size. The posterior probability Pr(π < φ|D) is given by

Pr(π < φ|D) = 1

K

K∑
k=1

Pr(π < φ|y(k)),

where y(k) = {yobs,y
(k)
mis} denote the filled-in complete datasets based on the kth imputation.
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3. Numerical studies

3.1. Simulation study

We conducted extensive simulation studies to evaluate the operating characteristics of the proposed method. We assumed
a maximum sample size of N = 50 and that patients were enrolled according to a Poisson process, with a rate of two
patients per month. We set the assessment period for response at T = 3 months and took J = 6 equally spaced partitions
for the piece-wise exponential model. We assigned vague gamma priors to the λj’s, with c1 = . . . = cJ = 0.01, and set λ0
such that the response probability at the end of the 3-month follow-up was equal to φ, the lower bound of the acceptable
response rate, (i.e., the response rate of the experimental agent just satisfied the lowest requirement for efficacy a priori).
The shape parameters ζ and ξ for the prior distribution of π were set at 0.1 and 0.2, respectively. The prespecified cutoff
ψ in the futility monitoring rule was set at 0.95. As shown in Table 1, we considered two values for the lower bound,
where φ = 0.3 and 0.4, each paired with various true response rates π. Under each of these parameter configurations, we
generated the time to response from a Weibull distribution, for which the scale and shape parameters were chosen such that
(1) the response rate at the end of the assessment was equal to the value of π, and (2) 90% or 70% of responses occurred in
the latter half of the assessment window (T/2, T ). The second condition was used to generate different degrees of delayed
response. For each of the simulation settings, we simulated 1,000 trials and conducted continuous monitoring after n0 = 5

patients had completed the assessment period.
We compared the proposed multiple imputation (MI) approach to three alternative methods: the naive method, observed-

data (OD) method, and weighted (WT) method proposed by Cheung and Thall [23]. Specifically, for the naive method,
at each of the monitoring times, we simply used the current status of each patient’s response as yi, regardless of whether
the patient had completed the follow-up or not. This naive method can be biased because the patients who have not yet
responded to the treatment may respond at a later time during the follow-up. In contrast, the OD method conducts the
monitoring based on the data from the patients whose response outcomes have been observed. Note that because patients
can respond to the treatment any time within the follow-up window (0, T ], the set of patients whose response outcomes
have been observed are not equivalent to the set of patients who have completed the follow-up. For the WT method,
following Cheung and Thall [23], each patient’s likelihood (i.e., a Bernoulli distribution) was weighted by ri/Ti. For the
purpose of comparison, we also implemented the complete-data (CD) method, which carries out the interim monitoring
using complete data by suspending accrual and waiting for each patient’s response outcome to mature before enrolling the
next patient. As we described previously, the CD method is not feasible in practice; but it provides an optimal bound and
a “gold standard” to evaluate the performance of other designs as it is based on fully observed data (i.e., no unobserved
response).

Table 1 shows the simulation results, including the average percentage of early termination, average sample size, and
the trial duration in months. To evaluate the performance of the different methods, we used the CD method as the gold
standard and calculated the differences in the average percentage of early termination (and sample size) between the CD
method and each of the other methods, the naive, OD, WT and proposed MI methods. Smaller differences indicate a better
performance.We displayed the results in Figures 1 and 2, where the line closer to the zero horizontal line represents a better
performance. In general, compared to the CD method, the naive method was overly stringent and tended to terminate the
trial when the response rate was actually acceptable (i.e., higher than the lower bound φ). In contrast, the OD method was
excessively liberal and was less likely to terminate the trial when the response rate was not acceptable (i.e., lower than
φ). The proposed MI method performed best, yielding termination probabilities very similar to those of the CD method;
that is, both designs terminated the trial with high (or low) probabilities when the response rate was lower (or higher)
than φ. The WT method performed better than the naive method and OD method, but not as well as the MI method,
especially when 90% of events occurred at the later half period of the assessment window. Compared to the CD method,
the advantage of the MI method is that its trial duration was much shorter because of its ability to support continuous
accrual. In most cases, the duration of the trial under the MI method was about a quarter of that under the CD method. For
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example, when 90% of events occurred in the latter half of the assessment period (T/2, T ) and φ = 0.4, if the true event
rate π = 0.3, the CD method terminated 71.5% of the trials for futility, with an average sample size of 26.0 patients and
a trial duration of 72.5 months. Compared to the CD method, the OD method terminated a lower percentage of trials for
futility (64.3%), while the WT method over-terminated the trials (76.3%). Our proposed MI approach performed similarly
to the CD method, with a termination rate of 70.3% for futility and a sample size of 27.6, but had a much shorter trial
duration (17.1 versus 72.5 months). Although the naive method terminated the trial for futility with a high percentage of
89.1%, it also terminated the trial with a higher percentage when the true response rate was high. For example, when the
true response rate was 0.6, the naive method terminated the trial 13.0% of the time, whereas the termination rates of the
other four methods were all lower than 4%. A similar pattern of results was observed under φ = 0.3 and 70% of responses
occurring within (T/2, T ).

3.2. Sensitivity analyses

To evaluate the robustness of the proposed MI approach, we examined its performance when the time to response was
generated from a log-logistic distribution. The results (see Table 2) were very similar to those obtained when the time to
response was generated from the Weibull distribution (i.e., Table 1). The differences in the percentage of early termination
for futility were typically less than 3%, suggesting that our method is not sensitive to the distribution of the time to
response. Again, the proposed MI approach yielded average termination rates and sample sizes similar to those of the CD
method, but had much shorter trial durations.

In addition, we conducted a sensitivity analysis in terms of the number of partitions used in the piecewise exponential
model, the accrual rate, and the prior distribution of λj . We considered J=8 and 12 partitions (in the piecewise exponential
model), faster accrual rate of ρ = 3 and 4 patients per month, and prior hyperparameters c1 = · · · = cJ =0.05 and 0.1.
Across different settings, the results (see Table 3) were generally similar to those displayed in Table 1, where J = 6, ρ = 2

and c1 = · · · = cJ =0.01. For example, when φ = 0.4 and π = 0.3, with data simulated from Weibull distributions, the
proposed method terminated the trial for futility 71.5%, 72.2% and 69.0% of the time when J = 6, 8, 12, respectively, and
71.5%, 67.3% and 70.0% of the time when ρ = 2, 3, 4, respectively. These results suggest that the proposed method is
robust to these model parameters.

4. Conclusions

We have proposed a Bayesian phase II single-arm design with continuous monitoring to estimate the efficacy of the
experimental drug. We incorporate a Bayesian stopping rule to terminate the trial early for futility and avoid assigning
an unacceptable number of patients to inefficacious treatments. We handle the missing responses using the multiple
imputation approach by modeling the time to response data using a piece-wise exponential model. Extensive simulations
show that the proposed design yields desirable operating characteristics under various scenarios. The proposed design
dramatically reduces the trial duration.

In this article, we focus on the trials with binary outcomes. Our proposed multiple imputation approach can be extended
to the trials with ordinal outcomes. According to Response Evaluation Criteria in Solid Tumors, objective response in solid
tumors can be classified into four ordered categories: complete response, partial response, stable disease and progressive
disease. We can use the proportional-odds cumulative logit model [27] for the ordinal response. To handle and impute the
missing ordinal data, we can device time-to-event models for each response category and link them with copula [28] to
accommodate within-patient correlation.



C. Cai et al.

Acknowledgement

The authors would like to thank associated editor and two reviewers for insightful and constructive comments that
substantially improved the paper. Yuan’s research was partially supported by Award Number R01 CA154591 and P50
CA098258 from the National Cancer Institute. Cai’s research was supported by the National Institutes of Health’s Clinical
and Translational Science Award grant (UL1 TR000371), awarded to the University of Texas Health Science Center at
Houston in 2012 by the National Center for Clinical and Translational Sciences. Article content is solely the responsibility
of the authors and does not necessarily represent the official views of the National Cancer Institute or the National
Institutes of Health. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas
at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL:
http://www.tacc.utexas.edu.



C. Cai et al.

References

1. Gehan EA. The determination of the number of patients required in a preliminary and a follow-up trial of a new chemotherapeutic agent. Journal of

Chronic Diseases 1961; 13:346–353.

2. Fleming TR. One-sample multiple testing procedure for phase II clinical trials. Biometrics 1982; 38:143–151.

3. Simon RM. Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials 1989; 10:1–10.

4. Green SJ, Dahlberg S. Planned versus attained design in phase II clinical trials. Statistics in Medicine 1992; 11:853–862.

5. Chen TT. Optimal three-stage designs for phase II cancer clinical trials. Statistics in Medicine 1997; 16:2701–2711.

6. Ensign LG, Gehan EA, Kamen DS, Thall PF. An optimal three-stage design for phase II clinical trials. Statistics in Medicine 1994; 13:1727–1736.

7. Hanfelt JJ, Slack RS, Gehan EA. A modification of Simon’s optimal design for phase II trials when the criterion is median sample size. Controlled

Clinical Trials 1999; 20:555–566.

8. Jung SH, Carey M, Kim KM. Graphical search for two-stage designs for phase II clinical trials. Controlled Clinical Trials 2001; 22:367–372.

9. Shuster J. Optimal two-stage designs for single arm phase II cancer trials. Journal of Biopharmaceutical Statistics 2002; 12:39–51.

10. Lin Y, Shih WJ. Adaptive two-stage designs for single-arm phase IIA cancer clinical trials. Biometrics 2004; 60:482–490.

11. Tan SB, Machin D. Bayesian two-stage designs for phase II clinical trials. Statistics in Medicine 2002; 21:1991–2012.

12. Sambucini V. A Bayesian predictive two-stage design for phase II clinical trials. Statistics in Medicine 2008; 27:1199–1224.

13. Thall PF, Simon RM. Practical Bayesian guidelines for phase IIB clinical trials. Biometrics 1994; 50:337–349.

14. Thall PF, Simon RM, Estey EH. Bayesian sequential monitoring designs for single-arm clinical trials with multiple outcomes. Statistics in Medicine

1995; 14:357–379.

15. Heitjan DF. Bayesian interim analysis of phase II cancer clinical trials. Statistics in Medicine 1997; 16:1791–1802.

16. Lee JJ, Liu DD. A predictive probability design for phase II cancer clinical trials. Clinical Trials 2008; 5:93–106.

17. Johnson VE, Cook JD. Bayesian design of single-arm phase II clinical trials with continuous monitoring. Clinical Trials 2009; 6:217–226.

18. Wathen JK, Thall PF, Cook JD, Estey EH. Accounting for patient heterogeneity in phase II clinical trials. Statistics in Medicine 2008; 27:2802–2815.

19. Zohar S, Teramukai S, Zhou Y. Bayesian design and conduct of phase II single-arm clinical trials with binary outcomes: A tutorial. Contemporary

Clinical Trials 2008; 29:608–616.

20. Yuan Y, Yin G. Robust EM continual reassessment method in oncology dose finding. Journal of the American Statistical Association 2011; 106:818–

831.

21. Follmann DA, Albert PS. Bayesian monitoring of event rates with censored data. Biometrics 1999; 55:603–607.

22. Zhao L, Taylor JM, Schuetze SM. Bayesian decision theoretic two-stage design in phase II clinical trials with survival endpoint. Statistics in Medicine

2012; 31:1804–1820.

23. Cheung YK, Thall PF. Monitoring the rates of composite events with censored data in phase II clinical trials. Biometrics 2002; 58:89–97.

24. Rubin DB. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New York, 1987.

25. Arjas E, Gasbarra D. Nonparametric Bayesian inference from right censored survival data, using the Gibbs sampler. Statistica Sinica 1994; 4:505–524.

26. Aslanidou H, Dey DK, Sinha D. Bayesian analysis of multivariate survival data using Monte Carlo methods. Canadian Journal of Statistics 1998;

26:38–48.

27. Agresti A. Categorical Data Analysis. Wiley, 3rd edition, 2012.

28. Nelsen R. An Introduction to Copulas. New York: Springer, 1999.



C. Cai et al.

0.1 0.2 0.3 0.4 0.5

−
1
0

0
1
0

2
0

3
0

Percentage of early termination with φ = 0.3

π

D
if
fe

re
n
c
e
 (

%
)

MI
Naive
OD
WT

0.2 0.3 0.4 0.5 0.6

−
1
0

0
1
0

2
0

3
0

Percentage of early termination with φ = 0.4

π

D
if
fe

re
n
c
e
 (

%
)

MI
Naive
OD
WT

0.1 0.2 0.3 0.4 0.5

−
1
5

−
1
0

−
5

0
5

Average sample size with φ = 0.3

π

D
if
fe

re
n
c
e

MI
Naive
OD
WT

0.2 0.3 0.4 0.5 0.6

−
1
5

−
1
0

−
5

0
5

Average sample size with φ = 0.4

π

D
if
fe

re
n
c
e

MI
Naive
OD
WT

Figure 1. Differences in the average percentage of early termination and sample size between complete-data (CD) method and naive, observed-data (OD), weighted (WT), and the
proposed multiple imputation (MI) methods with data generated from Weibull distributions and 90% of responses occurring in (T/2, T )
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Figure 2. Differences in the average percentage of early termination and sample size between complete-data (CD) method and naive, observed-data (OD), weighted (WT), and the
proposed multiple imputation (MI) methods with data generated from Weibull distributions and 70% of responses occurring in (T/2, T )
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Table 1. Simulation results under naive, observed-data (OD), complete-data (CD), weighted (WT), and the proposed multiple imputation (MI) methods with data
generated from Weibull distributions.

% of responses % of early termination Average sample size Trial duration (months)
in (T/2, T ) φ π Naive OD CD MI WT Naive OD CD MI WT Naive OD CD MI WT

90% 0.3 0.1 99.5 98.9 99.3 98.8 99.4 8.2 11.8 9.5 11.1 11.0 6.6 8.4 27.9 8.1 8.0
0.2 89.0 70.6 75.3 74.5 79.7 16.6 27.0 23.9 25.4 22.9 11.1 16.8 68.5 15.9 14.5
0.3 57.6 29.8 33.5 33.7 36.2 28.1 39.1 37.2 37.8 37.1 17.6 23.8 103.9 23.1 22.7
0.4 29.4 9.7 10.3 10.7 12.4 38.4 46.1 45.8 45.8 45.2 23.5 27.9 124.4 27.7 27.3
0.5 11.7 3.0 3.0 3.3 3.7 45.2 48.7 48.7 48.6 48.4 27.3 29.3 128.2 29.2 29.1

0.4 0.2 99.6 96.4 98.7 97.5 97.6 8.8 16.6 12.4 15.1 13.8 6.9 10.9 35.4 10.1 9.4
0.3 89.1 64.3 71.5 70.3 76.3 15.8 30.2 26.0 27.6 24.6 10.7 18.5 72.5 17.1 15.4
0.4 59.7 23.8 30.1 29.5 37.4 27.3 41.9 39.0 40.1 37.0 17.2 25.4 105.8 24.3 22.5
0.5 32.3 6.4 9.0 8.8 12.7 36.9 47.7 46.3 46.8 45.2 22.6 28.7 122.1 28.2 27.3
0.6 13.0 1.2 2.0 2.5 4.0 44.7 49.5 49.1 49.0 48.4 27.0 29.7 125.7 29.5 29.1

70% 0.3 0.1 99.8 98.5 99.3 98.9 99.1 8.5 12.4 9.8 11.4 11.3 6.8 8.8 28.4 8.3 8.2
0.2 87.4 68.1 76.2 75.9 77.2 17.1 27.4 23.2 25.0 23.4 11.4 17.0 64.5 15.6 14.8
0.3 51.4 27.9 33.6 33.3 36.8 30.4 39.5 37.3 38.0 36.8 18.9 24.1 99.6 23.2 22.5
0.4 22.0 8.7 9.3 9.7 11.2 41.3 46.5 46.1 46.1 45.3 25.1 28.1 117.9 27.9 27.4
0.5 10.5 3.9 4.5 4.5 5.0 45.6 48.2 48.0 48.0 47.9 27.6 29.1 117.6 28.9 28.8

0.4 0.2 99.4 95.9 97.7 97.4 97.6 9.5 18.1 13.1 15.5 14.9 7.3 11.7 36.4 10.4 10.0
0.3 87.6 60.8 71.2 70.6 72.7 16.8 31.8 25.9 28.1 26.2 11.2 19.4 69.3 17.3 16.3
0.4 54.4 20.3 28.0 28.2 30.5 28.9 43.1 39.4 40.4 39.6 18.1 26.1 100.6 24.5 24.0
0.5 26.5 4.9 8.5 7.1 11.4 39.3 48.2 46.5 47.4 45.6 24.0 29.0 114.1 28.5 27.5
0.6 11.2 1.0 2.3 1.8 3.2 45.4 49.6 49.1 49.3 48.7 27.5 29.8 114.8 29.6 29.3
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Table 2. Sensitivity analysis with data generated from log-logistic distributions under naive, observed-data (OD), complete-data (CD), weighted (WT), and the
proposed multiple imputation (MI) methods.

% of responses % of early termination Average sample size Trial duration (months)
in (T/2, T ) φ π Naive OD CD MI WT Naive OD CD MI WT Naive OD CD MI WT

90% 0.3 0.1 99.9 98.9 99.6 98.8 99.8 8.5 12.7 10.2 12.0 10.6 6.8 8.9 29.8 8.6 7.8
0.2 88.3 70.8 74.6 74.4 78.7 16.4 26.4 23.5 24.7 22.7 11.0 16.5 67.0 15.5 14.4
0.3 52.9 26.6 29.4 30.5 37.7 29.7 39.7 38.4 38.5 36.3 18.6 24.2 106.8 23.5 22.2
0.4 26.6 8.3 9.5 9.8 11.0 39.5 46.5 46.0 46.0 45.5 24.1 28.1 124.2 27.8 27.5
0.5 11.9 3.0 3.3 3.2 4.1 45.2 48.7 48.5 48.6 48.2 27.3 29.3 127.1 29.2 29.0

0.4 0.2 99.8 95.8 97.5 96.8 98.4 9.1 16.9 12.6 15.4 13.4 7.1 11.1 35.9 10.3 9.2
0.3 88.9 61.9 69.7 68.2 77.3 15.9 31.0 26.6 28.1 24.1 10.7 19.0 74.0 17.4 15.1
0.4 60.3 22.7 28.4 29.2 37.2 27.2 42.6 39.9 40.2 36.7 17.1 25.7 107.9 24.4 22.4
0.5 31.1 7.2 9.9 9.8 14.9 37.7 47.3 46.0 46.4 44.3 23.1 28.5 120.4 28.0 26.8
0.6 15.0 1.0 1.7 1.9 5.0 43.8 49.6 49.3 49.3 48.0 26.6 29.8 124.9 29.6 28.9

70% 0.3 0.1 100.0 98.9 99.4 99.2 99.4 8.1 11.6 9.2 10.7 11.1 6.6 8.3 26.8 7.9 8.1
0.2 84.6 66.4 73.8 72.8 78.2 18.2 27.8 23.8 25.4 23.0 12.0 17.3 66.0 15.9 14.6
0.3 45.4 22.2 27.6 26.9 35.7 32.9 41.6 39.6 40.2 36.9 20.3 25.3 105.4 24.5 22.5
0.4 22.2 8.6 10.8 10.7 11.0 41.2 46.4 45.5 45.7 45.5 25.1 28.0 116.8 27.6 27.5
0.5 8.4 2.6 2.9 2.9 3.5 46.6 48.9 48.7 48.3 48.5 28.1 29.4 118.9 29.3 29.2

0.4 0.2 98.9 96.6 97.8 97.7 97.3 9.0 16.3 11.6 14.3 14.2 7.1 10.8 32.3 9.8 9.7
0.3 87.8 62.3 73.4 71.9 73.6 16.6 31.0 24.9 27.2 25.8 11.1 19.0 66.5 16.8 16.1
0.4 55.1 20.9 28.9 29.1 32.2 28.9 42.9 39.3 40.1 38.6 18.1 25.9 100.5 24.3 23.5
0.5 28.5 6.8 10.8 9.5 9.9 38.4 47.3 45.5 46.3 46.1 23.5 28.5 111.1 27.9 27.8
0.6 12.5 1.1 2.5 2.1 2.4 44.8 49.5 48.9 49.2 49.0 27.1 29.8 113.7 29.6 29.5
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Table 3. Sensitivity analysis with different numbers of partitions, accrual rates and prior distributions of λj under the
proposed MI approach with φ = 0.4 and 90% of responses occurring within (T/2, T )

Weibull log-logistic
% of Average Trial duration % of Average Trial duration

Settings π termination sample size (months) termination sample size (months)
J=8 0.2 96.7 15.9 10.6 97.2 15.0 10.1

0.3 72.2 26.8 16.6 68.2 27.8 17.2
0.4 29.7 39.7 24.1 28.7 40.3 24.4
0.5 8.3 46.9 28.3 8.5 46.7 28.2
0.6 2.5 49.0 29.5 2.5 49.0 29.5

J=12 0.2 96.2 15.6 10.4 96.6 15.5 10.4
0.3 69.0 27.9 17.3 68.8 27.9 17.3
0.4 31.7 39.2 23.8 28.1 40.8 24.7
0.5 8.7 46.7 28.2 8.5 46.8 28.2
0.6 2.6 49.0 29.4 3.1 48.7 29.3

ρ=3 0.2 97.7 16.4 8.2 96.7 16.1 8.1
0.3 67.3 29.1 13.3 68.7 28.5 13.0
0.4 32.8 43.2 17.7 29.8 40.6 18.1
0.5 9.7 46.5 20.6 11.9 45.5 20.2
0.6 3.3 48.7 21.5 3.1 48.8 21.6

ρ=4 0.2 97.1 16.8 7.0 96.9 17.2 7.2
0.3 70.0 28.8 10.8 68.6 29.3 11.0
0.4 32.4 40.0 14.6 30.8 40.4 14.8
0.5 9.9 46.6 16.9 12.0 45.7 16.6
0.6 3.9 48.5 17.5 2.7 49.0 17.7

cj=0.05 0.2 97.3 14.2 9.7 97.3 14.3 9.8
0.3 73.8 25.1 15.7 71.9 26.5 16.5
0.4 34.5 37.9 23.1 34.2 37.7 23.0
0.5 13.0 45.0 27.2 13.8 44.6 27.0
0.6 4.7 48.1 29.0 4.4 48.2 29.0

cj=0.1 0.2 97.0 13.2 9.2 97.8 12.9 9.0
0.3 75.4 23.8 15.0 72.9 24.6 15.5
0.4 36.8 36.3 22.3 39.1 35.6 21.9
0.5 15.4 43.9 26.6 16.1 43.7 26.5
0.6 5.4 47.8 28.8 6.3 47.5 28.6
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